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Abstract: In hyperspectral image (HSI) classification, convolutional neural networks (CNN) have
been attracting increasing attention because of their ability to represent spectral-spatial features.
Nevertheless, the conventional CNN models perform convolution operation on regular-grid image
regions with a fixed kernel size and as a result, they neglect the inherent relation between HSI data.
In recent years, graph convolutional networks (GCN) used for data representation in a non-Euclidean
space, have been successfully applied to HSI classification. However, conventional GCN methods
suffer from a huge computational cost since they construct the adjacency matrix between all HSI
pixels, and they ignore the local spatial context information of hyperspectral images. To alleviate
these shortcomings, we propose a novel method termed spectral-spatial offset graph convolutional
networks (SSOGCN). Different from the usually used GCN models that compute the adjacency
matrix between all pixels, we construct an adjacency matrix only using pixels within a patch, which
contains rich local spatial context information, while reducing the computation cost and memory
consumption of the adjacency matrix. Moreover, to emphasize important local spatial information,
an offset graph convolution module is proposed to extract more robust features and improve the
classification performance. Comprehensive experiments are carried out on three representative
benchmark data sets, and the experimental results effectively certify that the proposed SSOGCN
method has more advantages than the recent state-of-the-art (SOTA) methods.

Keywords: hyperspectral image classification; deep learning; graph convolutional network; offset
graph convolution; spectral-spatial features

1. Introduction

In recent years, hyperspectral imaging technology has witnessed rapid and sustained
development, and the corresponding spectral resolution and spatial resolution have been
significantly improved, which is beneficial to the accurate classification and recognition
of surface objects [1]. HSI classification has gained wide attention in various domains,
including environmental monitoring, disaster prevention and control and mineral deposit
identification [2–5]. However, due to the large amounts of spectral bands, HSI classification
tasks still suffer from many challenges. The most remarkable challenge is the Hughes
phenomenon, in addition to high information redundancy and high computational cost.
Feature extraction is one of the effective ways to solve these problems. However, com-
plications situations such as spectral variability [6] bring a great challenge to the feature
extraction task.

In the face of these situations, spatial context is fused to obtain discriminating spectral-
spatial features such as morphological profiles (MPs) [7], attribute profiles (APs) [8] and
Markov random fields (MRFs) [9] which use hand-crafted features and therefore require
considerable expert experience. Recently, deep learning has shown its potential in mining
spectral-spatial features of HSI. For instance, recurrent neural network (RNN) [10] and
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generative adversarial networks (GAN) [11]. In particular, convolutional neural networks
(CNN) are widely used to extract robust spectral-spatial features for HSI classification tasks.
For example, Zhang et al. [12] designed a separate dual-channel CNN model which can
automatically extract more robust hierarchical spectral-spatial features. Zhong et al. [13]
enhanced the representation capability of CNN model through designing residual blocks
to learn discriminative spectral-spatial features. However, CNN models only perform
convolution operations on regular-grid image regions with fixed size of kernels, which fail
in flexibly capturing various geometric structures of different local regions in HSI data,
resulting in loss of class boundary information and the occurrence of misclassification.

Comparatively, a graph convolutional network (GCN) [14] can be directly applied to
irregular (or non-grid) data, making full use of image features and flexibly preserving class
boundary information. In [15–17], GCN was applied to HSI classification with relatively
satisfactory results. But these tasks require a high computational cost which is particularly
heavy for hyperspectral images because they compute the adjacency matrix between all
pixels. Wan et al. [18] reduce the calculative cost of the adjacency matrix by super-pixel
segmentation such as the simple linear iterative clustering (SLIC) [19] and regard these
super-pixels as graph nodes, and then extract multi-scale spectral-spatial features by multi-
scale dynamic GCN (MDGCN). However, they take a full-batch network learning approach,
which leads to slow gradient descent. In addition, the classification performance of GCN
model based on super-pixel segmentation is seriously affected by the result of super-pixel
segmentation, and the hyperparameters in super-pixel segmentation algorithm are difficult
to be determined. Different from the work in [18], Hong et al. [20] developed a minibatch
graph convolutional network (miniGCN), which only needs to construct HSI subgraphs
and can be trained in minibatch fashion. Nevertheless, above method models long-range
spatial relations in HSI, ignoring the local spatial context information, which can more
effectively alleviate the spectral variability in the HSI classification.

To address the above limitations in existing GCN-based methods and make GCN-
based HSI classification algorithms can achieve better performance, we propose a simple
but effective spectral-spatial offset graph convolutional network for HSI classification
(termed SSOGCN) in this letter. Different from the traditional GCN-based classification
methods, our proposed method only needs to construct the graph structure between the
pixels in the patch, while reducing the computation cost of the adjacency matrix and
memory cost. In addition, we develop the offset graph convolution (OGC) module to
emphasize important local spatial information by subtraction operation, which actually
acts as a filter. To be specific, we firstly input a HSI patch which contains the local spatial
context information and then use the automatic graph learning (AGL) module to construct
the graph structure between pixels in the patch. Next, our GCN-based network is em-
ployed to extract the hierarchical spectral-spatial features of the HSI patch and classify
the patch finally. In this work, our GCN-based network can effectively capture the local
spatial context correlation which traditional GCN-based classification methods ignore, and
meanwhile, can be trained in minibatch fashion and speeds up the convergence speed
of training.

There are six sections in this article. The Section 2 retrospectively covers some related
works. The Section 3 introduces the SSOGCN method we proposed in detail. The Section 4
is the experimental results and analysis. The conclusions are presented in the Section 5.

2. Related Works

We detail the development process of graph convolutional network in Section 2.1,
which are divided into graph convolutional network in spectral domain and graph convo-
lutional network in spatial domain. In Section 2.2, we review certain representative works
on HSI classification task. Besides, we analyze the status of graph convolutional network
in hyperspectral image classification.
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2.1. Graph Convolutional Network

With the complete development of graph convolutional network theory, graph convo-
lutional network has been widely applied in various fields. There are some representative
works such as recommendation system [21] and natural language processing [22].

