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Abstract: Using the local climate zone (LCZ) framework and multiple Earth observation input
features, an LCZ classification was developed and established for Riyadh City in 2017. Four land-
cover-type and four urban-type LCZs were identified in the city with an overall accuracy of 87%. The
bare soil/sand (LCZ-F) class was found to be the largest LCZ class, which was within the nature of
arid climate cities. Other land-cover LCZs had a lower coverage percentage (each class with <7%).
The compact low-rise (LCZ-3) class was the largest urban type, as urban development in arid climate
cities tends to extend horizontally. The daytime surface thermal characteristics of the developed
LCZs were analyzed at seasonal timescales using land surface temperature (LST) estimated from
multiple Landsat 8 satellite images (June 2017–May 2018). The highest daytime mean LST was found
over large low-rise (LCZ-8) class areas throughout the year. This class was the only urban-type LCZ
class that demonstrated a positive LST departure from the overall mean LST across seasons. Other
urban-type LCZ classes showed lower LSTs and negative deviations from the overall mean LSTs. The
overall thermal results suggested the presence of the surface urban heat island sink phenomenon as
urban areas experienced lower LSTs than their surroundings. Thermal results demonstrated that the
magnitudes of LST differences among LCZs were considerably dependent on the way the region of
interest/analysis was defined. This was related to the types of LCZ classes presented in the study area
and the spatial distribution and abundance of these LCZ classes. The developed LCZ classification
and thermal results have several potential applications in different areas including planning and
urban design strategies and urban health-related studies.

Keywords: land surface temperature; urban heat island; surface urban heat island; local climate
zones; local climate zone generator

1. Introduction

One of the major consequences of rapid urbanization and urban expansion in the 21st
century is the modification of urban climate [1] by replacing natural covers and structures
(e.g., vegetation and open areas) with urbanized formations [2], e.g., compact and high
buildings. Urbanization processes alter local landscapes in which urban/local climate
characteristics (e.g., airflow, and energy and water exchanges) are modified [3]. This creates
environments within cities that are warmer than their surroundings, which are referred
to as urban heat islands (UHIs). UHIs constitute an essential research topic in urban
climate studies and have received increasing attention as the UHI effect involves serious
environmental concerns, two of which are population growth and climate change [4].

Commonly, a UHI is quantified by the temperature difference between urban and
rural areas. One of the challenges in UHI studies is urban–rural representation because of
the lack of clear boundaries between urban and non-urban (rural) areas [5]. To overcome
this challenge, several urban climate classification schemes have been developed, including
urban terrain zones [6]; the Davenport Roughness Classification [7]; urban climate zones,
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UCZs [8]; and local climate zones, LCZs [4]. One of the main goals of these climate-based
classification frameworks is to classify local landscapes (urban and rural) based on their
surface properties (e.g., land-cover and urban geometry parameters) in such a way that
different local thermal climate characteristics within and around cities can be adequately
captured. In addition, these schemes were introduced to allow for standardized definitions
and to simplify worldwide communication on different urban studies [2,9]. The LCZ
scheme is the most recent, which extends the UCZ scheme, and is considered to be an
international standard framework for urban climate classification because of its wide range
of applications [2,9,10] and its effectiveness in urban thermal analysis [9].

Although the LCZ scheme was originally designed for UHI studies [4], it has several
potential uses in many research and application fields, including weather and climate
modeling, climate change, ecology, and urban planning [4,9]. As Zheng et al. [2] stated,
the LCZ classification is an effective means for facilitating communication among urban
planners, who are not familiar with local climate processes, and climatic researchers, who
are not familiar with urban planning practices, for a better understanding of local climate
and urban management strategies. The LCZ scheme has been applied in a wide range
of urban studies including thermal comfort, energy consumption, human health, urban
planning, and carbon emission [11,12]. For example, Verdonck et al. [13] evaluated the LCZ
classification as an assessment tool for heat stress in Belgium and showed that the LCZ
scheme is valuable when used a heat stress indicator and will help in urban planning for
extreme weather events. Kotharkar et al. [14] demonstrated similar findings by using the
LCZ scheme to explore population vulnerability to heat stress. Yang et al. [15] demonstrated
that cooling and heating loads differed among different LCZs. As Xue et al. [11] explained,
the LCZs is an important tool that can be employed in many research areas related to urban
climate. This is because the LCZ scheme provides a means for classifying urban areas
into different local climate zones, and allowing studies across different applications to
document and compare results in a standardized way [11]. LCZ classification has extended
the concept of urban–rural temperature differences to the neighborhood level (i.e., zone
differences) to provide more details within a city and among cities [12].

