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Abstract: With the increasing number of underwater pipeline investigation activities, the research on
automatic pipeline detection is of great significance. At this stage, object detection algorithms based
on Deep Learning (DL) are widely used due to their abilities to deal with various complex scenarios.
However, DL algorithms require massive representative samples, which are difficult to obtain for
pipeline detection with sub-bottom profiler (SBP) data. In this paper, a zero-shot pipeline detection
method is proposed. First, an efficient sample synthesis method based on SBP imaging principles is
proposed to generate samples. Then, the generated samples are used to train the YOLOv5s network
and a pipeline detection strategy is developed to meet the real-time requirements. Finally, the trained
model is tested with the measured data. In the experiment, the trained model achieved a mAP@0.5
of 0.962, and the mean deviation of the predicted pipeline position is 0.23 pixels with a standard
deviation of 1.94 pixels in the horizontal direction and 0.34 pixels with a standard deviation of
2.69 pixels in the vertical direction. In addition, the object detection speed also met the real-time
requirements. The above results show that the proposed method has the potential to completely
replace the manual interpretation and has very high application value.

Keywords: sub-bottom profiler; pipeline detection; YOLOv5s; zero-shot

1. Introduction

As the offshore oil and gas industry grows, more and more pipelines are being laid
into the ocean [1]. On the one hand, the pipeline routes and buried depth should be
surveyed in time and stored as historical data [2,3]. On the other hand, the condition of
the pipeline needs to be checked periodically in order to prevent damage to the pipeline
from fishing activities, turbulence, tidal abrasion or sediment instability [4–7]. Sub-bottom
profiler, as a kind of specially designed sonar to explore the first layers of sediment below
the seafloor (usually over a thickness that commonly reaches tens of meters) [8] (p. 372),
can detect not only exposed and suspended pipelines but also buried pipelines, and is
therefore widely used in underwater pipeline survey tasks.

Due to the working principle of SBP, pipeline measurements need to be performed
along the direction perpendicular to the pipeline. In order to fully obtain the location
information of the pipeline, repeated measurements are required at different positions
of the pipeline. Therefore, it is crucial to identify the pipeline in the measured data in
time so as to improve the measurement efficiency. In addition, unmanned measurement
technology is gradually popularized, real-time and robust discovery of pipelines is also of
great significance for surveying robots to plan routes autonomously [9–12].

Many researchers have studied the use of SBP for underwater pipeline detection [13–16],
but the data processing still remains at the stage of manual interpretation, which is time-
consuming and labor-intensive, and the detection results are easily affected by the mental
state of the workers. A pipeline target presents a hyperbola shape in the SBP image. Therefore,
the detection of a pipeline in the SBP image is similar to the detection of buried objects in
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ground penetrating radar (GPR) data. There is extensive literature about the detection of
buried objects in GPR. Most of them are based on the curve fitting method [17–23], which
has good enlightening significance for pipeline detection in SBP data. Traditional machine
learning methods [24,25] are also used in the detection of hyperbola, but the performances
are limited by the quality of samples. Recently, Li et al. proposed an efficient pipeline
detection method based on edge extraction [26], which achieves a high correct detection
rate, but computational efficiency is slow. Affected by a variety of imaging factors, the
shape of pipeline in SBP images varies greatly, leading to difficulties in feature extraction,
which makes it hard to detect the submarine pipelines automatically [27].

Recently, object detection methods based on DL have been widely used in various
industries. Artificial neural networks, with their powerful feature learning capability, are
able to extract significant information from complex data and achieve better performance
than traditional methods [28–30]. Therefore, it is of great significance to introduce DL
techniques to the automatic detection of pipelines. However, in order to obtain excellent
trained models, DL methods require massive representative samples. The difficulty of
acquiring sonar image samples limits the application of DL methods. In order to solve
the problem, some researchers have studied the simulation of the samples for side-scan
sonar (SSS) and achieved encouraging results [31–34], which is a good insight to solve
the problem of lacking SBP pipeline samples. The working principle of SBP is different
from that of side-scan sonar. Therefore, specialized sample synthesis methods need to be
investigated. In addition, the SBP image usually has a large size, while the pipeline image
has a simple structure and occupies a relatively small area of the image, which means
that well-designed detection strategies are required to achieve fast and accurate detection
of pipelines.

Given the problems of pipeline detection in SBP image, this paper proposes a real-
time automatic pipeline detection method without using the measured samples. First, the
imaging principle of SBP and the characteristics of pipeline in SBP image are introduced
in detail. Next, based on the imaging principle, an efficient pipeline sample synthesis
method is proposed to generate representative samples. Then, YOLOv5s are trained with
the simulated samples. Finally, the measured data are used to test the effectiveness of the
trained model. In addition, the performance of the proposed real-time pipeline detection
method is also verified.

2. Materials and Methods

This section begins with a brief introduction of the working principle of sub-bottom
profiler and the pipeline imaging mechanism is analyzed. Then, the sample synthesis
method is introduced in detail. Finally, the real-time detection method of pipeline in
sub-bottom images is presented.

2.1. Sub-Bottom Profiler Working Principle and Pipeline Imaging Mechanism
2.1.1. Sub-Bottom Profiler Working Principle

Technologically speaking, sub-bottom profilers are usually single-beam sounders
working at high level and low frequency (1~10 kHz) [8] (p. 372). Some models are based
on nonlinear acoustics and have a narrow beam in spite of small transducers and virtually
no side lobes [27]. However, no matter what type of shallow profiler, their working
principle is basically the same, they are all based on the specular reflection echo instead of
a backscattered signal.

