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Abstract: Modeling forest fire spread is a very complex problem, and the existing models usually
need some input parameters which are hard to get. How to predict the time series of forest fire spread
rate based on passed series may be a key problem to break through the current technical bottleneck. In
the process of forest fire spreading, spread rate and wind speed would affect each other. In this paper,
three kinds of network models based on Long Short-Term Memory (LSTM) are designed to predict
fire spread rate, exploring the interaction between fire and wind. In order to train these LSTM-based
models and validate their effectiveness of prediction, several outdoor combustion experiments are
designed and carried out. Process data sets of forest fire spreading are collected with an infrared
camera mounted on a UAV, and wind data sets are recorded using a anemometer simultaneously.
According to the close relationship between wind and fire, three progressive LSTM based models
are constructed, which are called CSG-LSTM, MDG-LSTM and FNU-LSTM, respectively. A Cross-
Entropy Loss equation is employed to measure the model training quality, and then prediction
accuracy is computed and analyzed by comparing with the true fire spread rate and wind speed.
According to the performance of training and prediction stage, FNU-LSTM is determined as the
best model for the general case. The advantage of FNU-LSTM is further demonstrated by doing
comparison experiments with the normal LSTM and other LSTM based models which predict both
fire spread rate and wind speed separately. The experiment has also demonstrated the ability of the
model to the real fire prediction on the basis of two historical wildland fires.

Keywords: UAV remote sensing; forest fire; fire spread modelling; LSTM; wind prediction

1. Introduction

Forest fire is one of the major natural disasters, and it occurred frequently in the last
few years [1]. For example, in 2020, the super fire of Australia lasted for about half of year,
which killed 33 persons, and the burned area exceeded 10 million hectares, causing great
damage to the local ecosystem. In April 2019, a forest fire broke out in Liangshui, Sichuan,
China. Due to the neglect of the impact of factors such as the terrain environment and the
abrupt change of wind direction during the spread of the forest fire, a deflagration fire
occurred, resulting in the sacrifice of 27 forest firefighters, as well as irreparable social and
economic losses. The spread and development of forest fires are affected by the topographic
environment, and the spread of forest fire also affects local forest weather environment.

Remote Sens. 2021, 13, 4325. https://doi.org/10.3390/rs13214325 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-0057-9804
https://orcid.org/0000-0003-0053-278X
https://doi.org/10.3390/rs13214325
https://doi.org/10.3390/rs13214325
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13214325
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13214325?type=check_update&version=2


Remote Sens. 2021, 13, 4325 2 of 26

Therefore, the mutual influence between forest fire spread and local environmental factors
cannot be ignored for prevention and control of forest fire spread.

It is a very complicated task to completely simulate the various combustion state pa-
rameters of a real forest fire. Some scholars have proposed the fire identification algorithms,
which provide technical support for fire prediction. The fire identification algorithm is
designed based on computer vision [2]. The detection system based on the TDLAS is
designed; it can find fires by measuring the concentrations of CO [3]. Because the actual en-
vironment is complex, it is often difficult to accurately measure the external environmental
factors that affect the spread of the forest fire, such as wind speed and water content, types
of combustibles, temperature and humidity, etc. Therefore, most of the simulation and
prediction work at this stage is based on laboratory conditions to derive the propagation
speed formula under certain conditions, and then it is generalized to the corresponding real
environment. Based on physics and statistical experience, some classic forest fire models
such as Albini model [4], Australian Mcarthur model [5], Canadian forest fire model [6],
Rothermel model [7,8] and Wang Zhengfei model [9] are proposed.

These theoretical models fully demonstrate the relationship between the spread of
forest fires and the characteristics of combustibles and environmental factors on the basis
of a large number of forest fire experiments, and quantify their use of mathematical rela-
tionships to reflect their mutual effects. Based on these theories, cellular automata [10,11],
boundary interpolation [12,13] and maze algorithm [14,15] or other computational sim-
ulation algorithms are used to describe the process of forest fire spread in the form of
grid or vector graphics. Zeng [16] uses big data analysis technology to conduct forest
fire dynamic prediction. In response to the sudden changing characteristics of forest fire
behavior, Zhou [17] combined a dynamic data system and discrete event system specifica-
tion model, and proposed a dynamic data-driven forest fire spread model based on DEVS
modeling [18]. Because the external environmental factors and the internal characteristics
of combustibles cannot be reflected by qualitative mathematical formulas, this theoretical
model is not necessarily suitable for complex forest wildfire combustion sites.

Wind speed is one of the most important factors affecting the spread of forest fires,
and many scholars have conducted research on its forecasting methods. He [19] proposed
a hybrid forecasting system. In this system, the decomposition technology is applied
to reduce the influence of noise in the original data sequence to obtain a more stable
sequence. Chen [20] contributes to the development of an effective multistep forecasting
method termed ECKIE, which provides multistep forecast for the very-short-term wind
speed in specific stations. The developed method is capable of clustering the model
inputs into groups according to their characteristics and reducing forecasting errors by
choosing a suitable model. Li [21] proposed a self-adaptive kernel extreme learning
machine (KELM) with an advanced and efficient learning process, the self-adaptive KELM
could simultaneously make old data obsolete while learning from new data by reserving
overlapped information between the updated and old training datasets.

Some other novel algorithms [22] on deep learning provide a very good approach
to tackling the fire spread modeling problems. LSTM [23–28] has strong nonlinear fitting
ability, simple learning rules and does not have the problem of excessive expansion of
parameters when facing large data sets. For example, in the field of motion capture with
strong timeliness, the TMF-LSTM [29] network, an extended network of LSTM, can well
capture the co-occurrence relationship between time and space. In the network, the LSTM
approach predicts the topology of the next network, respecting the local network topology
and the dynamics of the network in the short term. The results of the experiment prove that
the significant advantages of the proposed model compared to other strong competitors.
A conditional generative adversarial network with long short-term memory structure
(LSTM-CGAN) [30] has also made great achievements in the field of space-time monitoring.
The author uses taxi hotspot data to train LSTM-CGAN, and the results show that the
proposed LSMT-CGAN model is superior to all the benchmark methods and shows great
potential to make many shared mobile applications.
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LSTM not only applies to the related fields of human action, but also has a good effect
on the learning of natural environment factors. T. Vinothkumar [31] proposed a recurrent
neural network model called the LSTM network model, and variants of support vector
machine models are used to predict the wind speed for the considered locations where the
windmill has been installed, so that it results in forecasting the possible wind power that
can be generated from the wind resources which facilitates to meet the growing energy
demand. Pan [32] constructed a CNN-GRU model to predict the water level of the Yangtze
River. It is proved that the accuracy of the model is higher than that of the autoregres-
sive integrated moving average model (ARIMA) [33] and wavelet-based artificial neural
network (WANN) [34] from three aspects: Nash–Sutcliffe efficiency coefficient (NSE) [35],
average relative error (MRE) [36] and root mean square error (RMSE) [37]. From the above
examples, it can be seen that LSTM network can well capture the characteristics of complex
time series and solve the problem of long-term dependence.