LCZ mapping/classification approaches can be grouped into four techniques [1,2,9]: in
situ measurements/sampling, satellite-image-based, GIS-based, and integrated approaches.
In balancing the advantages and disadvantages of different mapping methods, the satellite-
image-based technique is considered a fast and low-cost method for LCZ classification
since it is based on readily available data with continuous spatiotemporal coverage at
reasonable spatiotemporal resolutions [2,9]. A commonly used satellite-image-based LCZ
classification protocol is the World Urban Database and Access Portal Tools (WUDAPT)
scheme [16]. WUDAPT is a community-based project to develop, store, and share consistent
urban climate datasets around the world. WUDAPT has established a protocol to classify
the urban landscape into components using the LCZ classification scheme. This protocol
is recognized as a framework for urban climate/weather research, urban planning, and
public health worldwide as it provides a consistent, fast, reliable, and low-cost framework
(e.g., [1,2,17]). For instance, because the LCZ scheme allows many studies to examine the
spatiotemporal thermal patterns of cities using the WUDAPT framework and land surface
temperature (LST) (e.g., [1,17–19]), the WUDAPT framework enables direct exploration
of how these thermal patterns differ among cities as the urban morphology/texture is
delineated in a standardized manner. WUDAPT contributes substantially to progress in
the urban climate and planning field, as it provides standardized and detailed information
on the fabric and structure of cities globally. However, global demands for more inputs to
WUDAPT and verification of the framework’s applicability are still growing [1,17]. Never-
theless, WUDAPT involves three time-consuming steps: obtaining data, pre-processing,
and accuracy assessment [20]. Recently, Demuzere et al. [20] developed an LCZ Generator
tool that addresses these issues as it requires only a training sample and its reference date.
The LCZ Generator is a new online platform that implements the WUDAPT framework
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in a reasonable time frame by using Google Earth’s engine computing environment to
perform random forest classification and automated accuracy assessment.

Despite the importance of LCZs and the availability of LCZ maps for cities becoming
an important step in facilitating urban studies [11], a climate-relevant database for the
local climate in Riyadh City has not been established, as UHI studies in Riyadh City are
limited, with only a few studies available (e.g., [21–23]). Furthermore, no studies have been
conducted for the city’s LSTs at the seasonal scale. Wang et al. [9] noted that studies related
to LCZs in arid climate cities are limited, and the LCZ scheme offers greater potential for
further understanding UHIs in these cities. Eldesoky et al. [24] showed that the suitability
of the LCZ scheme varies from one climate region to another. For LCZ classification to
be applied in arid climate cities, they recommended adding subclasses (i.e., combining
two zones into one zone) and additional observation input features to the classification
process. To contribute to the WUDAPT initiative and the promotion of LCZs for arid climate
cities [9], this work aimed to advance our knowledge about Riyadh City’s urban climate
by mapping the local climate using the LCZ classification scheme and LCZ Generator
for the first time. More specifically, the objectives were to (1) map the city LCZs and
(2) evaluate how the LST (using Landsat-8) behaves seasonally (June 2017–May 2018) in
different LCZs in order to investigate Riyadh City’s surface UHI (SUHI) phenomenon. We
further highlighted the importance of defining the region of interest, which can influence
LST differences among LCZ classes and ultimately the intensity of SUHIs.