During the measurement, the transducer periodically emits acoustic pulses vertically
downward toward the seafloor. The acoustic wave transmitted first propagates in the water
column and the transducer only receives background noise or echoes from mid-water
targets. When the acoustic pulse reaches the seafloor, some of the energy will bounce
off the seafloor, while the remaining energy will penetrate the seafloor and continue
to propagate [34]. When the acoustic impedance of adjacent strata changes greatly, the
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acoustic pulse will be strongly reflected, as shown in Figure 1a. The reflection coefficient
R1,2 of adjacent layers can be calculated by:

R1,2 =
ρ2c2 − ρ1c1

ρ2c2 + ρ1c1
(1)

where ρ is the density of sediments; c is propagation velocity of sound waves in sediments.
When the intensity of the incident sound wave at the interfaces between layers is Aincident,
the reflection intensity can be calculated by Equation (2).

Are f lection = R1,2 ∗ Aincident (2)

Figure 1. SBP working principle. (a) Echo signal generation process; (b) measured SBP waterfall image with a pipeline target.

The echo signals are recorded by the receiver and each acoustic pulse results in a
sequence of echoes, also called a ping, reflecting any sort of density disturbance at the
nadir of the sonar [35]. The successive echo sequences are arranged in order along the track
to form a geophysical cross-section of the sediment layering, which will assist the user to
visualize the morphology of the sedimentary layers and buried features.

A measured SBP waterfall image is shown in Figure 1b. Each column in the image
represents a ping of SBP data produced by a transmitted sound pulse. A darker pixel
indicates a stronger echo signal. The imaging results of a buried pipeline in the stratum are
shown in the red rectangle in Figure 1b.

2.1.2. Imaging Mechanism of Pipeline Target

When the measurement is carried out along the direction perpendicular to the pipeline,
a specular reflection signal will occur and be recorded, as long as the pipeline is within the
effective range of the SBP. The reflection point is exactly the tangent point of the spherical
surface and the pipeline, as shown in Figure 2.
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Figure 2. Pipeline imaging mechanism. (a) Pipeline shape formation process; (b) geometric relationship
between the pipeline and the transducer when the transmitted acoustic signal reaches the pipeline.

Assuming that the propagation speed of sound waves is c (ignoring the variation of
sound speed), the shape of the pipeline in the raw SBP waterfall image can be expressed as
Equation (3):

TA =

2

(√
(LA − LC)

2 +
(

TC
2 c + R

)2
− R

)
c

(3)

xA = LA
v
p

(4)

yA =
TA

∆T
(5)

where TC represents the Two-Way Travel Time (TWTT) for the sound wave to propagate
from the sea surface directly above the pipeline to its upper edge; TA is the TWTT of the
echo from the pipeline in each ping; R is the pipeline radius; xA and yA are the ping number
and the sampling number, respectively, corresponding to the horizontal coordinate and
vertical coordinate in the waterfall image; p is the ping rate (ping/s); v is the average ship
speed (m/s); ∆T is the sampling interval. It can be seen that the size of the pipeline in
the waterfall image is mainly related to the radius of the pipeline, the distance from the
pipeline to the water surface, and the effective beam angle of the SBP.

Although the pipeline shape in the SBP image can be predicted by Equation (3), there are
many factors that can affect the imaging of the pipeline target, resulting in a large discrepancy
between the actual imaging results and the ideal results, making it difficult for automatic
pipeline detection. Some of the main influencing factors can be summarized as follows:

• High noise: The noise sources can be grouped into four categories, namely ambient
noise, self-noise, reverberation and acoustic interference [8] (p. 123). The existence of
noise greatly degrades the SBP image, resulting in low image contrast and blurred
pipeline images. The images shown in Figure 3 are all disturbed by different degrees
of noise.

• Small size: As described in Equation (3), if the pipeline is close to the water surface
and the effective beam angle of the sonar is small, the size of the pipeline in the image
will also be small, which is not conducive to distinguishing the pipeline from other
reflectors, as shown in Figure 3a,b.

• Unfavorable position: The pipeline is usually buried at a lower depth in strata, when
near the seafloor or layer boundaries, the echoes from the pipeline will be mixed
with those from interfaces between media with different acoustic properties due to
the limited vertical resolution of SBP, which makes it difficult to detect the pipeline
automatically in the SBP image [27], as shown in Figure 3c.
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• Small reflection coefficients: According to Equation (1), if the pipeline and the sur-
rounding sediments have similar acoustic impedance, the reflection coefficients at the
interface will be small. The echo from the pipeline at this time is weak and not easy to
distinguish from the background, as shown in Figure 3d.

• Irregular movement: During the measurement, the survey ship will move up and
down with the surge. If the SBP is fixed on the vessel, the distance from the equipment
to the pipeline will also change accordingly, resulting in the deformation of the shape
of the pipeline in the image. In addition, the uneven speed of the platform will also
cause the pipeline imaging results to be compressed or stretched to varying degrees in
the horizontal direction, as shown in Figure 3e.

• Missing pings: When there are a large number of bubbles around the sonar in the
water, the mechanical vibrations generated by the transducer cannot be transmitted
to the water in the form of acoustic pulses. As a result, the SBP cannot receive the
effective echo signal, resulting in missing image information, as shown in Figure 3f.

Figure 3. Influence of various factors on pipeline images. (a–f) are measured pipeline images
disturbed by some common influencing factors.

2.2. General Data Pre-Processing Method
2.2.1. Quantization of Raw SBP Data

The raw echo data recorded by SBP are usually the ratio of the instantaneous sampling
value of the echo signal to the amplitude of the emitted sound wave, as shown in Figure 4.
In order to convert the raw echo data into grayscale values of pixels in the waterfall image,
the instantaneous amplitude of the recorded echo sequence needs to be extracted first. For
an echo signal sequence X(t), its Hilbert transform Y(t) can be expressed as Equation (6):

Y(t) = X(t) ∗ 1
πt

=
1
π

∫ +∞

−∞

X(τ)

t− τ
dτ (6)

Thereby, the analytic signal of X(t) can be expressed as:

g(t) = x(t) + j ∗ y(t) (7)

and finally, the envelope A(t) of the analytic signal g(t) is obtained by:

A(t) =
√

x2(t) + y2(t) (8)
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Figure 4. A ping of raw echo data recorded by SBP and the analytic signal envelope.