The prediction of forest fire spread is a complicated time series problem. The tradi-
tional mathematical theory model usually obtains the fire spread rate model by controlling
the properties of combustibles and the parameters of the external environment under
the laboratory conditions. This means that traditional theoretical models have great lim-
itations in practical application because parameters such as combustible properties are
often difficult to obtain in the combustion zone. Therefore, this paper will use LSTM to
design a new neural network model to predict the spread rate of the forest fire. In order to
deeply capture the characteristics of forest fire spread by the neural network, we choose the
external parameters that have key impact to the process of forest fire spread as the input
parameters to assist the neural network in learning the rate of fire spread. By studying
the theoretical models related to forest fire spread, such as the Rothermel model, Wang
Zhengfei model, various subsequent improved models, etc., we can see that terrain and
wind speed are two important parameters that affect forest fire spread. When a forest fire
erupts in a specific scene, the terrain characteristics are often fixed, and there will not be
much change during the forest fire spreading process.

The scientific hypothesis of the work is that fire and wind interact with each other, and
that wind speed and fire speed are related in terms of the time series. Therefore, the research
in this paper focuses on exploring the relationship between wind speed and forest fire
spreading rate. Although the temperature and relative humidity of the air can influence
forest fire spread, we study the time series evolution problem for fire and wind. Wind
is the key element for fire spreading, and fire meteorology can also generate the change
of wind, so it is of great significance to predict both fire and wind simultaneously on the
basis that other influencing elements are stable. We believe forest fire spread speed can be
predicted more accurately if the wind speed is considered in the prediction model. Extreme
fire behavior is often caused by the interaction between fire and wind, and the application
of the model in the forest fire management can reduce the casualties due to the extreme fire

The main characteristics of the work include the following three points. First, in order
to make the LSTM neural network be able to perceive the changes of the external envi-
ronment while learning the fire spread rate, we introduced the progressive structure into
the network unit to make the model have good real time performance. Second, we need
to learn not only fire spread rate, but also wind speed. The accurate prediction of wind
speed can also improve LSTM network to capture the time characteristics of fire spread
rate. Finally, in order to fully verify the applicability of the model, we use outdoor burning
data sets and wildland fire data sets to compare the model proposed in this paper with
some excellent LSTM models involved in other papers. The main objective of our work
is to design an LSTM model with sufficient precision to predict the spread of forest fires.
The rest of this paper is organized as follows. Section 2 presents the methods of data
collection and preprocessing. Section 3 describes the details of the proposed progressive
LSTM method. Section 4 presents experimental results and performance analysis. Section 5
concludes the paper and discusses future work.
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2. Data Collection and Preprocessing
2.1. Burning Experiment Configuration

The surface fuel was selected from Maoershan, Harbin, Heilongjiang Province, China,
45◦24′ N, 127◦39′ E, as shown in Figure 1, in November (autumn). In order to fully ver-
ify the performance of the LSTM-based model in different scenarios, we collected the
surface combustibles in coniferous forests mainly dominated by Pinus sylvestris var. mon-
golica [38,39] and broad-leaved forest dominated by poplars. The moisture of combustibles
is measured with a drying method. Considering the applicability of the model, we choose
the terrain slope and wind speed, which have great influence on the spread of forest fire,
and they are easy to measure to set the experimental conditions to train the model. In dif-
ferent cases of forest fire spread, even if the wind speed and terrain slope are exactly the
same, the estimated fire spread rate is also different due to the influence of other factors
mentioned above which are not easy to measured, so the influence of these factors on
fire spread can be regarded as the impact of the hidden layer parameters of the LSTM
based model.

(a)
(b)

Figure 1. The experiment area: (a) Burning experiment configuration. (b) The locations of experiment and fuel collection.

Configuration of the burning experiment is shown as Figure 1, and the experiment
was carried out on 26 May 2021. A UAV is used to capture the whole process of fire
spreading with the infrared camera, the camera parameters are shown in the Table 1.
The fire spreading rate will be computed from the data of fire process, at the same time an
anemometer is used to measure the wind speed. In order to simulate various environment
variables in the actual forest fire spread as much as possible, such as the density and
thickness of combustibles, air humidity, slope and so on, we set up the experimental group
as shown in Table 2.

The type of anemometer is TGC-FSFX-C; it can capture both the direction and speed of
the wind simultaneously. The anemometer is connected to the desktop with the linking of
RS-232, and the data captured can be stored in the desktop in real-time. The absolute error
of measured wind speed is less than 0.1 + 0.1ε (m/s), where ε is the real wind speed, and 1
with respect to wind direction. The frequency for capturing data is 20 Hz. The anemometer
is installed at 1.5 m above the ground.

Table 1. Parameters of the infrared camera used in the experiment.

Number Overview Specifications

1 Type FLIR Duo Pro R640
2 Thermal imager Uncooled VOxMicrbolometer
3 Spectral Band 7.5–13.5 µm
4 Thermal Sensitivity <50 mK
5 Thermal Sensor Resolution Options 640× 512
6 Thermal Lens Options 32◦ × 26◦

7 Thermal Frame Rate 30 Hz
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Table 2. Controlled parameters for each fire spreading experiment.

Experiment Number Quality Bed Size Bed Thickness Inclination Water Content
(kg) (m2) (m) (◦) (%)

1 128.83 10× 10 0.06 8 5.46
2 135.83 10× 10 0.06 18 5.46
3 143.04 10× 10 0.08 8 8.79
4 185.25 10× 10 0.04 18 1.85
5 202.67 10× 10 0.08 8 13
6 106.17 10× 10 0.04 0 10.52
7 185.54 10× 10 0.06 0 8.52
8 151.42 10× 10 0.06 8 5.39
9 200.88 10× 10 0.06 8 9.39

10 132.21 10× 10 0.04 18 6.81
11 127.46 10× 10 0.06 0 3.81
12 143.17 10× 10 0.06 0 3.24
13 216.79 10× 10 0.08 18 4.24

2.2. Computing Fire Spreading Rate from Sequences of the Infrared Images

It is easy to extract the fire front line from the infrared images with the threshold
segmentation method; the fire spreading rate can be computed by differential method
based on the time interval between two adjacent lines of fire. The UAV will tremble
during capturing the fire spreading data, so the fire front line extracted from image must
be transformed into the same coordinate system as that of the combustion bed. Four
points are set in the bed for calibration, and these 4 points reveal very higher value in the
infrared images. There are some noises in the raw infrared image, and median filter [40]
method and other mutual algorithms [41–44] are used to filter the noises. After infrared
images are preprocessed, the perspective transformation [45] is employed to compute the
positions of fire in real word, Figure 2 shows 3 infrared images and their positions of the
fire lines computed.

The infrared image can be preprocessed using the following median filter Equation (1),
where w× w is the size of the sliding window on the infrared image. The median pixel
value is selected from the window as the filtered pixel value.[

g(x, y) = med{ f (x− k, y− l), (k, l ∈ w))}
]

(1)

The perspective transformation is usually used to compute the 3D coordinates of some
pixels in the image, which is shown in Equation (2). x, y, z is the 3D coordinate, u, v is
the pixel coordinate relevant to the 3D point and w is depth scaling factor which makes
the pixel coordinate into the homogeneous format. ai,j in the right 3× 3 matrix can be
calibrated using the model data.