2. Data and Methods
2.1. Study Area

Riyadh City, the capital of Saudi Arabia (Figure 1), is positioned in an arid climate
type according to the Koppen climate classification. The average air temperature of the city
ranges from 15 ◦C in winter to 35.5 ◦C in summer (Table 1). Spring is the wettest season
with an average precipitation of 22.4 mm, and summer is the driest season with an average
precipitation of <1 mm (Table 1). The city is located at an elevation of approximately
700 m (Figure S1). During the last few decades, the city has experienced significant
population growth from 80,000 in 1952 to 6,700,000 in 2015 [21,25]. Several studies have
examined changes in land cover/use (LCLU) in Riyadh City (e.g., [26–29]) and a few have
looked at future expansion (e.g., [25,30]). According to these studies, the urban area has
substantially increased over the last few decades, with a higher likelihood of significant
future expansions. For instance, population growth has led to spatial expansion of the built
environment from less than 3.5 km2 before the 1950s [21] to 1500 km2 in 2014, and it is
projected to reach 2161 km2 by 2034 [25].

UHIs in Riyadh City are a weak phenomenon [31] and have the characteristics of UHIs
in arid environments [21]. Recently, Sobrino and Irakulis (2020) [32] explored nighttime
SUHIs in 71 urban agglomerations (including Riyadh) across different climate types and
showed that arid climate cities have the lowest nighttime SUHIs. Studies have attributed
this to the high thermal similarity between semi-bare lands and built-up areas in arid
environments [33] and higher vegetation cover within urban areas [21]. Chen et al. [34]
showed that temperature differences between urban and rural areas are reduced as semi-
bare land around urban areas increases.

Table 1. Seasonal averages (1985–2020) of precipitation (Precip), mean temperature (Tmean), max-
imum temperature (Tmax), and minimum temperature (Tmin). Averages were derived from two
weather stations (Figure 1) provided by the Saudi National Center of Meteorology as monthly means.

Season Precip (mm) Tmean (◦C) Tmax (◦C) Tmin (◦C)

Winter 11.2 15.9 22.4 9.4
Spring 22.4 27.1 33.9 19.9

Summer 0.1 35.5 43.4 27.3
Fall 2.7 27.8 34.8 20.0
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Figure 1. A map showing the study area along with weather stations (green triangles), urban growth 
limit phase II (white boundary), region of interest/research (black dashed box), and overlapped area 
(blue dashed box) covered by Landsat-8 path 166 and 165. 
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ments is due to the “oasis effect” [9], as urbanization in desert cities increases vegetation 
cover and water availability, which in turn lead to cooling effects by decreasing sensible 
heat flux and increasing latent heat flux and shading [21]. Alghamdi and Moore [21] and 
Aina et al. [23] used the urban growth boundary limit phase II (UG−II) to define the region 
of interest (Figure 1), yet Aina et al. [27] found that urbanization developments in the city 
do not precisely follow the UG−II. Accordingly, we defined the region of interest (i.e., 
research/analysis area) as the outer extent of the UG−II buffered by 3 km (black dashed 
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The LCZ classification includes 17 classes that can be divided into two major types: 
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sparsely built (LCZ−9), and heavy industry (LCZ−10), had no or very few matches and 
were not generally identifiable at the local climate scale used for classification (i.e., 100 m) 

Figure 1. A map showing the study area along with weather stations (green triangles), urban growth
limit phase II (white boundary), region of interest/research (black dashed box), and overlapped area
(blue dashed box) covered by Landsat-8 path 166 and 165.

However, rural areas in Riyadh City have been shown to experience a negative day-
time SUHI [21,23]. In arid desert cities, rural areas can display warmer daytime LSTs than
urban areas, resulting in a SUHI sink phenomenon [9,21]. A SUHI sink in arid environ-
ments is due to the “oasis effect” [9], as urbanization in desert cities increases vegetation
cover and water availability, which in turn lead to cooling effects by decreasing sensible
heat flux and increasing latent heat flux and shading [21]. Alghamdi and Moore [21] and
Aina et al. [23] used the urban growth boundary limit phase II (UG-II) to define the region
of interest (Figure 1), yet Aina et al. [27] found that urbanization developments in the
city do not precisely follow the UG-II. Accordingly, we defined the region of interest (i.e.,
research/analysis area) as the outer extent of the UG-II buffered by 3 km (black dashed box
in Figure 1).