Compared with CNN and RNN, graph neural network has the advantage that it
can directly process graph-structured data in non-Euclidean space. Its concept was first
proposed by Gori et al. [23]. Convolution on graph can be divided into two groups
according to different perspectives [24]. Spectral graph convolution uses the graph Fourier
transform to transform the graph signal to the spectral domain, and then carries out the
convolution operation in the spectral domain. Spatial graph convolution aggregates the
node features from the perspective of spatial domain.

Spectral CNN (SCNN) [25] is a representative pioneering work in spectral methods,
where the graph signal is converted into spectral domain by graph Fourier transform
followed by performing convolution operation in spectral domain. The convolution kernel
in this work is defined as a set of learnable parameters which is relevant to Fourier bases.
However, the number of parameters in Spectral CNN is closely related to sample size, and
this work is based on the eigen-decomposition of Laplacian matrix which is a complicated
step. Such a model has a high computational cost on large-scale graphs and is easy to
overfit. Subsequently, ChebyNet [26] used Chebyshev polynomials to fit the frequency
response function, where complex eigen-decomposition step is no longer be required
and the number of parameters was only related to the order of the polynomial, which is
much smaller than the sample size. Afterwards, Kipf and Welling [14] further optimized
ChebyNet and simplified the polynomial to the first-order approximation, which provided
a more efficient graph filtering operation than ChebyNet.

In spatial graph convolution, the convolution operation on each node is regarded as lin-
ear weighting within neighbor nodes, namely the weighting function, which characterizes
the influence of adjacent nodes on the target node [27]. For instance, in GraphSAGE [28],
random sampling among neighbor nodes is carried out first, and then aggregation func-
tions are used to aggregate the sampled neighbor nodes. In graph attention network [29],
self-attention mechanism is used to aggregate neighbor nodes. In addition, MoNet [30]
deems that convolution is the superposition of multiple weighting functions on neighbor
nodes, which can be regarded as a unified framework of spatial approaches.

2.2. Hyperspectral Image Classification

Feature extraction is a very important step for hyperspectral image classification. A lot
of feature extraction algorithms have been successfully utilized for HSI classification [31–33].
Principle component analysis (PCA) [34], linear discriminant analysis (LDA) [35], local-
ity preserving projection (LPP) [36], neighborhood preserving embedding (NPE) [37] are
widely applied to HSI classification. Nevertheless, due to the complex situation such as
spectral variability, it is hard to classifies various land-cover categories accurately by only
utilizing spectral features. Therefore, it has become an inevitable trend to use spatial con-
text information for the classification task of HSI. Recent spectral-spatial HSI classification
methods include morphological profiles (MPs) [7], attribute profiles (APs) [8] Markov
random fields (MRFs) [9], methods based on segmentation techniques [38,39], and meth-
ods based on sparse representation [40] that excavate rich spectral-spatial joint features.
Nonetheless, all of these methods have poor performance on capturing subtle differences
between different categories or large differences within the same category, and they heavily
rely on expertise, since they employ hand-crafted spectral-spatial features.

As an advanced technology, deep learning has drawn increasing attention in vari-
ous computer vision tasks [41], since it can automatically extract effective feature, thus
averting the complex hand-crafted feature engineering [42]. Recently, it has also brought
revolutionary changes to HSI classification task [43]. Chen et al. [44] introduced a stacked
autoencoder (SAE) for HSI classification to learn hierarchical features in an unsupervised
manner for the first time. Subsequently, Chen et al. [45] proposed the deep belief network
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(DBN) model to obtain robust features through the deep belief network and complete
classification task through logistic regression. Meanwhile, Shi and Pun [10] introduced a
recurrent neural network to HSI classification, which can capture the spatial dependence
and excavate multiscale and hierarchical spectral-spatial features. Moreover, Zhu et al. [11]
applied improved generative adversarial networks (GAN) to the HSI classification, with
the input of three PCA components and random noises. There is a recent work on treating
a continuous spectrum as a sequence and mining spectral features with Transformers
which are good at processing sequence data [46]. CNN, in particular, has shown superior
performance in HSI classification task. According to the input information of models, the
HSI classification methods based on CNN can be divided into three categories: spectral
CNN, spatial CNN, and spectral-spatial CNN.

The HSI classification method based on spectral CNN takes each pixel vector as the
input of the model and uses CNN model to classify HSI directly in the spectral domain.
Hu et al. [47] proposed a five-layer 1-D CNN to classify HSI with the spectral features.
Furthermore Li et al. [48] developed a pixel-pair method which can significantly increase the
number of training samples and ensure the superiority of CNN can be actually leveraged.

Spatial CNN-based methods usually use 2D CNN to extract spatial features of HSI. For
instance, in [49], PCA was used to map data into the three dimensions feature space firstly,
and then standard 2D CNN was utilized to extract spatial features. In addition, in [50],
original hyperspectral data were flattened according to spatial dimensions. The flattened
data were regarded as the input of 2D CNN model. Moreover, Song et al. [51] constructed a
very deep network via residual modules to extract discriminant spatial features. Combined
with multiscale filter banks, Gong et al. [52] developed a novel multiscale feature extraction
framework to capture multi-scale and discriminative features.

Spectral-spatial CNN-based methods are the third type of CNN-based HSI classifica-
tion methods, which aim to utilize joint spectral-spatial HSI features in a unified frame-
work. Among these methods, 1D+2D CNN framework is a valid way for HSI classification
task [53,54]. For example, Luo et al. [55] performed spectral-spatial convolution operations
in the first layer for dimensionality reduction firstly and then carried out standard 2D CNN.
In addition, Li et al. [56] proposed to directly process HSI cubes with 3D CNN, which can
learn more complex 3D patterns with fewer layers and parameters than those in 1D+2D
CNN framework. Chen et al. [57] designed a depth feature extractor combining 3-D CNN
and regularization technique to make model more generalization.