[
x y z

]
=
[
u v w

]a11 a12 a13
a21 a22 a23
a31 a32 a33

 (2)

For each experiment, both wind speed data and fire spread rate data are collected.
As shown in Table 3, the statistical analysis results of 13 data sets are presented, which are
mean value, standard error indicating the relative closeness of the value to the average,
standard deviation indicating the overall fluctuation of the data and confidence interval.
We can see that the value of fire spread rate is not only related to the wind speed, but also
closely related to the experimental environmental conditions of this group. For example,
in the first and second group of data, the average wind speed is close, but the fire spread
rate is very different, which is caused by the different angle between the wind direction
and the direction of fire spread in the two groups of experiments and other parameters.
Because there are some outliers in the data set, it will affect the final convergence of the
model. Therefore, we need to conduct standardized operations before we input data into
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the neural network, so that all inputs are similar in dimension distribution, thus allowing
us to implement the same hyperparameter setting for each dimension in the network
training process, which will achieve a good training effect. At the same time, we added the
dropout structure to improve the fitting ability of the model for uncertain data.

(a) (b) (c)

(d)
Figure 2. Three infrared images with 1 s interval and fire line positions computed from them, the experiment was carried out
on 26 May 2021. (a) The infrared images captured at 15:44:30. (b) The infrared images captured at 15:45:30. (c) The infrared
images captured at 15:46:30. (d) Fire line positions computed from infrared images using perspective transformation.

Table 3. Statistical analysis results of 13 data sets. “Aver” means the average value; “Stan Devi” means standard deviation;
“Confi Inter” means confidence interval.

No. Aver Fire Aver Wind Stan Devi Fire Stan Devi Wind Confi Inter Fire Confi Inter Wind
(10−3 m/s) (m/s) (10−3 m/s) (m/s) (10−3 m/s) (m/s)

1 6.931 1.219 4.376 0.471 1.151 0.157
2 2.852 1.505 1.552 0.489 0.251 0.079
3 3.286 0.805 2.235 0.434 0.507 0.098
4 4.373 1.365 2.129 0.397 0.489 0.091
5 5.389 1.808 1.994 0.488 0.452 0.111
6 5.405 1.148 2.329 0.339 0.522 0.076
7 4.431 1.170 2.217 0.353 0.385 0.061
8 11.479 1.495 2.910 0.502 0.845 0.146
9 6.820 1.217 2.265 0.357 0.644 0.101

10 6.847 1.371 2.353 0.313 0.583 0.078
11 4.013 1.148 1.680 0.340 0.263 0.076
12 3.964 1.555 2.407 0.508 0.525 0.088
13 8.491 1.496 6.194 0.502 4.643 0.146
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3. LSTM-Based Model for Predicting Forest Fire Spread Rate
3.1. Normal LSTM-Based Model

The structure of LSTM contains total three gates controlling the cell state and hidden
state. The Forget Gate determines how much information from the previous moment cell
state can be passed to the current cell state. The Input Gate is used to control how much of
the newly input information can be added to the current cell state. The Output Gate outputs
the hidden state based on the updated cell state. In the normal LSTM-based model, fire
spread rate and wind speed are trained and validated separately, according to the related
sample data sets. The neuron unit structures are illustrated in Figure 3, for predicting fire
spread rate and wind speed, respectively.

(a) (b)
Figure 3. Neuron unit structure of the normal LSTM based model. (a) The main neuron unit for predicting fire spread rate.
(b) The accessory neuron unit for predicting wind speed.

In Figure 3a, Vt
F represents the forest fire spread speed and C

′t records the information
of forest fire spread speed with time t. In Figure 3b, the VW represents wind speed and Ct

records the information of wind speed change with time t. The ultimate goal of conducting
forest fire spread research is to accurately predict the change of fire spreading rate so that
fire prevention and extinguishing approaches can be arranged earlier. It can be seen from
the figure that the wind speed and forest fire propagation rate are predicted independently,
ignoring the mutual interaction in the actual wildfire. While learning the law of forest fire
spreading, the main neuron merely optimizes the weight based on the forest fire spread
rate self and cannot modify the rate according to the change of wind speed. When the wind
speed changes, it will cause a change in the fire spread rate [46]. When the wind speed is
introduced into the main neuron and then the weight parameters are corrected, the time
lag is further increased, and, as a result, it is impossible to provide timely feedback on
the predicted spread rate of forest fires. This is the main reason for developing improved
LSTM-based models.

Taking the neuron unit for predicting fire spread rate for example, the control function
of a single neural of LSTM is as the following Equation (3), and the neuron unit for
predicting wind speed is same as that of the unit for predicting fire spread rate.

f t = σ(W f Vt
F + R f ht−1

F + b f )

it = σ(WiVt
F + Riht−1

F + bi)

C̃t = tanh(WcVt
F + Rcht−1

F + bc)

C
′t = f t • C

′t−1 + it • C̃t

ot = σ(WoVt
F + Roht−1

F + bo)

ht
F = ot • tanh(C

′t)

(3)

In Equation (3), f t is the control function at the time t of the Forget Gate, and σ is the
Sigmod [47] function, which generates a number between 0 and 1 to control the degree
of forgetting state of the current cell. W f , R f and b f are weight matrices; Vt

F is the input
of wind speed (it also applies to fire spread rate) at the current moment; and ht−1

F is the
predicted output of the cell state at the previous moment. it is the Input Gate control
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function, C̃t represents the update of the cell state, the function [48] generates a new
candidate value represents the newly learned state after the forget gate f t is multiplied by
the previous state C

′t−1 and the input gate it is multiplied by new Cell State C̃t; the updated
cell state C

′t is computed. ot is the output Gate, and its output value is multiplied by the
updated cell state to obtain the predicted value ht

F at the current moment.

3.2. Improved Progressive LSTM-Based Models

Three progressive LSTM-based models for predicting the fire spreading rate will
be introduced in this section, in which the interaction between wind and fire increases
gradually. In order to make the main neural unit perceive the change of external wind
speed while learning the law of forest fire spreading, we connect the output of accessory
neural unit to the main neural unit to optimize the parameters. It is assumed that there is a
certain degree of interaction between wind speed and fire spread rate, which is implied on
the depth of the connection between the two neurons. The closer the connection between
the two neurons, the more involved the two types of data are in the learning process of the
neural network, and it also means that the interaction between wind speed and fire spread
rate is stronger. According to the degree of connection between the two neural units, we
have designed three kinds of progressive networks: (1) CSG-LSTM means that there is a
certain interaction between wind speed and fire spread rate, (2) MDG-LSTM assumes that
there is a strong interaction and (3) FNU-LSTM means that wind speed and fire spread rate
always influence each other in the process of forest fire spread. The structures of the neural
unit with respect to three kinds of LSTM-based model are detailed presented below.