2.2. LCZ Definition

The LCZ classification includes 17 classes that can be divided into two major types:
built-up/urban cover and land cover [4]. Not all LCZs can necessarily be found in a city
due to differences in urban planning and strategies (for built cover types) and climate
regimes (for land-cover types) (e.g., [1]). Given the climate and landscape of Riyadh City
(i.e., arid environment), dense trees (LCZ-A), bush and scrub (LCZ-C), and water (LCZ-G)
zones do not exist and were excluded. Some other original LCZ classes, namely compact
high-rise (LCZ-1), compact midrise (LCZ-2), lightweight low-rise (LCZ-7), sparsely built
(LCZ-9), and heavy industry (LCZ-10), had no or very few matches and were not generally
identifiable at the local climate scale used for classification (i.e., 100 m) and thus were not
included. The open midrise zone (LCZ-5) coexisted with the open high-rise zone (LCZ-4),
and both were merged into one LCZ class (LCZ-54, open midrise with open high-rise).
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As Stewart and Oke [4] explained, the LCZ system is flexible and can be adjusted to
create new subclasses (e.g., LCZ-54) using proposed LCZ properties (e.g., sky view factor,
surface cover fractions). However, Stewart and Oke (2012) [4] acknowledged that straight
alignment between LCZ properties is not necessary. Recently, Wang et al. (2018b) [1]
showed that LCZ property value ranges in desert environments do not align with the LCZ
properties proposed in the literature. Alternatively, traffic flow and variability in building
heights can be used to distinguish between adjacent/mixed LCZ classes and create a new
subclassification [4]. Accordingly, Table 2 summarizes the LCZ classification developed
and employed in this work based on the nature of Riyadh City, the authors’ knowledge of
the city, and a field survey. The suitability of this classification scheme was re-evaluated
twice during the training process and post-classification field survey.

Table 2. Adapted LCZs along with the description relative to Riyadh City.

LCZs Description

LCZ-3 Compact low-rise Closely spaced buildings 1–3 stories tall.
LCZ-54 Open midrise with Open high-rise Open arrangement of buildings ≥ 3 stories tall.
LCZ-6 Open low-rise Open arrangement of buildings 1–3 stories tall.

LCZ-8 Large low-rise Large and low buildings 1–3 stories (e.g.,
warehousing, and shopping centers).

LCZ-B Scattered trees Parks and agricultural lands with frequent trees.
LCZ-D Low plants Agricultural lands and grassy parks

LCZ-E Bare rock/paved Impervious ground (e.g., bedrock, asphalt, and
concrete).

LCZ-F bare soil/sand Pervious ground and land with construction in
progress.

2.3. LCZ Classification

The LCZ Generator was used to generate the LCZ classification. One of the main
advantages of the LCZ Generator is that the random forest classifier is fed with 33 Earth
observation input features, whereas the default WUDAPT uses only Landsat-8 data. Studies
have shown that multi-input features improve LCZ classification [20]. For instance, the
WUDAPT method tends to misclassify built-type LCZ classes in arid climate cities, even
when multitemporal and multispectral remotely sensed data are used [1]. Ren et al. [35]
explored the proficiency of the WUDAPT method over 20 Chinese cities and demonstrated
that this issue (i.e., misclassification) is largely related to a lack of building height data.
Another advantage is that the LCZ Generator provides an automated quality control
approach to evaluate training areas and identify suspicious areas that require further
attention. More information and references about the LCZ Generator can be found in
Demuzere et al. [20].

The LCZ Generator requires two inputs: training areas, and the date of the imagery
used to collect the training areas. Google Earth was used for collecting training samples.
The choice of training samples is a leading source of errors in classification processes [36].
Thus, a set of quality control strategies was applied during the digitizing of training areas
as outlined by WUDAPT and Demuzere et al. [20], including (1) avoiding mixed pixels,
feature edges, and sites experiencing changes; (2) between 5 and 15 samples for each LCZ
(9–20, in this work); (3) homogeneous spectral and surface characteristics; and (4) a less
complex polygon shape. In addition, to reduce subjectivity in distinguishing between
low-rise and midrise zones during digitizing training areas, building height data were used
and acquired from the Saudi General Authority for Survey and Geospatial Information.
The data were available for 2017 at a spatial resolution of 10 m. Accordingly, the training
samples and LCZ classification were performed for 2017 using midsummer imagery to
maintain a higher sun elevation angle to reduce shading effects.