As the mainstream backbone architecture, CNN-based methods exhibit superior per-
formance in HSI classification. However, such CNN-based methods often suffer from
higher computation cost and time consuming in training stage due to the extensive pa-
rameters. A number of approaches have emerged to solve this problem. For instance,
Wang et al. [58] address a network architecture search (NAS)-guided lightweight spectral-
spatial attention feature fusion network for HSI classification. Paoletti et al. [59] proposed
a method which combines the ghost-module architecture with a CNN-based HSI classifier
to reduce the computational cost and, simultaneously, achieves an efficient classification
method with high performance. Nonetheless, they all simply carry out convolution opera-
tions with fixed size of kernels on the regular-grid image regions, which will inevitably
result in losing class boundary information.

Recently, GCN which is usually used to data representation in a non-Euclidean space
and can flexibly preserve class boundary information, has been employed to HSI classifi-
cation [60,61]. For instance, Mou et al. [16] take the whole image including both labeled
and unlabeled pixels as input and utilize a set of graph convolutional layers to extract
features. Sha et al. [17] assigned different weights to different neighboring nodes according
to their attention coefficients, avoiding artificial connection weights in the previous GCN.
However, due to the large number of pixels resulted from the high spatial resolution in
HSI, the calculative cost and memory consumption of adjacency matrix is enormous. There
are several works in remote sensing field [62,63] to address this problem. But the most
widely used method is calculating adjacency matrix among super-pixels after super-pixel
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segmentation. For instance, Wan et al. [64] segmented HSI into a series of homogeneous
which are treated as graph nodes by the SLIC algorithm. Furthermore, Wan et al. [65]
proposed a flexible graph projection and reprojection framework to probing long-range
context relationships and producing faithful region features, rather than using a heuristic
super-pixel generation technique. Besides, Hong et al. [20] reduce the computation of
adjacency matrix by constructing subgraph, whose nodes are randomly sampled from HSI.
However, above works failed to model local spatial context relationships in HSI which can
more effectively alleviate the misclassification caused by spectral variation phenomenon.
In this letter, we propose a SSOGCN to solve above problems. As a result, the computation
and memory consumption of adjacency matrix is greatly reduced, and the classification
performance is improved.

3. Method

This section details the proposed HSI classification network SSOGCN, whose frame-
work is shown in Figure 1. Taking HSI patches obtained through the square window
around the central pixel as the input, the SSOGCN firstly construct each patch into a graph
structure between pixels by automatic graph learning (AGL) module. Next, a three-layer
GCN networks is designed to learn graph features. Each layer includes graph convolu-
tion/offset graph convolution (OGC) and graph pooling operation, which are used to
extract features and aggregate information respectively. Finally, a full connect layer is
used for classification. Our network is trained in an end-to-end way. In the following,
we describe the key steps of our SSOGCN in details, including the AGL module (see
Section 3.1) and the graph classification network (see Section 3.2).
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Figure 1. Framework of our SSOGCN.

3.1. Automatic Graph Learning (AGL)

Graphs are nonlinear data structures which can be utilized to describe complex rela-
tionships in non-Euclidean spaces. The relationships among HSI pixels are described as an
undirected graph G = (V, E), where V is a vertex set composed of HSI pixels and E is an
edge set consisting of a series of weighted edge. An edge ei,j denotes the similarity between
any two nodes, i.e., vi and vj. In our context, the adjacency matrix A of the undirected
graph G, defines the relationships (or edges) among vertexes.

A general method of getting an undirected graph is to calculate the pairwise Euclidean
distances between pixels. However, noises in HSI perhaps influence the quality of the
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obtained undirected graph and sequentially affect the subsequent task. Therefore, based
on attention mechanism, we propose a AGL module which learn the graph structure in
an automatic way and can be flexibly integrated to the classification model. Figure 2
details the process of obtaining the adjacency matrix A. Given the input patch with n
pixels and each pixels with a dimension de, we firstly perform linear transformation on
input feature matrix X ∈ <n×de as Equation (1), via weight matrixes Wq, Wk ∈ <de×da , to
generate the query and key matrices Q ∈ <n×da , K ∈ <n×da , respectively. We let da = de/4
for computational efficiency. Then, we utilize the query and key matrices to obtain the
attention coefficients matrix

>
A by the matrix multiplication as shown in Equation (2).

Finally, these attention coefficients are normalized by Equations (3) and (4) (denoted SS in
Figure 2) to give A = (α)i, j:

Q,K = X(Wq, Wk) (1)
>
A = (

_
α )i, j = QKT (2)

αi,j = so f tmax(
_
α i,j) =

exp(
_
α i,j)

∑
k

exp(
_
α k,j)

(3)

αi,j =
αi,j

∑
k

αi,k
(4)

In order to get more accurate graph embedding, it is necessary to only consider the
connections between adjacent nodes. Therefore, the final adjacency matrix A of graph G
can be obtained by Equation (5):

A =

{
αi,j, i f xi ∈ Nei(xj) or xj ∈ Nei(xi)

0, otherwise
(5)

Then, we can get the corresponding Laplacian matrix L = D−A of graph G, where
degrees matrix Dii = ∑j Aij is a diagonal matrix. In Equation (6), the Laplace matrix L
is normalized and symmetrized to improve the generalization performance of the graph
representation [66]:

Lsym = D−1/2LD−1/2 = I−D−1/2AD−1/2 = UΛUT (6)

where matrix I denotes the identity matrix, U is an orthogonal matrix comprised by the
eigenvectors of the matrix Lsym, Λ is a diagonal matrix comprised by eigenvalues of the
matrix Lsym.
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3.2. Graph Classification Networks

This section details the proposed graph classification network. We train our network
in the form of mini-batch. The input tensor size is 32× 200× 49, representing 32 undirected
graphs (G1, G2, . . . G32) in each batch. The size of vertex sets in each graph is 49, and D
denotes the feature dimension of each vertex. Our graph classification network classifies
each undirected graph into one category. Specific configuration of the network is shown in
Table 1 below. We use GCN to reduce the dimension of the input and capture the structure
information of the data in the first layer. OGC module we proposed is utilized to extract
offset features in the second and third layers. In order to decrease the computational cost
and improve the generalization performance of the model, we add a graph pooling layer
after each feature extraction layer. The three graph pooling layers respectively sampled
the number of nodes from 49, 16, 4 to 16, 4, 1. The fourth layer is the full connection layer,
which maps the spectral-spatial features to the label space for classification. Next, we will
detail the three major parts of the graph classification network: GCN, OGC, Graph pooling.