3.2.1. CSG-LSTM with Combined Gate of the Same Type

According to structure of LSTM neural unit, the Forget Gate is used to control the cell
state information forgotten from last time step. If the main neural unit is fully trained, then
the rate of forest fire speed will also change in a period of time as a result of wind changing,
which means there is a difference between the current state of the cell and previous time.
The difference indicates that the output of the neural unit will show an upward trend at
the current moment, increasing the degree of forgetting the cell state from the previous
moment. At the same time, the Input Gate output of the neural unit should be decreased,
and the degree of information input to the cell state at the current time step should be
increased, so that the cell state of the main neural unit can be adapted to the development
rule of the forest fire spread after the external wind speed changes as soon as possible.
For the accessory unit, the change in wind speed will also cause the output of the Forget
Gate to change; the performance of the entire model should depend on the main neural
unit that predicts the rate of fire, so the Input Gate of the accessory unit should be related
to the output of the main neural unit, and received performance feedback from the main
neural unit. To sum up, the design of progressive neural unit (CSG-LSTM) is as Figure 4:

The forget gate control function is given by the accessory neural unit, so that the
model can sense the change of external wind speed in real time, and accelerate the rate
of learning the forest fire spreading speed after the main neural unit adapts the change
of wind speed. The input gate control function is given by the main neural unit, which
makes the model subject to the feedback of the main neural unit performance. The control
function of CSG-LSTM neural unit is as follows:

Forget Gate:
f t = σ(W f Vt

W + R f ht−1
W + b f ) (4)

Input Gate: 
it = σ(WiVt

F + Riht−1
F + bi)

C̃t = tanh(WcVt
W + Rcht−1

W + bc)

C̃
′t = tanh(W‘

cVt
F + R‘

cht−1
F + b‘

c)

(5)
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Update Cell State: {
Ct = f t • Ct−1 + it • C̃t

C
′t = f t • C

′t−1 + it • C̃
′t (6)

Output Gate: 
ot = σ(WoVt

W + Roht−1
W + bo)

ht
W = ot • tanh(Ct)

o
′t = σ(W‘

oVt
F + R‘

oht−1
F + b‘

o)

ht
F = o

′t • tanh(C
′t)

(7)

Figure 4. The neuron unit structure of CSG-LSTM.

Equations mentioned before illustrate how to get the predicted fire spread rate and
wind speed based on current input and cell state information recorded in last time step. Ct

stores the information that the wind speed changes with time, ot is the control function of
the accessory neural unit’s Output Gate, ht

W is the predicted output of the accessory neural
unit w.r.t. wind, C

′t stores the information of the change of the forest fire speed with time,
o
′t is the output gate control function of the main neural unit and ht

F is the predicted output
of the main neural unit about fire spread rate.

3.2.2. MDG-LSTM with Combined Gate of the Different Type

Kyunghyun Cho proposed the Gate Recurrent Unit model (GRU) [49], which revised
three gate functions of LSTM. This model can not only effectively solve the problem
of the gradient disappearance, but also simplifies the calculation process and improves
the operation speed. Among them, the Update Gate function is used to determine the
information that should be updated, which is equivalent to the combination of Input
Gate and Forget Gate in the LSTM network; the Reset Gate function is used to control the
discarded information. Structure of the GRU neural unit is shown as Figure 5:
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Figure 5. Structure of the GRU neuron unit.

It can be seen from the Figure 5 that the “1−” operation is carried out when calculating
the hidden state. We suggest that the newly added information has the opposite trend of
weight calculated when updating the unit state and output. Therefore, in order to reduce
the number of parameters and improve the speed of operation, “1−” is introduced in the
hidden state. In the CSG-LSTM designed in Section 3.2, although the main neural is able
to perception and respond to changes in external wind speed while learning, the hidden
parameters increase exponentially due to the link between the two neural, and the amount
of computation is too large. In order to reduce the amount of computation without affecting
the perception of the main neural to the change of wind speed, using the design idea of
GRU for reference, the “1−” is can be introduced into the control weight of the Input Gate,
and the design MDG-LSTM is shown in Figure 6.

Figure 6. The neuron unit structure of MDG-LSTM.

On the basis of the CSG-LSTM, the model connects the Forget Gate with the Input
Gate through the “1−” operation; on the one hand, it reduces the number of parameters
that need to be optimized and speeds up the iterative process, and on the other hand,
the wind speed data can better participate in the optimization process of the whole model.
The detailed formula of MDG-LSTM is as follows:

Forget Gate:
f t = σ(W f Vt

W + R f ht−1
W + b f ) (8)
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Update Cell State: 
C̃t = tanh(WcVt

W + Rcht−1
W + bc)

C̃
′t = tanh(W‘

cVt
F + R‘

cht−1
F + b‘

c)

Ct = f t • Ct−1 + (1− f t) • C̃t

C
′t = f t • C

′t−1 + (1− f t) • C̃
′t

(9)

Output Gate: 
ot = σ(WoVt

W + Roht−1
W + bo)

ht
W = ot • tanh(Ct)

o
′t = σ(W‘

oVt
F + R‘

oht−1
F + b‘

o)

ht
F = o

′t • tanh(C
′t)

(10)

Ct still stores dynamic change information of the wind speed, and C
′t stores dynamic

change information of the forest fire spread rate. In general case, Input Gate is hidden , and
“1−” operation with Forget Gate is applied to update current state. The Forget Gate weights
of the main neuron and the accessory neuron are controlled by the accessory neuron Forget
Gate. Speed of weight updating is still controlled by predicted output of the main neuron.

3.2.3. FNU-LSTM with Fusion of Two Neural Units

In the structure of MDG-LSTM, both main neural unit and accessory neural unit share
the same Forget Gate based on accessory neural unit. Under this structure it is considered
that there is a strong interaction between the wind speed and the forest fire spread rate,
in other words, the change of the wind speed will cause the change of the forest fire spread
rate, and at the same time, the local wind speed of the fire site will be affected by the
feedback of the flame. By further enhancing interaction between fire spread rate and wind
speed, we can use the same cell state to record both of their changes. The LSTM neural
unit (FNU-LSTM) that combines the main neural and the accessory neural is designed as
Figure 7.

Figure 7. The neuron unit structure of FNU-LSTM.

As shown in Figure 7, we further compress two independent neurons into a progres-
sive neuron, in which the wind speed controls the Forget Gate of the neural, while the fire
spread rate controls the Input Gate of the neural unit. The two inputs show a progressive
relationship in logical operation. The detailed formula of FNU-LSTM is as follows:

Forget Gate:
f t = σ(W f Vt

W + R f ht−1
W + b f ) (11)

Input Gate:
it = σ(WiVt

F + Riht−1
F + bi) (12)

Update Cell State:
Ct = f t • Ct−1 + it • C̃t (13)



Remote Sens. 2021, 13, 4325 12 of 26

Output Gate: 
ot = σ(WoVt

W + Roht−1
W + bo)

ht
W = ot • tanh(Ct)

o
′t = σ(W

′
oVt

F + R
′
oht−1

F + b
′
o)

ht
F = ot • tanh(Ct)

(14)

The control function f t of the Forget Gate is generated by the wind speed VW , which
is used to detect the change of the external wind speed and control the retention degree of
the previous cell state Ct−1. The control function it of the Input Gate is related to the speed
of forest fire spreadVF, and controls the degree of information inputting into the cell state
at the current moment according to predictive output of the last time step. Two Output
Gates are set to control wind speed and forest fire spreading rate predicted respectively.
Under this model structure, it is assumed that there is a strong interaction between wind
speed and forest fire spread rate.