Then, the gray value of each sampling point is obtained by mapping the instantaneous
amplitude of the sampling point to 0~255. The mapping process can be represented by
Equation (9).

pixel_value =
⌊

255× As − Amin

Amax − Amin

⌋
(9)

where As denotes the instantaneous amplitude of the sampling point, and Amin and Amax
are the maximum and minimum amplitudes in each ping, respectively. Each ping of the
raw echo data is processed as described above and arranged in order to form the raw SBP
waterfall image.

2.2.2. Unification of Image Resolution

For the raw SBP waterfall image, the vertical resolution rv is related to the sampling
period Ts of the sonar as well as the sound velocity c, as expressed by:

rv =
Tsc
2

(10)

The sampling interval of the device is usually unchanged, while the propagation speed
of sound waves in the medium is varying (typically, 1400 m/s~1600 m/s in water [36] and
1500 m/s~1800 m/s in shallow strata [37]). Therefore, the vertical resolution of raw SBP
waterfall image is not a constant.

Similarly, the horizontal resolution rh is related to the ship speed v and the acoustic
pulse emission period Tp, as expressed in Equation (11). Usually, the ship speed is not
constant, therefore, the actual distance between adjacent pings is also constantly changing.

rh = Tpv (11)

The inconsistent horizontal and vertical resolutions of the raw SBP waterfall map and
their respective non-constancy will not only cause the deformation of the pipeline, but also
lead to some layer boundaries with very similar shapes to the pipeline, causing interference
to the pipeline detection.

To unify the vertical resolution, the sound velocity along the propagation path needs
to be known, which is unrealistic in most cases. In order to simplify the calculation process
and to keep the target deformation caused by inaccurate sound velocity within a reasonable
range, an average sound velocity of 1600 m/s is used uniformly in this paper.
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Generally, the vertical average resolution is higher than the horizontal one. In order to
retain more target information after unifying the resolution, the average vertical resolution
remains unchanged, and the raw waterfall image is interpolated horizontally, as shown in
Figure 5.

Figure 5. Interpolation process of the raw SBP waterfall image. (a) Select two adjacent pings in order; (b) calculate the
actual distance of each ping relative to the first ping along the track; (c) calculate the corresponding image range between
the two pings and perform interpolation calculation for each pixel in the range based on the average vertical resolution rv.

For higher computational efficiency, the linear interpolation method is used in this
paper. The pixel value Ii,j between adjacent pings can be calculated by:

Ii,j =
Lj − Ln

Ln+1 − Ln
(Wi,n+1 −Wi,n) + Wi,n (12)

where Lj = j × rv, denotes the actual distance of the j-th column of the interpolated image
relative to the first column of the image, and Ln denotes the distance of the n-th ping of data
relative to the first ping of data along the trajectory direction. Wi,n denotes the grayscale
value of the i-th sampling point in the n-th column of the raw waterfall image. The result
of a raw waterfall image after interpolation is shown in Figure 6.

Figure 6. Raw SBP waterfall image interpolation. (a) Raw waterfall image collected by C-boom; (b) interpolated image.
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2.3. An Efficient Sample Synthesis Method Based on SBP Imaging Principles

For data-driven object detection methods, it is very important for improving the
correct detection rate to establish a dataset containing samples under various conditions.
In reality, sufficient object samples are difficult to obtain, but we can easily obtain a large
number of SBP data that do not contain pipeline targets. Although these data alone are not
enough to build the pipeline detection model, they contain rich stratigraphic distribution
information and can provide diverse backgrounds. In view of this, we propose an efficient
method to generate representative pipeline samples by using the measured data without
pipeline targets, which fully considers the imaging mechanism of the pipeline and various
influencing factors while preserving the real measurement environment. The basic process
is shown schematically in the Figure 7.

Figure 7. Pipeline sample synthesis flow chart.

The raw data are firstly pre-processed to obtain the SBP image. Secondly, through
the noise separation step, the noise image and the filtered image are obtained. Then, the
filtered image is used to generate the pipeline image according to the imaging mechanism
of the pipeline and considering the influencing factors during the measurement. Next, the
pipeline image and the filtered image are merged to generate a synthetic image. Finally,
the noise is added to the synthetic image to obtain the final synthetic sample. The specific
methods in the key steps are described separately below.

• Noise Separation

There is a lot of noise in the image I obtained from the raw SBP data. These noises are
caused by the real measurement environment and equipment themselves, therefore, they
are important features of the image and it is extremely necessary to retain them during the
sample synthesis process. The noises n act as external additions perturbing the expected
signals Î [8] (p. 123), as expressed in Equation (13):

Ii,j = Îi,j + ni,j (13)

At present, there are many excellent de-noising algorithms. Among them, the non-
local low-rank algorithm proposed in the literature [38] achieved excellent performance by
taking advantage of the inherent layering structures of the SBP image and is therefore used
for noise separation of SBP image in this paper. A more detailed description of this method
can be found in the original text.

As shown in Figure 8, the noises are well separated by the de-noising algorithm. The
noise image is saved for adding to the synthetic image in the final stage of sample synthesis,
while the de-noised image is further used for generating the synthesized image.
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Figure 8. Noise separation of SBP image with the non-local low-rank algorithm. (a) Waterfall image disturbed by noise;
(b) de-noised image; (c) noise image.