Table 1. Configuration of Deep Network Used in Graph Classification.

Layer Module Input Tensor Size Output Tensor Size

1
GCN 32 × D × 49 32 × 32 × 49
POOL 32 × 32 × 49 32 × 32 × 16

2
OGC 32 × 32 × 16 32 × 32 × 16

POOL 32 × 32 × 16 32 × 32 × 4

3
OGC 32 × 32 × 4 32 × 32 × 4

POOL 32 × 32 × 4 32 × 32 × 1

4 FC 32 × 32 32 × C

3.2.1. GCN

Given two sets of graph signals x, g on graph G, the graph convolution operation is
defined as Equation (7):

gFx = U[(UT g)•(UTx)] = U[g̃•(UTx)] = (Udiag(g̃)UT)x = Hg̃x (7)

where F represents the graph convolution operation, and • is the Hadamard product.
Obviously, Hg̃ is a graph shift operator, whose frequency response matrix is the spectrum
of g. The graph convolution operation equal to graph filter, and the core of the graph
filter operator is the frequency response matrix. Joan et al. [25] parameterize the frequency
response matrix. Let gθ = diag(θ), the graph convolution definition in Equation (7) can be
further expressed as Equation (8):

gFx = UgθUTx (8)

Eigenvector decomposition in Equation (8) has a heavy computational cost. Therefore,
Hammond et al. fit any frequency response function approximately by the k-th order
truncated expansion of Chebyshev polynomials [67], which is:

gθ′(Λ) ≈
K

∑
k=0

θ′kTk(
~
Λ) (9)

where θ′ denotes a vector comprised by Chebyshev coefficients, and
~
Λ = 2/(λmax)Λ− I

which λmax denotes the largest eigenvalue of matrix Lsym. Therefore, Equation (8) can be
written as Equation (10):

gθ′Fx ≈ U
K

∑
k=0

θ′kTk(
~
Λ)UTx =

K

∑
k=0

θ′kTk(
~
L)x (10)
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where
~
L = 2/(λmax)Lsym − I is the scaled form of Lsym. By limiting K = 1, Equation (10) is

a linear function about Laplace matrix, so Kipf and Welling [14] make λmax approximate to
2. The polynomial in Equation (10) can be further simplified as follows:

gθFx ≈ θ′0x + θ′1(Lsym − I)x = (θ′0 − θ′1D−
1
2 AD−

1
2 )x (11)

Let θ′ = θ′0 = −θ′1, then Equation (11) becomes:

gθFx = θ′(I + D−
1
2 AD−

1
2 )x (12)

where θ′ is a scalar, which is equivalent to doing a scale transformation on the frequency
response function of I + D−

1
2 AD−

1
2 . Usually, such scale transformation will be replaced

by the normalization operation in the neural network, so let θ′ = 1. However, deep
GCN which operate Equation (12) repeatedly will suffer from exploding or vanishing
gradients, since the eigenvalues of matrix I + D−

1
2 AD−

1
2 range from 0 to 2. To prevent

the training from getting worse, Kipf and Welling [35] took the renormalization trick

denoted as I + D−
1
2 AD−

1
2 → D̂−

1
2 ÂD̂−

1
2 , where Â = A + I and D̂ii = ∑j Âij. Therefore,

the convolutional layer of GCN is defined in Equation (13):

H(l) = σ(D̂−
1
2 ÂD̂−

1
2 H(l−1)W(l) + b(l)) (13)

where matrix H(l) denotes the output features in the lth layer, σ(•) is the nonlinear activa-
tion function (we choose Relu as the nonlinear activation function in our case), W(l) and
b(l) denotes the trainable weight matrix and biases in the lth layer, respectively.

3.2.2. OGC

In order to emphasize important local spatial information and improve the classifica-
tion performance of our model. we propose the offset graph convolution (OGC) module,
and we replace the GCN layer with the OGC module. GCN is used to extract information
among neighbor nodes. Therefore, the offset features between before and after extraction
are the important information sent by the neighbor nodes. See Figure 3 for details, to
obtain the offset features, we subtract the input features from the features extracted by
GCN element by element, where the subtraction operator is equivalent to a filter. Next, we
input the offset features into the LBR module which is combination of Linear, Batch Norm
and Relu layers. Then, we add the input features of our module and the LBR output by
element-wise. As shown in Equation (14):

Hout = OGC(Hin) = LBR(Hin −HGCN) + Hin (14)

where Hin is the input of OGC module, Hout is the output of OGC module and HGCN is the
output of GCN. According to the definition of GCN layer in Equation (13), we can get:

Hin −HGCN = Hin − (D̂−
1
2 ÂD̂−

1
2 HinW + b)

≈ Hin − D̂−
1
2 ÂD̂−

1
2 Hin = (I− D̂−

1
2 ÂD̂−

1
2 )Hin = (D̂−

1
2 L̂D̂−

1
2 )Hin = L̂symHin

(15)

where matrix W and vector b are negligible as the weight matrix and bias term in linear
transformation, and L̂sym is the regularization Laplace matrix of Â with Â = A + I. Rather,
Â = A + I is equivalent to adding a self-connection to the adjacency matrix to emphasize
the information of each node itself. Therefore, Hin −HGCN can be approximated to the
Laplace smoothing operation to the input. According to the row vector perspective of
matrix multiplication, L̂symHin is equivalent to aggregate the important feature within
neighbor nodes.
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3.2.3. Graph Pooling