Three kinds of LSTM-based model share the same type of input and output data.
There are 4 inputs: the fire spread rate and wind speed predicted from the last round,
the fire spread rate and wind speed measured this time. There are 2 outputs: the fire spread
rate and wind speed predicted this time. In practice, two neuron units are connected
continuously, so there is no measured spread rate and wind speed passing to the input of
the latter neuron unit. Of course, you can make more neuron units connected to predicted
fire spread rate a long time later.

Take the third model FNU-LSTM as the example. In the revised manuscript,
Equations (11)–(14) present the computing process of the model FNU-LSTM, which co-
ordinate with the Figure 7. Equation (11) describes how to compute the forget gate,
which is associated with the wind speed predicted in last round and measured this time.
Equation (12) describes how to compute the input gate, which is associated with the fire
spread rate predicted in last round and measured this time. Equation (13) describes how to
update the cell state based on the forget gate and input gate. Unlike the forget gate and
input gate, in Equation (14), the output gates for controlling fire and wind are separated
each other. The output gate of fire speed is computed based on the fire spread rate predicted
in last round and measured this time, and that of wind speed is based on the wind speed
predicted in last round and measured this time. All the symbols like W, R and b in such
equations are the weights needing to be trained on the data set

The LSTM-based model proposed in the manuscript can be extended to be used in the
real application. Once the weight parameters were trained in advance, the time series of the
fire spread rate can be predicted based on the input of historical time series of the fire spread
rate. In the general case, a UAV can be used to measure the fire spread rate for a period,
and then the model can predict the fire spread rate in the future time, the experiment
section has validated the scalability to the wildland fire prediction. In addition, the extreme
fire behaviour with sudden change of the fire spread rate often brings great thread to the
firemen, and this model can predict this extreme case.

4. Result and Analysis
4.1. Analysis of Loss Value for Training the LSTM Based Models

The loss function is an important parameter in deep learning. Parameter learning
of the network is driven by a back propagation algorithm, which need data sample pairs
of predicted and real values. In the training stage, the Cross-Entropy Loss [50,51] is used
to describe the error changes in the learning process of three different progressive LSTM
neural networks. The Cross-Entropy Loss is presented as follows:

Lso f tmaxLoss = −
1
N

log(
eyi

ΣC
j=1ej ) (15)
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LSTM networks are trained based on one data set which includes over 1000 pairs of
(input, output), there are 4 kinds of data int the input including the fire spread rand and
wind speed predicted from last time step, and the values measured at this time step. The
output includes the fire spread rand and wind speed predicted at this time step. All the
loss values are recorded in the whole training process. Changing curves of loss value w.r.t.
3 kinds of LSTM-based models are shown in Figure 8.
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Figure 8. Loss value for training 3 LSTM-based models.

In the training progress, the CSG-LSTM takes about 100 iterations and 13 min to reach
the limit convergence value of fire spread rate. As can be seen from Figure 8, when iterating
for about 10 times, the convergence value of fire spread speed can reach 4.5, while the
convergence value of wind speed increases to more than 12.6. This is because in the model
unit structure of CSG-LSTM, the forget gate is used to put the change of wind into the main
cell unit for predicting the fire spreading rate. It is unsatisfactory for the accessory cell unit
to learn to predict the wind speed. Therefore, it is necessary to optimize the structure of
CSG-LSTM, making full use of wind fire interaction mechanism, which is the reason for
designing MDG-LSTM and FNU-LSTM.

In the training progress of MDG-LSTM model, it takes about 100 iterations and takes
160 min to reach the limit convergence value of fire spread speed. Compared to that of CSG-
LSTM, the convergence rate of the fire spreading speed becomes slower. At the same time,
the loss value of the wind speed has not increased much, and it is maintained at around
11.4. In the neural unit structure of MDG-LSTM, the connection between the accessory cell
unit and the main cell unit is further deepened, and the control functions of the Forget
Gate and Input Gate of the accessory cell unit and the main cell unit are controlled by the
Forget Gate of the accessory cell unit. Under this cell structure, the accessory neural unit
can not only play an auxiliary role in the learning process of the main cell unit, but also
accept the learning feedback of the main cell unit very well, so the accessory neural unit
has a certain direction for the learning convergence of wind speed and is no longer rising
blindly. Compared with the CSG-LSTM model, under the assumption that there is a strong
interaction between the wind speed and the fire spread rate, the model further deepens the
relationship between the two neural units, and more data of the wind speed and fire spread
rate participate in the training of the whole model. It can also be seen from the functional
relationship that the algorithm of this model is more complex than the CSG-LSTM model,
so this model needs more time to get a better convergence.

In the training progress of FNU-LSTM model, it takes about 10 iterations and 20 min
to reach the convergence value of fire spread speed. In FNU-LSTM, the learning of wind
speed and fire spread speed is carried out by the same cell unit, which undoubtedly
deepens the interaction between wind speed and fire spread rate. Under this structure,
the iteration of the whole model can be promoted only if there is a strong relationship
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between the two kinds of data. Input wind speed data to the Forget Gate which enables
FNU-LSTM to sense the changes of external environment conditions and assist the learning
of fire spread speed. The Input Gate with input fire spread speed data makes it possible to
adjust the state of cell units according to the change of loss value in the training process,
and the structure of this single-cell unit can learn the interaction between wind speed and
fire spread speed. This also proves that our inference about wind speed and fire spread
rate is correct, and it is precisely because of the strong interaction between them that the
FNU-LSTM model can achieve better results compared with the above two models.

Based on the interaction between wind speed and forest fire spread rate in the process
of forest fire spread, by observing the change of loss value of three progressive LSTM
models describing different degrees of the interaction, it can be seen that FNU-LSTM model
has better learning ability, and it is also proved that there is a strong interaction between
wind speed and fire spread rate.

4.2. Error Analysis of LSTM Based Models

In this section, we will use the data set obtained from the combustion experiment
to train the three LSTM neural networks with progressive structure proposed above,
and measure which model is more advantages from the two aspects of prediction accuracy
and model generalization ability. Each data set includes about 10 min of time series data in
seconds. To save training time, 5 s is used as an LSTM unit time, and the learning rate is
set as 0.005.

4.2.1. Predicting Error

The training is stopped when the loss value reaches the limit convergence point. In this
subsection, five data set that are different from the training data set are used to predict both
fire spread rate and wind speed, loss value, absolute error and trend error are computed
simultaneously. Figure 9 shows the true value and predicted value of three improved
LSTM models.
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Figure 9. The true forest fire spread value and predicted value from 3 kinds of progressive models.

The truth value in Figure 9 comes from the experimental data. When the loss value
reaches the limit convergence point, we will use the test set as the input of the model to
predict fire spread rate. The absolute error is used to measure the relative distance between
the predicted value and the actual value. Finally, the average value is computed based
on thirty series of fire spreading process data. The trend error is directly measured by the
difference between the true value and the predicted, which reflects ability of the predicted
value to fit the trend change of the true value, and finally the total value is taken to reflect
the ability of the model to describe the data trend in the thirty time series. Through training
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projections from three neural networks models with 9 datasets we can eventually obtain
27 groups of data as shown in Tables 4–6, respectively.

Table 4. The absolute error of three models.