• Pipeline Image Generation Based on Imaging Mechanism

Transducer directivity is an important property of SBP, indicating the angular distribu-
tion of the acoustic energy radiated into the propagation medium in transmission and the
electric response as a function of the arriving direction of the acoustic wave in reception.
For a circular piston transducer with a diameter D, the far-field directivity can be calculated
using the Bessel function of the first kind J1(x):

Γ(θ) =
2J1

(
π D

λ sin θ
)

(
π D

λ sin θ
) (14)

where λ denotes the acoustic wavelength. As shown in Figure 9a, there is usually a main
lobe surrounded by a series of side lobes. The beam width θbw is corresponding to the
angle between −3 dB on each side of the main lobe’s maximum. For a given transducer,
the higher the frequency, the narrower the width of the beam.

Figure 9. Influence of directivity pattern on pipeline imaging. (a) Examples of transducer directivity pattern; (b) energy
variation of the sound pulse hitting the pipeline during the movement of the transducer.

When the carrier platform passes above the pipeline, the angle θ between the direction
of the pipeline relative to the transducer and the direction of the maximum of the directivity
pattern changes from −θbw/2 to +θbw/2, assuming that the angle value is negative when
the transducer is on the left side of the line and positive on the other side, as shown in
Figure 9b. The amplitude variation of the sound pulse hitting the pipeline can be exactly
expressed by the directivity function Γ(θ). If the echo signal is also received by the same
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directivity pattern, assuming that the position change of the transducer during transmission
and reception is negligible, the variation of the echo intensity from the pipeline caused by
the directivity pattern can be expressed as:

Ψ(θ) = Γ(θ)2 (15)

As acoustic waves propagate in the medium, there are geometric spreading losses
and absorption losses. When the pipeline is at the nadir of the transducer (θ = 0), the
propagation distance is the shortest, therefore, the energy loss is the smallest. Taking the
amplitude of the pipeline echo at this time as a reference, the relative values of the pipeline
echo amplitude at different θ can be expressed as [8] (p. 23):

P(θ) =
Dmin

Dθ
× eγ(Dmin−Dθ) (16)

where Dmin is the minimum distance between the transducer and the pipeline; γ is the
attenuation; Dθ is the sound propagation distance at different θ, and can be expressed as:

Dθ =
Dmin + R

sin θ
− R (17)

We have introduced the imaging mechanism of the pipeline in Section 2.1.2. The shape
of the pipeline in the raw waterfall image can be described by Equation (3). While in the
pre-processed SBP image, the shape Sp composed of the echoes from the upper edge of the
pipeline (marked in yellow as shown in Figure 10) is expressed as:

Sp =
(
xp, yp

)
xp =

[
(j∗r+R)∗tan(θ)

r + i
]

yp =
[
(j∗r+R)
cos θ∗r −

R
r

] (18)

where (i, j) is the coordinates of the highest point of the pipeline; (xp, yp) is the image
coordinate of the pipeline shape, r is the unified image resolution and equal to the average
vertical resolution rv.

Figure 10. Examples of pipeline shape in the pre-processed SBP image. (a) Pipeline diameter is less than SBP resolution;
(b) pipeline diameter is larger than the SBP resolution. k is the pixel index relative to the first pipeline echo in each column
of the image. The empty spaces in the pipeline image are the gaps between echoes from the upper and lower surfaces of the
pipeline. ns is the number of the pixels produced by the echo signal from the pipeline.
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The measurement resolution of a SBP is its ability to distinguish the echoes from two
close distinct targets, which also has a significant impact on the appearance of the pipeline
image. The range resolution can be calculated by:

∆s =
c
2

Te (19)

where c is the sound velocity, and Te is the effective pulse duration due to transmitter pulse
length, directivity and bottom reverberation. When the diameter of the pipeline is smaller
than the resolution of the SBP, the echoes from the upper surface of the pipeline will be
mixed with the echoes from the lower surface, as shown in Figure 11, and the imaging
results will be similar to Figure 10a. Otherwise, as seen in Figure 10a,b, there is a gap
between the echoes from different surfaces.

Figure 11. Influence of pulse duration on pipeline echo signal. (a) Reflection of acoustic pulses by
pipelines; (b) variation of echo signal with time at different pulse lengths.

The sampling interval of the transducer is generally much smaller than the length of
the acoustic pulse it emits, so the echo signal from the pipeline will produce multiple pixels
in a column of the image. The pixel number ns can be calculated by:

ns =

[
Tec
r

]
(20)

The actual measured pipeline echo signal is ridged in each ping, the main reasons for
this phenomenon are the transient effect of the acoustic signal, scattering echoes, etc. For
simplicity, we use the exponential form of a sinusoidal function to describe the ridge:

F(k) = sin
(

k ∗ π

ns

)β

(21)

where k is pixel index relative to the first pipeline echo in each column of the image, ∈ [0, ns];
β is used to control the steepness of the function edge. For pipelines with different diame-
ters, we uniformly use function Υ(k) to describe the changes in echo amplitude, as shown
in Figure 12. Assuming that F1(k) and F2(k) correspond to the arrival period of echoes from
different interfaces, when their intersection point value is greater than 0.5, the value of Υ(x)
in the [k1, k2] segment is 1, otherwise the larger values of F1(k) and F2(k) are taken as the
value of M(x) in [k1, k2].
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Figure 12. Simulation of the pipeline echo variation in a certain column of the image. (a) There is signal aliasing; (b) the
pipeline diameter is greater than the propagation distance of sound waves within the effective pulse duration.

Most of the SBP data are measured by un-calibrated equipment, thus, the reflection
coefficients as well as absorption coefficients associated with the sediment layers cannot
be retrieved from these data [8] (p. 373), and accordingly, the echo intensity of pipelines
with different burial depths cannot be accurately estimated either. In addition, the gain
information of some SBP data is not recorded during the field measurement, resulting
in uncorrectable radiometric distortions in the images. In summary, the echo intensity
of pipelines is variable in different SBP images. Therefore, we can randomly select the
amplitude of the echoes from the horizons in the SBP image as the reference value Aref,
as shown in Figure 13, while the echoes from horizons in the SBP image can be easily
extracted by manual or automatic methods proposed in the literature [39,40].