Besides extracting the features through GCN layer, another important part in graph
classification network is the aggregation of global features by the pooling layer. Graph
classification based on global pooling loses rich structural information in the graph data,
since it regards inputs as flat data and all nodes are treated equally. Therefore, we adopt
the layer-wise hierarchical pooling [68] to aggregate the global features. Figure 4 illustrates
a simple three-layer graph pooling process. Specifically, the input nodes are firstly formed
into a set of subgraphs by clustering. Then these subgraphs are treated as a set of super-
nodes and gradually merged into one node. The hierarchical pooling has many advantages
such as decreasing the computational cost and learning the rich structure information of
the graph data. Our graph pooling has two major steps. Firstly, as shown in Equation (16),
we utilize GCN to learn a cluster assignment matrix which can describes the probability
that each node belongs to a certain cluster. The second step is to aggregate the nodes in
each cluster by Equation (17) to get the output H(l+1) of the pooling layer:

S(l) = so f tmax(GCN(A(l), H(l)
out)) (16)

H(l+1) = (S(l))
T

H(l)
out (17)

where S(l) ∈ <n×m is a soft assignment of each node in the l-th layer. n is the number of
nodes in the l-th layer, m is the number of nodes in the (l + 1)-th layer.
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4. Experiment
4.1. Data Sets

Three representative HSI data sets which cover different areas are adopted to evaluate
the performance of the SSOGCN method: the Indian Pines data set, Pavia University data
set and Salinas data set.

(1) Indian Pines Data Set: The scene over northwestern Indiana, USA was acquired over
the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor in 1992. The
image consists of 145 × 145 pixels and the spatial resolution is 20 m per pixel.

There are 220 bands in the range of 0.4~2.5, and 200 bands are available after getting
rid of the bands with serious noise effects. The data set contains 16 types of features, and
10,249 sample data can be referred. The false color map and ground-truth map are shown
in Figure 5. Table 2 lists 16 main land-cover categories involved in this scene, as well as the
number of training and testing samples used for our experiments.
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Figure 5. Indian Pines Data Set ((a) False-color map; (b) Ground-truth map).

Table 2. Number of training and test sets for the Indian Pines data set.

Class Class Name Train Test

1 Alfalfa 15 31
2 Corn-notill 50 1378
3 Corn-mintill 50 780
4 Corn 50 187
5 Grass-pasture 50 433
6 Grass-trees 50 680
7 Grass-pasture-mowed 15 13
8 Hay-windrowed 50 428
9 Oats 15 5

10 Soybean-notill 50 922
11 Soybean-mintill 50 2405
12 Soybean-clean 50 543
13 Wheat 50 155
14 Woods 50 1215
15 Buildings-Grass-Trees-Drives 50 336
16 Stone-Steel-Towers 50 43

Total 695 9554

(2) Pavia University Data Set: The second image comprised by 610 × 340 pixels and each
pixel are 1.3 m. It was acquired by the Reflective Optics System Imaging Spectrometer
(ROSIS) sensor in 2002. There are 115 bands in the range of 0.43~0.86, and 103 bands
without serious noise are selected for experiment. The data set includes nine land
cover classes, and a total of 42,776 samples can be referred. As shown in Figure 6
below, the left image is a false color map, the middle column is a ground-truth
map, and the right is the corresponding class name. Table 3 lists 9 major land-cover
classes in this image, as well as the number of training and testing samples used for
our experiments.
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Table 3. Number of training and test sets for the Pavia University data set.

Class Class Name Train Test

1 Asphalt 50 6581
2 Meadows 50 18,599
3 Gravel 50 2049
4 Trees 50 3014
5 Painted metal sheets 50 1295
6 Bare Soil 50 4979
7 Bitumen 50 1280
8 Self-Blocking Bricks 50 3632
9 Shadows 50 897

Total 450 42,326

(3) Salinas Data Set: The scene over Salinas Valley, California was acquired the AVIRIS
sensor. The image consists of 512 × 217 pixels and the spatial resolution is 3.7 m per
pixel. There are 204 bands are available after discarding the 20 water absorption bands.
The data set contains 16 types of features, and 54,129 samples can be referred. Table 4
lists 16 main land-cover categories involved in this scene, as well as the number of
training and testing samples used for our experiments. The false color map and
ground-truth map are shown in Figure 7.
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4.2. Experimental Settings

In the experiment, we used Pytorch 1.6 framework to implement the HSI classification
networks. All experiments were run on RTX 2080Ti GPU with Python 3.7.3, CUDA 10.2.

Table 4. Number of training and test sets for the Salinas data set.

Class Class Name Train Test

1 Brocoli_green_weeds_1 50 1959
2 Brocoli_green_weeds_2 50 3676
3 Fallow 50 1926
4 Fallow_rough_plow 50 1344
5 Fallow_smooth 50 2628
6 Stubble 50 3909
7 Celery 50 3529
8 Grapes_untrained 50 11,221
9 Soil_vinyard_develop 50 6153

10 Corn_senesced_green_weeds 50 3228
11 Lettuce_romaine_4wk 50 1018
12 Lettuce_romaine_5wk 50 1877
13 Lettuce_romaine_6wk 50 866
14 Lettuce_romaine_7wk 50 1020
15 Vinyard_untrained 50 7218
16 Vinyard_vertical_trellis 50 1757

Total 800 53,329

We randomly selected 50 labeled samples from each class as training samples, or
15 labeled samples per class if the number of samples in a class is less than 50 samples, and
the rest samples were used as the test sets. For training, Adam optimizer was utilized to
optimize all models. The cross-entropy loss function was chosen to measure classification
error. The weight decay was empirically set to 0.001. The learning rate was initialized to
0.01, and dropped to 0.1 times for every 50 epochs. The training task was completed after
200 epochs with a batch size setting to 32.