The Absolute Fire Error of Three Models (10−3 m/s) The Absolute Wind Error of Three Models (m/s)
CSG-LSTM MDG-LSTM FNU-LSTM CSG-LSTM MDG-LSTM FNU-LSTM

1.6 0.7 0.7 0.6 0.4 0.4
0.9 1.6 1.3 0.1 0.7 0.6
2.3 1.5 1.1 0.6 0.4 0.2
1.1 0.9 1.6 0.4 0.2 0.3
2.9 2.6 1.9 0.2 0.1 0.5
1.7 2.5 1.8 0.3 0.5 0.4
2.8 1.4 2.1 0.3 0.3 0.3
2.5 2.8 2.6 0.8 0.5 0.2
1.8 2.6 2.5 0.2 0.5 0.5

Table 5. The trend error of three models.

The Trend Fire Error of Three Models (10−3 m/s) The Trend Wind Error of Three Models (m/s)
CSG-LSTM MDG-LSTM FNU-LSTM CSG-LSTM MDG-LSTM FNU-LSTM

−3 5 2 0.8 −2.4 −2.1
2 3 3 0.5 −3.2 −2.6
5 −5 −3 −3 1.7 0.2
−6 −2 −2 1.9 −0.2 0.1
−10 −7 3 0.2 0.6 −1.6

3 −13 4 1.4 −2.4 1.8
−12 −3 −8 −1.4 1.4 −1.2
−2 11 −7 −2.4 −0.4 0.4
4 −4 −2 0.8 −2.3 −2.6

Table 6. The loss value of three models.

The Fire Loss Value of Three Models The Wind Loss Value of Three Models
CSG-LSTM MDG-LSTM FNU-LSTM CSG-LSTM MDG-LSTM FNU-LSTM

1.7 2.1 3.3 11.2 10 2
2 2.1 3.5 12.9 10 2

2.1 2.1 3.4 12.7 9.8 2
2.1 1.8 3.8 12.8 9.4 1.7
2.1 2.2 3.3 12.9 9.9 2.1
2.2 2.3 2.9 12.6 10.7 2
2.2 2.5 3.3 12.3 9.7 2.2
2.1 2.5 3.5 12.8 9.7 2
2.3 2.2 3.9 12.1 9.6 2.1

As can be seen from the Tables 4–6, although the fire loss value of FNU-LSTM are
the biggest which compared with the other two models, this is because the difference in
resolution accuracy between wind speed data and fire spread data. There is no measuring
unit for loss value, which is obvious from the Equation (15). At the same time, the loss value
in the training process cannot be regarded as the main index to measure the performance
of a model. In the following part, the generalization ability of the model will be discussed
in detail.

4.2.2. Generalization Ability of the Model

In order to further validate generalization ability of the model for data sets, the concept
of “gravity center” is introduced. We assume that each data pair is a particle, the absolute
error is the abscissa value x of the particle, the trend error is the ordinate value y of the
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point and the loss value is the weight m of the particle. In this way, particle error points
of each model can be scattered in the plane, and we can obtain the gravity center of the
scatter graph. 

Gx =
∑9

1 m∗i xi

M

Gy =
∑9

1 m∗i yi

M

(16)

In Equation (16), M is the total number of particles. Let (GCSG_F
x , GCSG_F

y ) denotes the
error gravity center of fire spread rate predicted by CSG-LSTM model, and (GCSG_W

x , GCSG_W
y )

denotes the error gravity center of wind speed predicted by CSG-LSTM model. The error
gravity center about other models is represented using the same format.

All the gravity centers are listed below:

(GCSG_F
x , GCSG_F

y ) = (1.972,−2.102); (GCSG_W
x , GCSG_W

y ) = (0.376,−0.162);
(GMDG_F

x , GMDG_F
y ) = (1.873,−1.546); (GMDG_W

x , GMDG_W
y ) = (0.399,−0.816);

(GFNU_F
x , GFNU_F

y ) = (1.813,−1.217); (GFNU_W
x , GFNU_W

y ) = (0.371,−0.863);

The gravity centers and particle error points are scattered in Figure 10. In each scatter
plot in Figure 10, the solid symbols represent error particle points and the hollow symbols
represent gravity centers.
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Figure 10. The scattered particle points and their gravity centers of fire and wind prediction using
3 kinds of LSTM-based models, respectively. The circles represent density of the error distribution.
(a) The scattered plot on predicting fire spread rate. (b) The scattered plot on predicting wind speed.

Now, we are going to list error range for each model; let ECSG_F
Abs denote the absolute

error of CSG-LSTM model and ECSG_F
Tre denote the trend error of prediction. Other errors

are represented using the same style.
All the error range distributions are listed below.

ECSG_F
Abs ∈ (0.9, 2.9), ECSG_F

Tre ∈ (−12, 5);
ECSG_W

Abs ∈ (0.104, 0.755), ECSG_W
Tre ∈ (−3.023, 1.897);

EMDG_F
Abs ∈ (0.7, 2.8), EMDG_F

Tre ∈ (−13, 11);
EMDG_W

Abs ∈ (0.136, 0.653), EMDG_W
Tre ∈ (−3.235, 1.655);

EFNU_F
Abs ∈ (0.7, 2.6), EFNU_F

Tre ∈ (−8, 4);
EFNU_W

Abs ∈ (0.205, 0.599), EFNU_W
Tre ∈ (−2.596, 1.833);

In terms of error distribution range distance, we find that the error of FNU-LSTM
model for predicting forest fire spread rate is always smaller than that of the other two
models, so it has higher accuracy for ability of predicting fire spread rate.
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In the error distribution diagram, we take the gravity center as the center of the circle,
covering 6 points with the smallest distance from the gravity (the farthest point falls on
the boundary of the circle), as shown in Figure 10. The circle centered at the gravity
center represents the density of error distribution, the smaller the circle, the more reliable
the model.

We measure the distribution density of the error from two aspects, the first one is the
radius of the error circle, and the second one is the average error distance.

The radii of the error circles are compared among these 3 kinds of improve LSTM
based models as below.

RFNU_F < RCSG_F < RMDG_F;
RFNU_W < RCSG_W < RMDG_W ;
The radius of the error circle by FNU-LSTM is smaller than that of the other two

models. The average error distance of each point in the circle relative to the center of
gravity are listed below.

dFNU_F < dMDG_F < dCSG_F;
dFNU_W < dCSG_W < dMDG_W ;
In summary, the error distribution of FNU-LSTM is more concentrated, and the error

distance is relatively short, which means that the model has more stable data learning ability
and higher accuracy when applied to predict forest fire spread rate under many different
environmental conditions, so FNU-LSTM has stronger applicability and generalization
ability than the other two models.

4.3. Optimizing Hyperparameters of Improved LSTM Based Model

Hyperparameter optimization is a key step for improving the prediction model; here,
the number of hidden neural units and the learning rate are considered to be optimized.
For the weight initialization before training model, we employ two assignment methods:
standard normal distribution and truncated normal distribution.

Cross-Validation [52] is used to evaluate the trained models. We divide the original
data into five groups, as shown in the Figure 11; each subset of data is validated once;
and the remaining four subsets of data are used as training sets.

Cross-Validation error is computed by averaging every evaluated results. Considering
the randomness of the initial weight assignment, each model is trained three times with
different hyperparameters, the optimal one are selected as the final hyperparameters.
Table 7 shows our training results after Cross-Validation, when the hidden neural unit is
set to 10 and the learning rate is set to 0.0006, the model initialized by truncated normal
distribution can achieve better performance.