Figure 13. Pipeline echo intensity determination with the measured SBP data. (a) Waterfall image
generated from measured SBP Data; (b) echoes from the interfaces between layers (the white part of
the image).

At this point, we can obtain the complete expression of the pipeline target in the SBP
image under ideal conditions.

I
(
xp, yp + k

)
= Aref ∗Ψ(θ) ∗ P(θ) ∗ Y(k) (22)
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By changing the variables in the above equation, different pipeline images can be
obtained. Figure 14 shows two generated pipeline images.

Figure 14. Pipeline image generated according to the theoretical formula. (a) Pipeline image with
signal aliasing; (b) pipeline image without signal aliasing.

• Image Modification by Influencing Factors

(1). Heave of carrier platform

The heave of the carrier platform will cause a change in the propagation distance of
acoustic waves in the water, and since each column of the SBP image is aligned according
to the propagation distance, the presence of carrier platform heave will lead to longitudinal
deformation of the target in the image. Therefore, the heave of the carrier platform
is considered as an influencing factor in sample synthesis, and it can be simulated by
superimposing multiple sine waves:

H(x) =
l

∑
i=0

Ai sin(ωix + ϕi) (23)

where l is the number of sine waves, usually a value of 2 is sufficient. Ai, ωi, and ϕi are the
amplitude, angular velocity and phase of the i-th sine wave, respectively.

(2). Missing effective pipeline echoes

There may be no effective pipeline echoes in successive columns of the SBP image,
which is due to the similarity of the acoustic impedance of the pipeline to its surrounding
sediments, or the presence of missing pings during the measurement. We use a mask
function to indicate whether a column of the pipeline image has valid echoes or not.

M(x) =
{

1 i f valid
0 others.

(24)

When the x-th column contains effective pipeline echoes, the function value is 1,
otherwise it is 0. After adding the above two influencing factors to the imaging formula,
we finally obtain the complete expression of the pipeline in the image:

I
(

xp, yp + k + H(x)
)
= Aref ∗Ψ(θ) ∗ P(θ) ∗ Y(k) ∗M(x) (25)

Some generated pipeline images applied with the above influencing factors are shown
in Figure 15.
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Figure 15. Pipeline images after applying various factors. (a,b) are only influenced by the heave of the carrier platform;
(c,d) suffer both the heave of the carrier platform and missing effective pipeline echoes.

• Merge

After obtaining the pipeline image, the next step is to fuse it with the filtered image
from the noise separation step. To increase the representativeness of the samples, the
position of the pipelines can be randomly selected with reference to the interfaces between
layers, so as to simulate pipelines with different deployment states. Usually, the weaker
echoes will be submerged in the stronger echoes. Therefore, the following formula is used
for fusion:

IMerged(x, y) = max
(

Ipipeline(x, y), Ifiltered(x, y)
)

(26)

Then, the noise is superimposed on the synthesized sample again, that is,

Isynthesized(x, y) = Imerged(x, y) + n(x, y) (27)

Finally, we obtain an image containing the pipeline target, and at the same time, the
size and position of the target’s bounding box can be obtained, as shown in Figure 16a.
However, due to the variable background, the actual distinguishable bounding box of the
target can vary greatly in the synthesized sample. Therefore, skilled operators are required
to optimize the labeling of the sample and eliminate unreasonable samples, as shown in
Figure 16b. In this way, the operator’s experience is embedded in the samples. Thus, the
network can also learn from human experience when trained with these samples.

Figure 16. A generated pipeline sample. (a) Bounding box obtained during the sample synthesis
process; (b) bounding box with manual optimization.
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2.4. Real-Time Pipeline Detection
2.4.1. Building Pipeline Detection Model

At this stage, many target detection network architectures have been proposed, such
as R-CNN [41], SSD [42], Faster-RCNN [43] and YOYO series [44], and their powerful
performance has been proven on various public datasets. Among them, YOLOv5, as the
latest architecture of the YOLO series, not only has fast detection speed, but also high
accuracy, and is widely used in real-time object detection. Considering the timeliness, this
paper uses the YOLOv5s to construct the pipeline detection model. The basic structure of
YOLOv5s is shown in Figure 17.

Figure 17. YOLO5s structure. (a) The backbone; (a) the neck; (c) the output.

The network structure of YOLOv5s consists of three parts: backbone, neck and head.
The backbone, CSPDarknet [45], can effectively extract feature information from the input
image through multiple down-sampling. The neck is responsible for aggregating the image
features extracted by the backbone with the cascade structure of FPN and bottom-up
PANET. The head contains three output branches, which predict the bounding boxes and
categories of objects of different sizes. The input image is divided into an S × S grid.
For each grid cell, YOLOv5s predicts B bounding boxes. Each bounding box includes 3
categories of parameters, they are the position (x, y, w, h) corresponding to (center coordinate
(x, y), width, height) of a bounding box, object confidence C and prediction probabilities P
of N classes. Therefore, the loss function is composed of bounding box position loss, object
confidence loss and class probability loss, as expressed in Equation (28). The bounding box
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position loss adopted here is the GIOU loss proposed in the literature [46]. The object
confidence loss and class probability loss are calculated by the cross-entropy loss function.

Loss = λcoord
S2
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i=0

B
∑

j=0
Iobj
ij LGIoU−

S2

∑
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B
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))]
(28)

where Iobj
ij is defined as 1 if object presents inside j-th predicted bounding box in i-th cell,

and 0 for otherwise. Inoobj
ij is the opposite. λcoord and λnoobj are the loss weights.