We chose eight SOTA methods applied to the field of HSI classification task recently
as comparative approaches to verify the classification capability of SSOGCN from multiple
perspectives. Specifically, we compared two traditional methods (KNN [69] and SVM [70]),
two CNN-based methods (2D-CNN [71] and CNN-PPF [48]), three GCN-based methods
(GCN [14], miniGCN [20], MDGCN [18]), and the method based on CNN and GCN (FuNet-
C [20]). The parameter configurations of all comparative methods were consistent with
those in the reference of comparison methods. Three classic indicators including overall
accuracy (OA), average accuracy (AA) and kappa coefficient (KA) were utilized to assess
the algorithm quantitatively. All of these methods were run ten times on each dataset, and
the average accuracies were reported.

4.3. Classification Results
4.3.1. Results on the Indian Pines Data Set

The quantitative results on the Indian Pines data set are summarized in Table 5, where
the highest value in each row is highlighted in bold. It can be seen that our methods are
improved by 17.81%, 21.18% in OA, respectively, compared with GCN, miniGCN, which
mainly model long-range spatial relationships and ignore local spatial information. In
addition, it has a great improvement in OA compared with 2D-CNN which is restricted by
the fixed convolution kernel.
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Table 5. Classification performance of various methods in Indian Pines data set (%).

Class KNN SVM 2D-CNN CNN-PPF GCN miniGCN MDGCN FuNet-C SSOGCN

1 15.54 16.89 12.03 16.22 18.92 17.57 93.54 29.59 20.95
2 45.79 68.94 70.6 67.49 75.47 68.07 65.82 78.81 87.52
3 54.87 57.56 68.25 55.38 62.05 53.97 83.33 84.49 93.46
4 63.64 79.68 99.52 78.07 86.63 66.84 96.25 96.26 100.0
5 84.30 89.15 94.48 89.61 88.68 77.37 79.44 97.92 98.38
6 87.65 91.32 100.0 92.50 94.85 93.38 92.05 99.12 98.68
7 92.31 92.31 100.0 100.0 100.0 100.0 23.07 100.0 100.0
8 89.72 95.09 97.1 96.73 97.20 98.36 100.0 100.0 100.0
9 80.00 100.0 100.0 100.0 100.0 80.00 0.00 100.0 100.0
10 67.68 77.66 75.58 74.51 80.48 69.52 73.53 85.25 92.41
11 49.94 59.09 70.8 63.58 59.58 63.04 88.77 78.50 90.19
12 44.94 62.80 65.72 78.08 79.56 64.64 67.77 79.74 95.76
13 96.13 98.06 100.0 100.0 98.71 98.06 100.0 100.0 99.35
14 74.65 80.00 89.15 84.44 80.41 86.17 92.02 96.30 97.12
15 52.98 71.43 84.27 76.19 80.06 69.64 96.43 89.29 99.11
16 93.02 93.02 100.00 97.67 95.35 90.70 83.72 100.0 100.0

OA(%) 61.06 71.20 78.93 73.42 74.7 71.33 80.53 85.54 92.51
AA(%) 68.32 77.06 83.32 79.41 81.12 74.83 77.23 87.83 92.06
KA(%) 56.29 67.60 76.10 69.91 71.47 67.42 81.11 83.52 91.45

As shown in Figure 8, the SSOGCN proposed in this paper has fewer error points in
the classification graph. It is worth noting that the classification accuracy on category 9
of MDGCN, which is based on super-pixel segmentation, is 0. MDGCN thinks all pixels
in a super-pixel should belong to the same category. So, if the super-pixel is in the wrong
category, a large number of pixels in the super-pixel block will be misclassified.
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4.3.2. Results on the Pavia University Data Set

Table 6 demonstrates the quantitative results on the Pavia University data set in details,
which are similar to those in the Indian Pines data set. It can be seen apparently that our
SSOGCN gains the highest OA, AA, and KA than those in all other SOTA algorithms.
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Moreover, the classification accuracy of each method on the University of Pavia data set is
higher than that in the Indian Pines due to less noises within the data set.

Table 6. Classification performance of various algorithms in Pavia University data set (%).

Class KNN SVM 2D-CNN CNN-PPF GCN miniGCN MDGCN FuNet-C SSOGCN

1 67.45 63.07 76.10 57.73 64.03 78.62 62.80 85.34 95.00
2 70.88 82.59 83.52 83.56 83.42 86.77 88.67 95.33 99.09
3 67.01 81.80 75.40 82.97 78.09 70.82 93.76 91.65 84.58
4 88.12 90.44 97.51 89.28 89.25 88.49 81.89 96.95 95.92
5 98.92 99.61 99.46 99.00 98.61 98.53 97.17 99.92 99.77
6 69.05 82.43 78.53 54.35 86.10 81.74 99.22 90.76 97.23
7 87.97 92.11 94.77 93.52 90.47 90.16 85.19 97.89 98.28
8 71.97 78.85 84.55 62.89 79.87 83.07 79.79 88.79 96.26
9 100.0 99.89 100.0 100.0 100.0 100.0 53.33 100.0 99.89

OA(%) 73.26 80.44 83.65 75.35 81.14 84.69 84.24 92.93 97.08
AA(%) 80.15 85.64 87.76 80.36 85.54 86.47 82.37 94.07 96.22
KA(%) 65.96 74.96 78.79 67.64 75.84 79.99 79.57 90.66 96.11

As shown in Figure 9, the classification maps obtained by our SSOGCN method is
more consistent with the ground-truth map. Specifically, from Figure 9f,g,i,j, it can be seen
that GCN, miniGCN, FuNet-C, and SSOGCN, which use GCN, have fewer misclassification
points in the class boundary region. However, from Figure 9h, it can be seen that MDGCN
which is also based on GCN has more misclassification points due to the inaccurate super-
pixel segmentation.
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4.3.3. Results on the Salinas Data Set

Table 7 exhibits the quantitative results on the Salinas dataset. Obviously, OA, AA and
KA obtained by our SSOGCN are still the highest, compared with other SOTA algorithms.
The methods based on deep learning own higher classification accuracy than traditional
machine learning methods (KNN, SVM). In addition, due to the high spatial resolution and
spectral dimension, the GCN-based method named GCN occurs out of memory when we
calculate the adjacency matrix. Our SSOGCN method effectively solved this problem and
won superior classification performance. It is obvious from Figure 10 that the classification
map of SSOGCN shows fewer error points.