Figure 11. Fivefold cross-validation method.
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Table 7. Cross-validation of training results.

Run Unit Learning Rate 1 2 3 4 5 Mean Value

Random normal
15 0.0006 4.8625 5.555 5.0441 7.5702 4.3435 5.4742
10 0.0006 4.2895 6.3934 4.2624 6.7301 5.6124 5.4551
15 0.001 4.4084 4.4953 4.5462 6.4876 4.1532 4.8179

Truncated normal
15 0.0006 4.2536 5.5503 5.4241 6.9182 6.0189 5.63294
10 0.0006 2.9795 2.7683 5.159 6.5651 4.8001 4.4544
15 0.001 5.1121 2.5852 5.4322 5.7672 6.0016 4.97966

4.4. Comparing Experiments

In order to fully validate prediction ability of the model FNU-LSTM, comparison
experiments are carried out between FNU-LSTM and other LSTM-based models based on
both burning data and wildfire data.

4.4.1. Comparison Based on the Data from Burning Fire Experiment

LSTM-CNN [53,54], a model used to detect traffic related microblogs from Sina Weibo,
adds a convolutional layer and a pooling layer after LSTM output. In the model, CNN can
further extract deep features and add its input to the fully connected neural network. LSTM-
OverFit [55], a model combining overfitting functions and full concatenation functions,
is used to predict the spatial and temporal effects of related variables in earthquakes.
By referencing advice mentioned in the original papers, here, hyperparameters for all the
models are shown in Table 8.

Table 8. The training hyperparameters of models.

LSTM-CNN LSTM-OverFit LSTM FNU-LSTM

LSTM_Layers 2 2 2 2
Learning rate 0.006 0.006 0.006 0.006

Units 10 10 10 10
Batch_size 30 30 30 10
Time_step 10 15 10 5
Iterations 1200 1200 1200 1200

Predicted results lasting for 60 s are acquired using the trained models, which are
shown in Figure 12. In addition to the LSTM-based models, a classical mathematical
model Wang Zhengfei all takes part in the comparison experiment, and related parameters
include Temperature (9.5 ◦C), Global wind speed (2.5 m/s), Air humidity (39.5%) and Slope
inclination (15◦). At the same time, we calculate the RMSE value of each model relative to
the true value, which can reflect the accuracy of model prediction, shown in Table 9.

Table 9. The prediction error RMSE of fire spread rate (experimental fires).

FNU-LSTM LSTM LSTM-CNN LSTM_OverFit Wang Zhengfei

Fire spread rate (10−3 m/s) 1.065 2.258 1.299 2.073 1.458
wind speed (m/s) 0.259 0.391 0.449 0.362

As can be seen from Figure 12a, compared with the traditional mathematical Wang
Zhengfei model, neural network has great advantages for studying the changes of fire
spreading tend. The trend change predicted by FNU-LSTM is similar to the true value
obtained from the burning experiment, and the error distance about the true value is also
smaller than that of other models. Figure 12b also shows an advantage when predicting
wind speed, compared to other LSTM-based model. Figure 13 shows the performance of
the neural network model for distance simulation. Final prediction results of LSTM and
LSTM-OverFit are very similar, but because the fully connected layer added by LSTM-
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OverFit can deepen the learned features, the predicted output of LSTM-OverFit is closer to
the true value. However, compared with true value, these two models can only simulate a
general trend and cannot accurately reflect the changes of fire spread rate or wind speed
due to these models cannot perceive the change of the external wind speed. For the LSTM-
CNN model, its prediction results are quite different from the true value; that is because
the added convolutional layer extracts feature too much, and the original model does
not prevent overfitting operations, resulting in the poor performance of the model in the
data set. There are two mainly factors contributing to this phenomenon. In this paper,
the flame spread speed date extracted into the neural network is realized by threshold
segmentation in the data preprocessing. We do not use a convolutional neural network to
extract the features of the image, so this data processing method does not give full play to
the advantages of LSTM-CNN. Furthermore, this relatively poor performance can be seen
as the result of a difference focus on the characteristics of the data. In the spread of forest
fire, we are more concerned about the speed of fire spread, that is, the flame moves form
position A at the current moment to position B at the next moment. We are focused on
how the flame behaves during this period of time. Therefore, even if we use convolution
network for data preprocessing, the data features extracted by CNN may not be the features
we need in this paper. To sum up, the well-known LSTM-CNN model cannot achieve
an expected performance in the field discussed in this paper. However, we still believe
LSTM-CNN has a very strong ability to process image time series and has great advantages
in image processing and classification.
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Figure 12. The scatterplot of neural network model prediction error and centroid distribution. (a) The fire spread rate
prediction and true value. (b) The wind speed prediction and true value.

4.4.2. Comparison Based on the Data from Wildland Fire

Through the above outdoor burning experiments, we have obtained an FNU-LSTM
model with high enough accuracy to predict fire spread rate. In order to verify applicability
of the model FNU-LSTM, we find two wildland fires which are different in area, topography,
climate and fire occurrence from Monitoring Trends in Burn Severity (MTBS) website, the
two wildland fires as shown in Figure 14. We use Farsite to import the relevant data to
simulate the two fires, in which the Rothermel model is used to calculate the fire spread
rate, and the Huygens model is used to simulate the spread of the fire boundary, as shown
in Figures 15 and 16. The results are very similar to the final combustion boundary of the
original fire, so we suggest that the linear velocity of fire obtained in the simulation can be
used as the real speed of fire. Topography, vegetation, fuel and meteorological data related
to the wildland fires were downloaded from LANDFIRE, including all the wind speed
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data needed for training, at RAWS USA Climate Archive. The humidity data of different
combustibles were obtained from the National Fuel Moisture Database. The start and end
time of the fire and the location of the fire point were obtained from FIRE & WEATHER
DATA to ensure that the setting time and location of the fire simulation are consistent with
the actual situation.
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Figure 13. Scatter plot of predicted distance error of each fire spreading model.

Figure 14. The map of two wildland fires used for validating the scalability of the proposed model.

(a) (b)

Figure 15. Comparison between the actual combustion area and simulation region of Emery wildfire.
(a) The actual combustion area. (b) The result of simulation.
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(a) (b)
Figure 16. Comparison between the actual combustion area and simulation region of DogHead
wildfire. (a) The actual combustion area. (b) The result of simulation.

For the color in Figures 15 and 16, Figures 15a and 16a shows the remote sensing image
of historical fire sites (Landsat 5), the pixel value (i.e., color) of the image is scaled according
to the vegetation type, and the region after the fire is different from that before fire through
scaling operation, the recognition degree of the fire region is very high, as covered by
the yellow envelope line. The both Figures 15b and 16b are simulation environment of
Farsite which is a famous software for simulating forest fire spreading, it is used to generate
the fire spreading data for training and validating the LSTM based model. The color in
Figures 15b and 16b is randomly sampled based on the combustible type.

In the above neural network, we introduced DRPOUT to solve the problem that
wildfire data has more uncertainty. In order to fully illustrate the model’s ability to
fit uncertain data, we introduced a neural network based on the T-S fuzzy system [56]
for comparison.