For the application in this paper, there is only one class of object. The network is
trained end-to-end with the synthesized samples. When the accuracy of the trained model
is not increasing, it is saved for the detection of measured data.

2.4.2. Real-Time Pipeline Detection Strategy

In the real-time pipeline detection scenario, whenever new ping data arrive, the newly
added data need to be detected once, and the detection process needs to be completed
before the next ping data arrive. The specific steps are as follows:

1. Data pre-processing. First, the ship speed is estimated based on the already measured
navigation data. Then, according to the time difference ∆t between the new ping
and the previous ping, the distance between adjacent pings can be calculated, and
finally, the ping is quantified with the method described in Section 2.2.1 and the image
between this ping and the previous ping is interpolated using the method introduced
in Section 2.2.2.

2. Sliding window detection. For the newly-added image part, pipeline detection is
performed with a sliding window of 640 × 640 using the detection model constructed
in Section 2.4.1, and adjacent windows have a 50% overlap, as shown in Figure 18.

3. Bounding box fusion. Since any two adjacent detection windows have different
degrees of overlap, the same target may be detected multiple times. In addition, the
detection is performed using a sliding window; therefore, it can happen that only
part of the target is inside the window, and the detected bounding box is incomplete
at that time. In order to ensure the uniqueness and completeness of the detection
results for the same target, it is necessary to fuse the detected bounding boxes of
the same target in different detection windows. Whether it is the same target can be
determined by Equation (29).

IoUoverlap =

(
Bi ∩Woverlap

)
∩
(

Bj ∩Woverlap

)
(

Bi ∩Woverlap

)
∪
(

Bj ∩Woverlap

) (29)

where Bi and Bj are the bounding boxes detected in the adjacent windows Wi and Wj.
Woverlap is the overlap of the adjacent windows, equal to Wi ∩Wj. If IoUoverlap > 0.8,
the targets in Bi and Bj are judged to be the same target, and the union of Bi and Bj is
taken as the new bounding box of the target. By judging all detection windows with
overlapping parts, the fusion of the same target bounding box is realized.
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Figure 18. Schematic diagram of real-time pipeline inspection process.

3. Experiments and Results

To verify the effectiveness of the proposed method, the raw SBP data collected by
C-Boom in Jiaozhou Bay, EdgeTech 3100P in Zhujiang Estuary and Parasound P70 in
South China Sea, in which there are no pipe targets, are selected for sample synthesis, and
the pipeline investigation data collected by Chirp III in Yangtze Estuary and Edgetech
3200XS in Bohai Bay are used to test the performance of the trained model. All the data
were recorded in the SEG-Y data format, and they were pre-processed with the method
presented in Section 2.2. The test data were disturbed by the influencing factors described
in Section 2.1.2, which are highly representative and cover most complex situations.

3.1. Sample Synthesis

The proposed sample synthesis method involves numerous variables, and some
reasonable value ranges are listed in Table 1, depending on the actual circumstances that
may be encountered during the measurement.

Table 1. Variable values used in sample synthesis.

Variable Name Value Unit

θbw [5, 15] 1
Dmin [5, 25] m

R [0.2, 0.8] m
γ [0.001, 0.1] Neper/km
Ts [20, 120] µs
Te [40, 240] µs
c 1600 m/s
β [0.3, 1.2] - 1

Ai [0, 10] pixel
ωi [0.01, 0.1] rad/pixel
ϕi [0, 2π] rad
M [0, 40] %

1 Dimensionless.
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For the diversity of samples, all the involved values are randomly selected from these
intervals for sample synthesis, and the influences of carrier platform heave and missing
effective pipeline echoes are applied to the generated pipeline images with probabilities
of 0.35 and 0.3, respectively. Some synthetic samples are shown in Figure 19. b1~b5 are
measured images by EdgeTech 3100P, Parasound P70, EdgeTech 3200XS, C-Boom and
Chirp III, respectively. By fully considering the pipeline imaging mechanism and various
influencing factors, the synthetic samples have high visual similarity compared with the
measured pipeline data and 1389 images are generated for building the detection model.

Figure 19. Sample synthesis results with the proposed method. (a) Measured pipeline images; (b) measured SBP images
without pipeline targets; (c–e) synthesized samples with different parameter settings.
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3.2. Training the Network

Firstly, the synthesized samples are divided into training set and validation set at a
ratio of 3:1, and 62 measured pipeline images are used to test the performance of the trained
model. Then, the network is initialized with the pre-trained weights on COCO dataset
in order to accelerate the network convergence. Finally, the pipeline detection model is
obtained by fine-tuning the pre-trained weights through repeated iteration. During the
training, the input image is divided into a 7 × 7 grid. For each grid cell, the network
predicts 3 bounding boxes. The detailed hyperparameter settings can be found in the
literature [47].

The performance of the trained model is usually measured by the mean Average
Precision (mAP). Taking the object detection recall and precision as the abscissa and
ordinate, a two-dimensional curve called the P-R curve can be obtained, and the area
under the curve is known as the Average Precision (AP). The mAP is calculated by taking
the mean AP of each kind of the targets. For this paper, there is only one class of target,
therefore, the AP of the pipeline is also the mAP of the model. The recall R and accuracy P
can be calculated using Equation (30).

P = TP
TP+FP

R = TP
TP+FN

(30)

where TP (True Positive) is the number of the predicted bounding boxes that contain a
pipeline target, and the Intersection over Union (IoU) of the predicted bounding box and
the ground truth is greater than a preset threshold. FP (False Positive) is the number of the
predicted bounding boxes that the IoU is less than the preset threshold. FN (False Negative)
is the number of missed pipeline targets.