Table 7. Classification performance of various methods in Salinas data set (%).

Class KNN SVM 2D-CNN CNN-PPF miniGCN MDGCN FuNet-C SSOGCN

1 88.42 97.13 95.61 85.15 97.60 100.0 100.0 100.0
2 88.25 97.08 97.03 99.97 99.89 100.0 99.97 100.0
3 93.82 91.49 96.0 94.65 93.87 63.11 99.22 99.88
4 90.48 99.56 99.55 99.63 99.03 97.06 99.55 99.75
5 83.87 92.84 96.88 97.41 97.45 99.74 97.34 97.26
6 82.02 99.72 99.39 99.82 99.97 100.0 100.0 100.0
7 87.79 99.3 99.12 99.60 99.63 100.0 99.43 100.0
8 50.84 57.58 51.38 92.06 67.13 85.47 64.46 83.12
9 81.75 97.69 97.40 99.58 99.38 100.0 99.93 99.80
10 97.40 85.0 90.68 89.71 92.13 98.66 97.15 97.84
11 78.09 92.81 98.13 93.03 97.35 48.78 99.71 99.45
12 87.16 98.74 99.89 99.73 99.89 100.0 100.0 99.94
13 88.34 99.10 99.65 99.77 99.54 100.0 100.0 100.0
14 80.29 90.81 98.63 93.24 98.14 99.63 98.92 100.0
15 63.52 52.01 66.42 23.04 70.16 81.84 76.20 91.99
16 89.53 93.66 97.10 98.01 98.41 93.36 98.69 99.94

OA(%) 76.05 81.84 83.41 85.98 87.85 91.72 88.84 95.05
AA(%) 83.22 90.28 92.68 91.52 94.35 91.70 95.66 98.06
KA(%) 73.52 79.85 81.62 84.27 86.5 90.77 87.61 94.49

Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 23 
 

 

Table 7. Classification performance of various methods in Salinas data set (%). 

Class KNN SVM 2D-CNN CNN-PPF miniGCN MDGCN FuNet-C SSOGCN 
1 88.42 97.13 95.61 85.15 97.60 100.0 100.0 100.0 
2 88.25 97.08 97.03 99.97 99.89 100.0 99.97 100.0 
3 93.82 91.49 96.0 94.65 93.87 63.11 99.22 99.88 
4 90.48 99.56 99.55 99.63 99.03 97.06 99.55 99.75 
5 83.87 92.84 96.88 97.41 97.45 99.74 97.34 97.26 
6 82.02 99.72 99.39 99.82 99.97 100.0 100.0 100.0 
7 87.79 99.3 99.12 99.60 99.63 100.0 99.43 100.0 
8 50.84 57.58 51.38 92.06 67.13 85.47 64.46 83.12 
9 81.75 97.69 97.40 99.58 99.38 100.0 99.93 99.80 

10 97.40 85.0 90.68 89.71 92.13 98.66 97.15 97.84 
11 78.09 92.81 98.13 93.03 97.35 48.78 99.71 99.45 
12 87.16 98.74 99.89 99.73 99.89 100.0 100.0 99.94 
13 88.34 99.10 99.65 99.77 99.54 100.0 100.0 100.0 
14 80.29 90.81 98.63 93.24 98.14 99.63 98.92 100.0 
15 63.52 52.01 66.42 23.04 70.16 81.84 76.20 91.99 
16 89.53 93.66 97.10 98.01 98.41 93.36 98.69 99.94 

OA(%) 76.05 81.84 83.41 85.98 87.85 91.72 88.84 95.05 
AA(%) 83.22 90.28 92.68 91.52 94.35 91.70 95.66 98.06 
KA(%) 73.52 79.85 81.62 84.27 86.5 90.77 87.61 94.49 

4.4. Impact of Patch Size 
In our proposed method, we input a HSI patch, whose dimensionality is high. It will 

have a high computation cost if the input patch is too large, while it will miss important 
information if the input patch is too small. Therefore, we analyze the effect of different 
input sizes in this section. As shown in Figure 11, with the increase of the patches size, the 
overall accuracy first increased rapidly and then decreased since more information which 
is not conducive to classification is included.  

     

(a)  (b)  (c)  (d)  (e)  

Figure 10. Cont.



Remote Sens. 2021, 13, 4342 16 of 22Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 23 
 

 

    

(f)  (g)  (h)  (i)  

Figure 10. Classification map of various algorithms in the Salinas data set ((a) Gound-truth map; (b) KNN; (c) SVM; (d) 
2D-CNN; (e) CNN-PPF; (f) miniGCN; (g) MDGCN; (h) FuNet-C; (i) SSOGCN). 

This phenomenon is particularly evident in the Pavia University data set, in 
which the ground-object has a fairly irregular distribution. Therefore, the patch size 
in each dataset is uniformly set to 7 × 7 in our experiment according to Figure 11. 

 
Figure 11. Parameter Sensitivity Analysis. 