The Emery Fire was selected as the first wildfire for validating models in this study.
This fire lies in some 18.5 km south from the Oakley area Idaho, where average annual
precipitation is 293.5 mm, annual average temperature is 8.2 ◦C and annual average
humidity is 51.5%. This area is mainly covered with Big Sagebrush Shrubland and Steppe,
Pinyon-Juniper Woodland and Introduced Annual Grassland. The fire began 15:00 on 26
August 2010 and ended 21:00 on 3 September 2010. Its burned area is ~16.2 km2 and ranges
from 1434 to 2570 m elevations.

The DogHead Fire was selected as the second wildfire for validating models in this
study. This fire lies some 30 km southeast from Albuquerque, where the average annual
precipitation is 432.9 mm, annual average temperature is 9.7 ◦C and annual average
humidity is 48.4%. This area is mainly covered with Shortgrass Prairie, Pinyon Juniper
Woodland, Ponderosa Pine Woodland and Semi-Desert Grassland. The fire began at 11:33
on 14 June 2016 and ended at 08:30 on 10 August. Its burned area is about 80.2 km2 and
ranges from 1602 m to 2931 m elevations. As shown in Figures 15 and 16, circles are the
starting fire points, whereas arrows are the directions for collecting data, the different
colors of background represent different fuel models.

After the models are trained using the above data, it is used to predict forest fire
spread rate. The change of fire spread rate according to the time is shown in Figure 17, and
it is clear that the fire spread rate predicted from FNU-LSTM is closer to the true value,
along the time series. In addition, the prediction error RMSE of fire spread rate has been
computed for each model, the details are shown in the Table 10, and the advantage of
FNU-LSTM is obvious in terms of statistic analysis.
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Figure 17. Forest fire spread rate according to the time, predicted from several models. (a) Predicting fire rate of the
wildland fire Emery. (b) Predicting fire rate of the wildland fire Emery DogHead .

Table 10. The prediction error RMSE of fire spread rate(wildland fires).

FNU-LSTM LSTM LSTM-CNN LSTM-Overfit

Emery Fire (5.08× 10−3 m/s) 2.512 6.061 7.597 6.972
Doghead Fire (5.08× 10−3 m/s) 0.297 0.851 0.555 0.814

In addition to the comparison of forest fire spread rate, we also compare the spread
distance computed from the rate predicted, because the distance can provide more infor-
mation that the rate could not. The spreading distance according to the time is shown in
Figure 18. Similar to the comparison of fire spread rate, we also compute the RMSE error
of predicted spreading distance, which is shown in the Table 11.
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Figure 18. Distance of fores fire spread according to the time. (a) The distance accumulated from the
fire spread rate predicted on the Emery wildfire. (b) The distance accumulated from the fire spread
rate predicted on the DogHead wildfire.

Table 11. The RMSE value of fire spread distance between models and true value (wildland fires).

FNU-LSTM LSTM LSTM-CNN LSTM-Overfit

Emery Fire (3.048× 10−1 m) 354.03 3116.03 4867.4 4239.56
DogHead (3.048× 10−1 m) 28.01 144.5 64.64 75.37
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As can be seen from the above results, compared with other models, the FNU-LSTM
model trained using the outdoor burning experiments has a good adaptability to the wild-
land fire. Of course, the purpose of our design of FNU-LSTM is to explore the interaction
between wind speed and fire spread rate in the process of forest fire spread, so as to use
wind speed to assist the learning of fire spread rate. Therefore, a necessary prerequisite
for using the model is that the wind speed monitoring station, which is very close to the
fire site, can be found. The wind speed of the two wildfires is obtained from the weather
station near the fire. When the weather station is closer to the fire site, it means that the
wind speed data we collect are more reliable because they will be affected by the spread of
the wildfire. From the experiments we have done, the RMSE value of the DogHead Fire is
smaller than that of Emery Fire, in part because the meteorological station that collects the
wind speed data of Emery Fire is closer to the fire site.

Our FNU-LSTM model is enough to accurately predict the fire spread rate in one
direction, so we can use this model to match some corresponding visualization algorithms
to simulate other elements of fire behavior, such as direction, intensity, height and so on.
The basis of studying these elements is to have a fire spread model with high enough
precision, so our work is very valuable. Note that the FNU-LSTM model designed in
this article is only make a change to the internal units of the LSTM. The overall network
structure is a double-layer bidirectional LSTM framework, unlike other multi-layer LSTM
networks with many convolutional layers or fully connected layers as mentioned above.
FNU-LSTM model has great plasticity, the depth of the model can be increased to improve
the accuracy.

5. Conclusions

Based on Long Short-Term Memory Neural Network (LSTM), three new network
structures are designed according to the interaction between specific wind speed and fire
spread rate during the forest fire spreading process.

By comparing three kinds of LSTM-based models in terms of training loss values,
prediction accuracy and generalization ability, we can get the following results: ¬ in model
training stage, loss value of the model FNU-LSTM is easy to reach the convergence point
for both fire spread rate and wind speed, so FNU-LSTM can learn evolution rules of the fire
and wind.  Prediction accuracy of the model FNU-LSTM is higher than that of the model
CSG-LSTM and the model MDG-LSTM. ® Gravity center and the error circle is introduced
here, based on which the model FNU-LSTM shows a better generalization ability.

In order to demonstrate the advantage of the proposed LSTM-based model, we further
compare the model FNU-LSTM with traditional mathematical model WangZhengFei and
other famous LSTM-based models, including LSTM-CNN, LSTM-Overfit, etc., measuring
similarity between the truth value and the predicted value, in both respects of fire spread
rate and wind speed, and analyzing the differences between burning data and real wildland
fire for applying the model. There are two conclusions listed below. ¬ The FNU-LSTM
has more advantage than traditional mathematical model for predicting complex time
series of forest fire spread rate.  The FNU-LSTM model has stronger ability to follow the
real-time series of fire spread rate and wind speed, because our models have considered
the interaction between fire and wind. ® The model FNU-LSTM shows even better perfor-
mance which it is used to predict fire spread rate and wind speed of real wildland fire, it
makes sense that fire and wind has a stronger interaction in large wildland fire in which
fire weather can generate additional wind, and the model proposed in the paper totally
considers this interaction.

According to the results of comparison experiment on the wildland fires whose data
comes from the remote sensing images, the scalability of the proposed model has be
demonstrated thoroughly. The model is trained based on the data collected by the UAV
mounted with a infrared camera, and the scalability of the model is also validated based on
the remote sensing data of the historical forest fires. The model contributes to the multiscale
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fire spread prediction, remote sensing is a key tool to monitor the large scale fire, and this
work is of great significance for predicting large scale fire spread.

The FNU-LSTM neural network model designed in this paper can basically achieve the
expected goal, and the accuracy is within the acceptable error range. However, the spread
of forest fire itself is a time series problem, and its environment and factors are complex
and changeable. The model still has some limitations in practical application, so we hope
to use convolutional network to incorporate more factors into the prediction of forest fire
spread. At the same time, due to the limitations of the LSTM network itself, errors will
gradually accumulate over time. Therefore, we will use the dynamic optimization method
to optimize the parameters of the LSTM model to reduce errors, so as to enhance the
applicability of the model in different environments.
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