The changes of various indicators during the training process are shown in Figure 20.
From about the 100th epoch, the loss values on the validation set and test set tend to
stabilize, while the loss value on the training set continues declining slowly, indicating
that the fitting of the network to the training set is increasing. At last, the loss has the
smallest value on the training set, followed by on the validation, and the largest value on
the test set. The precision, recall and mAP of the trained model rise gradually with the
increasing training epoch, and also tend to be stable after the 100th epoch. Since the test set
is relatively small, the variation curve of these indicators on the test set jitters a little more
than on other datasets.

The specific performance statistics of the trained model are shown in Table 2. Although
the trained model achieves 100% precision on the test set, the recall is lower than that on
the validation set, indicating that the detection model has more missed detections on the
test set. There is also a drop of 0.022 in mAP on the test set under the IoU threshold of
0.5 compared to that on the validation set, while under the threshold of 0.95, the mAP
on the test set decreases significantly, indicating that there are a considerable number
of predicted bounding boxes that have an IoU between 0.5 and 0.95 with the manual
annotation; therefore, such a large IoU threshold is not adopted in practical applications.
In general, the differences of various indicators between validation set and test set are not
significant, which fully demonstrates the effectiveness of the proposed sample synthesis
method and the strong generalization ability of the trained model.
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Figure 20. Variation in various indicators during the training. (a) Loss curves on training set, validation set and test set;
(b) variation in precision and recall on validation set and test set; (c) variation of mAP on validation set and test set under
the IoU thresholds of 0.5 and 0.95.

Table 2. Performance statistics of the trained model on validation set and test set.

Dataset Precision Recall mAP@0.5 1 mAP@0.95 2

Validation set 97.4% 97.3% 0.984 0.836
Test set 100% 95.2% 0.962 0.589

1 mAP under the IoU threshold of 0.5. 2 mAP under the IoU threshold of 0.95.
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Part of the correct detection results on the test set are shown in Figure 21. Some poorly
imaged pipeline targets (a2, a5, b3, c2, c4, d2, etc.) can still be detected, which indicates
that the proposed sample synthesis method can well simulate the pipeline imaging results
under complex conditions and the trained model has strong pipeline detection capabilities
in various SBP images.

Figure 21. Part of the correct detection results on the test set. (a,b) Pipeline images collected by Chirp III; (c,d) pipeline
images collected by EdgeTech 3200XS.

Some of the missed and false detection results are shown in Figure 22. The contrast
between the pipeline target in Figure 22a and the background is too low, as a result, the
pipeline target in the image is unable to be detected effectively. The false detection targets
in Figure 22b,c have high similarity with the real pipeline shapes in appearance, so they
are incorrectly recognized as pipelines. For these data, even skilled workers need to
make further judgments with the help of historical survey data or magnetic data, and it is
understandable that the trained model cannot effectively identify them.

For pipeline investigation, the most important information is the position of the
pipeline in the image, which can be obtained from the bounding box predicted by the
trained model. In addition, the position prediction deviation (∆x, ∆y) can be expressed as:

∆x = xpre − xGT

∆y =
(

ypre −
hpre

2

)
−
(

yGT − hGT
2

) (31)

where (xpre, ypre) and hpre is the center coordinate and the height of the predicted bounding
box, respectively. (xGT, yGT) and hGT are those of the manual annotation. The pipeline
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position prediction deviation statistics for each correctly detected sample in the test set
are shown in Figure 23. The mean deviation along the x-axis of the image is −0.67 pixels
with a standard deviation of 1.94 pixels, corresponding to values of 0.34 and 2.69 along
the y-axis. This result shows that the pipeline detection model built in this paper has the
potential to completely replace manual measurement.

Figure 22. False detection and missed detection results. (a) Missed detection; (b) false detection; (c) false detection;
(d) correct detection.

Figure 23. Statistical results of pipeline position deviations. (a) Deviation along the x-axis of the image; (b) deviation
distribution along the x-axis; (c) deviation along the y-axis of the image; (d) deviation distribution along the y-axis.

3.3. Method Comparison

To further validate the generalization capability of the model, a new dataset with
22 samples measured by EdgeTech 3400 in Zhejiang Province of China was used for the
experiment. The stratigraphic distribution in the data is significantly different from the data
used for sample synthesis, and the state of the pipeline targets is also different from that in
the test set. Meanwhile, the latest pipeline detection method proposed in the literature [26]
was also implemented as a comparison. The detection results are shown in Table 3.
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Table 3. Performance statistics of different methods.

Method Correct
Detection False Detection Precision Recall

Li et al. 19 2 90.5% 86.4%
Ours 20 0 100% 90.0%

As can be seen from Table 3, even for data measured by different devices in different
environments, the trained model still achieves high precision and recall, and outperforms
the method proposed in the literature [26]. Some of the correct detection results are shown
in Figure 24a. It can be seen that the trained model is able to predict the location of the
pipeline with high confidence as well as accuracy, which fully demonstrates the robustness
as well as the superiority of the method in this paper. There are two false detection results as
shown in Figure 24b. The pipeline in sample b1 is connected to the stratigraphic boundary
and has few effective pixels, while the pipeline in b2 is not distinguishable at all. We believe
that it is normal for the model to make mistakes in these two cases.

Figure 24. Part of the correct detection results of the proposed method. (a) Part of the correct detection results; (b) missed
detection results.

3.4. Real-Time Pipeline Detection

Two complete survey lines of SBP data were used for the real-time pipeline detection
experiment, one measured by EdgeTech 3100p in Zhujiang Estuary with 1304 samples per
ping for a total of 18,056 pings, and the other measured by Chirp III in Yangtze Estuary,
with 1001 samples per ping for a total of 1327 pings, as shown in Figure 25.

The real-time pipeline detection experiment was carried out on a desktop computer
equipped with older hardware (CPU: i7-8700, GPU: GTX1070) according to the method
described in Section 2.4.2. In addition, the statistical results of the time spent on each ping
are shown in Figure 26.