4.5. Ablation Study 
This section investigates the usefulness of these three operations: automatic graph 

learning module, offset graph convolution module and graph pooling, where the experi-
mental setup stays the same as the abovementioned experiments in Section 4.3. Table 8 
clearly indicates that the OA of SSOGCN improved 1.13%, 3.04% and 1.2% compared with 
the situation without AGL in the three datasets, i.e., Indian Pines, Pavia University and 
Salinas data set, respectively. It indicates that the automatic graph learning module we 
propose learned an optimal graph structure for the downstream task. In addition, 
SSOGCN improves the OA by 2.39% and 2.17%, 1.31% compared the situation without 
OGC in Indian Pines, Pavia University and Salinas data set, respectively, which demon-
strates the effectiveness of the offset graph convolution module. Moreover, we can see 

80
82
84
86
88
90
92
94
96
98

100

5×5 7×7 9×9 11×11 14×14 17×17

O
A

(%
)

Patch Size

Pavia University
Indian pines
Salinas

Figure 10. Classification map of various algorithms in the Salinas data set ((a) Gound-truth map; (b) KNN; (c) SVM;
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4.4. Impact of Patch Size

In our proposed method, we input a HSI patch, whose dimensionality is high. It will
have a high computation cost if the input patch is too large, while it will miss important
information if the input patch is too small. Therefore, we analyze the effect of different
input sizes in this section. As shown in Figure 11, with the increase of the patches size, the
overall accuracy first increased rapidly and then decreased since more information which
is not conducive to classification is included.

This phenomenon is particularly evident in the Pavia University data set, in which the
ground-object has a fairly irregular distribution. Therefore, the patch size in each dataset is
uniformly set to 7 × 7 in our experiment according to Figure 11.
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4.5. Ablation Study

This section investigates the usefulness of these three operations: automatic graph
learning module, offset graph convolution module and graph pooling, where the experi-
mental setup stays the same as the abovementioned experiments in Section 4.3. Table 8
clearly indicates that the OA of SSOGCN improved 1.13%, 3.04% and 1.2% compared with
the situation without AGL in the three datasets, i.e., Indian Pines, Pavia University and
Salinas data set, respectively. It indicates that the automatic graph learning module we
propose learned an optimal graph structure for the downstream task. In addition, SSOGCN
improves the OA by 2.39% and 2.17%, 1.31% compared the situation without OGC in
Indian Pines, Pavia University and Salinas data set, respectively, which demonstrates the
effectiveness of the offset graph convolution module. Moreover, we can see from Table 8,
the OA decrease 5.86%, 3.61%, and 6.45% in the Indian Pines, Pavia University and Salinas
data set when we remove graph pooling module. It shows that the graph pooling has a
good efficiency on learning graph structure and reducing dimensions.

Table 8. Ablation study (%).

Data Set Without OGC Without AGL Without Graph
Pooling SSOGCN

Indian Pines 90.12 91.38 86.65 92.51
Pavia University 94.91 94.04 93.47 97.08

Salinas 93.74 93.85 88.60 95.05

4.6. Impact of the Number of Labeled Samples

In this section, we analyze the sensitivity of each algorithm to the number of labeled
samples. We vary the number of labeled samples per class from 10 to 50 with an interval of
5. As can be seen from Figure 12a–c, the classification accuracy of all methods is improved
with the increase of the number of labeled samples in three data sets, which indicates that
more labeled examples contain more information contribute to classification. It is also
noteworthy that SSOGCN grow fast at the early stage and the grow slowly at late stage,
and SSOGCN always stay at the highest accuracy compared with other SOTA methods.
These results demonstrate the effectiveness and stability of the SSOGCN method.

4.7. Running Time

The time consumed for training of each method on the Indian Pines, the Pavia Univer-
sity and Salinas data sets is shown in Tables 9–11 The GCN-based method takes more time
than the CNN-based method on three data sets because the computation of the adjacency
matrix is still a time-consuming step, but as a whole, it seems that the training time cost of
SSOGCN is acceptable compared with FuNet-C.

Table 9. Run time comparison and parameter number comparison of depth model in the Indian
Pines data set.

Methods Time (s) Params (K)

2D-CNN 178.06 30.0
CNN-PPF 61.86 44.82

GCN 198.12 4.36
miniGCN 776.86 28.70
MDGCN 322.01 13.07
FuNet-C 678.13 148.59
SSOGCN 597.05 23.41
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Figure 12. Sensitivity analysis of training set size. (a) Indian Pines data set. (b) Pavia University data set. (c) Salinas data set.

Table 10. Run time comparison and parameter number comparison of depth model in the Pavia
University data set.

Methods Time (s) Params (K)

2D-CNN 167.65 29.10
CNN-PPF 149.18 31.50

GCN 410.38 2.27
miniGCN 2925.70 15.19
MDGCN 447.87 6.81
FuNet-C 2753.58 77.44
SSOGCN 1471.03 12.22
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Table 11. Run time comparison and parameter number comparison of depth model in the Salinas
University data set.

Methods Time (s) Params (K)

2D-CNN 283.94 30.00
CNN-PPF 243.28 45.32
miniGCN 1273.54 29.22
MDGCN 458.48 13.31
FuNet-C 5002.85 150.264
SSOGCN 1183.93 23.96

Meanwhile, it is also noteworthy that the parametric number of the convolutional
neural networks is larger, while the graph convolutional neural networks effectively reduce
the number of parameters.

5. Conclusions

In this paper we have developed a novel HSI classification method termed SSOGCN.
Unlike previous work that constructs adjacency matrices based on all data, our method
constructs an adjacency matrix based on pixels within the input patch, and we construct a
graph classification network to extract spectral-spatial features of HSI and classify the patch.
Moreover, an offset graph convolution module is employed to emphasize local spatial
information. As a result, our SSOGCN significantly reduces the computational effort and
extracts the rich local spatial information within the patch, which can effectively alleviate
the problem of inaccurate classification caused by spectral variability. The experimental
results on three classical data sets show that our proposed method has better classification
performance than the SOTA methods.
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