The object detection time spent on each ping is mainly related to the number of
sampling points in the ping. For survey line 1, three sliding windows are detected whenever
a new ping arrives, while survey line 2 requires two sliding windows to be detected.
Therefore, the time spent per ping in survey line 1 is less than that in survey line 2. The
time interval between adjacent pings of SBP data is usually greater than 40 ms, while the
average time spent on pipeline detection per ping is 21.01 ms for survey line1 and 29.19 ms
for survey line 2, which proves that this method can meet the requirement of real-time
detection of pipeline targets.
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Figure 25. Complete survey lines for real-time pipeline detection experiment. (a) SBP data collected by EdgeTech 3100P in
Zhujiang Estuary; (b) SBP data collected by Chirp III in Yangtze Estuary.

Figure 26. Statistical results of the time spent on pipeline detection for each ping. (a) Pipeline detection time spent on each
ping of survey line 1; (b) pipeline detection time distribution for each ping of survey line 2; (c) pipeline detection time spent
on each ping of survey line 2; (d) distribution of the time spent on each ping of survey line 2.

The same target was detected several times during the experiment, and some of the
detection results are shown in Figure 27. The detection results were fused according to the
method described in Section 2.4.2, and the corresponding results are shown in Figure 27b,d.
The pipelines in both survey lines were detected correctly, which proves the effectiveness
of the proposed bounding box fusion method.
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Figure 27. Part of the real-time detection results of the two survey lines. (a) Part of the detection results of the same pipeline
in survey line 1; (b) bounding box fusion result of the pipeline in survey line 1; (c) part of the detection results of the same
pipeline in survey line 2; (d) bounding box fusion result of the pipeline in survey line 2.

4. Discussion
4.1. Superiority

Traditional target recognition methods require human extraction of features and selec-
tion of classifiers, and the significance of features and the performance of classifiers can
directly affect the accuracy of target recognition. The artificial neural network can automat-
ically extract the nonlinear significant features of the target through end-to-end training,
and achieve high-precision target recognition with its powerful mapping capability, which
is more robust to various complex situations and thus outperforms traditional methods.

However, artificial neural networks require a large number of training samples, and
the representativeness of the training samples directly affects the final generalization ability
of the trained models. The sample synthesis method proposed in this paper not only
considers the SBP imaging principle, but also takes various influencing factors into account.
More importantly, it uses the measured data for sample synthesis, so that the synthesized
samples retain the real measurement environment and the working characteristics of the
measurement instrument. Therefore, the synthesized samples are highly representative of
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the measured data, which makes it possible to perform object detection based on artificial
neural networks in the absence of real samples.

4.2. Efficiency

At present, object detection network can be divided into one-stage (YOLO, SSD, etc.)
and two-stage (R-CNN, Faster R-CNN, etc.) networks. Target classification and localization
are performed separately in the two-stage networks, while in the one-stage networks, both
of the two processes are carried out simultaneously. Therefore, the detection speed of the
one-stage network is generally faster. In addition, the real-time detection method designed
in this paper is computationally small. While ensuring the integrity of detected targets,
there are fewer sliding windows to be detected for each ping, so as to ensure the real-time
detection of pipeline.

4.3. Anti-Noise Ability

To test the anti-noise ability of the trained model, we apply different levels of Gaussian
white noise to the dataset used in Section 3.3 and count the detection results under different
noise levels. As shown in Figure 28, when σ ∈ [0, 30], the number of correct and false
detections do not change significantly, which indicates that the method in this paper has
good resistance to noise. When σ > 30, the number of correct detections gradually decreases
and the number of false detections gradually increases.

Figure 28. Variation of detection results with increasing noise.

The detection results of a sample under different noise levels with the trained model
are shown in Figure 29. With the increase of noise, the confidence of detection results
shows a downward trend. Nevertheless, this method can give a robust prediction in a large
noise range.

Figure 29. Detection results of the same sample at different noise levels.
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4.4. Exceptional Situations

Although the sample synthesis method proposed in this paper takes into account
many influencing factors and the generated samples are highly representative, there are
still some cases that can lead to missed and false detections:

1. Since the pipeline detection method in this paper is mainly based on the shape
characteristics of the pipeline in the SBP image, when the contrast between the
pipeline target and the background is so low that it is difficult to distinguish the
pipeline visually, the trained model cannot effectively detect the pipeline at this time,
and it is necessary to use other survey methods, such as magnetic measurement, to
provide more basis for judgment.

2. Targets such as independent rocks in stratum and fish in the water will produce
similar reflections as the pipeline does, resulting in false detections. At this time,
historical survey data or magnetic data are needed to assist decision-making.

4.5. Future Research Directions

From the experiments in this paper, it can be seen that only relying on SBP data
for pipeline detection will cause missed and false detections. Future research should
combine other measurement data, such as multi-beam bathymetric data and magnetic data
to achieve more reliable detection of underwater pipelines.

5. Conclusions

Based on the imaging principles of SBP, a real-time pipeline detection method with
zero samples is proposed in this paper. Firstly, an efficient sample synthesis method is
proposed to generate highly representative samples. Secondly, the synthesized samples
were used for network training. Finally, the trained models were tested on the measured
data. The results showed that both the mAP (0.962@0.5) and the predicted pipeline positions
(a mean deviation of −0.67 pixels with a standard deviation of 1.94 pixels along the
x-axis, corresponding to values of 0.34 and 2.69 along the y-axis) in the images were
comparable to manual interpretation, which fully illustrates the superb representativeness
of the synthesized samples and strong generalization ability of the trained model. The
experimental results also prove that the proposed method can meet the requirements of
real-time pipeline detection of SBP data. The same idea can also be applied to other imaging
sonars, such as forward-looking sonar, side-scan sonar, etc., which will greatly promote the
development of underwater target detection applications with deep learning methods.
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