Once the training areas file was uploaded to the LCZ Generator online platform,
a random forest classification was performed using the training samples and 33 input
features at 100 m resolution (see [20] for the list of input features). The use of multiple input
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features was within the recommendation of Eldesoky et al. [24]. The LCZ Generator applied
a three-step automated quality control on the training samples to detect samples/polygons
with (1) lower area size (below 400 m2) or complex shape, (2) abnormal average spectral
value compared to other samples in the corresponding LCZ class, and (3) pixels with
abnormal spectral values compared to their LCZ class’s average spectral value. The second
and third steps were applied simultaneously on all input features. These quality control
steps can be used to modify and adjust the initial training samples to reduce possible errors
related to training samples in the classification processes. The initial training samples can
be resubmitted to the LCZ Generator after revision and adjustment, and a minimum of
three iterations is recommended. In this work, five iterations were used, where all the
training samples passed the first two steps of quality control. Concerning the third quality
control step, it was difficult in most cases to identify the reasons for the flagged training
samples. Demuzere et al. [20] acknowledged this issue as the quality control methods are
still experimental. In our case, part of the difficulty was because the third step was applied
to all 33 input features, which were not currently available for users.

2.4. Accuracy Assessment and Filtering

An automated accuracy assessment was performed for the generated LCZ classifi-
cation using the LCZ Generator. The accuracy assessment was based on an automated
cross-validation approach using 25 bootstraps (runs). In each bootstrap (run), 70% of
the training samples (stratified random sampling) were used to train the classifier and
30% for evaluation. Five accuracy metrics were generated over the 25 bootstraps: overall
accuracy (OA), OA for urban LCZ classes only (OAu), OA of the built versus land-cover
LCZ classes only (OAbu), weighted accuracy (OAw), and F1-score. The main advantage of
the bootstrapping procedure is that the accuracy metrics are generated with confidence
intervals. For more details on accuracy metrics and bootstrapping, refer to Demuzere
et al. [37] and Demuzere et al. [20].

Although the classification was performed for features with a 100 m resolution, the
derived LCZ classification did not necessarily have homogenous structures that reflected
the local climate concept [10]. Thus, the initial classification was further filtered to account
for heterogeneity and granularity as an LCZ class does not consist of single isolated
pixels [10,37]. The LCZ Generator executes morphological Gaussian filtering using a
Gaussian kernel with varying standard deviation (σi) values for different LCZs. The σi
values are not fixed values and are expert-driven as they differ among LCZs and cities [37].
However, the current version of the LCZ Generator does not allow users to adjust σi
values. Thus, a majority filter post-classification of 3 × 3 pixels (i.e., 300 m) was used to
reduce granularity and increase homogeneous structures as implemented by WUDAPT
and several studies (e.g., [17,19,38]).

2.5. Evaluating Thermal Characteristics of LCZs Using LSTs

To examine the seasonal variations of thermal characteristics of LCZs, 40 multi-
seasonal and cloud-free Landsat-8 images (Table 3) were obtained from the United States
Geological Survey (USGS). The data were collected as level-2 surface reflectance (i.e., atmo-
spherically, and geometrically corrected), and thus, LSTs were readily available in a surface
temperature band. USGS produces this band using a single band approach with several
atmospheric parameters (e.g., atmospheric transmission, and upwelled/downwelled radi-
ance), thermal radiance band, and emissivity band. For more specific details and equations,
one can refer to Malakar et al. (2018) [39] and USGS (2021) [40]. The Landsat-8 sensor
passes over Riyadh at around 10 am (local time) in two adjacent paths (166 and 165) with a
seven-day difference (Figure 1). This was considered to be an advantage as the overlapped
area (Figure 1) could be sampled twice. To increase data representation and to account for
temporal variation in LSTs within seasons, multi-season LSTs were obtained for each season
(Table 3). This approach of multi-sampling was implemented to minimize any possible
abnormality in LSTs within seasons and to reduce potential bias related to the inclusion of
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Landsat-8 thermal bands in the LCZ Generator. Since the winter season extends over two
years, LSTs from winter 2017–2018 (Table 3) were selected as more images were available
compared to winter 2016–2017. Data for spring were from 2018 due to the very limited
number of cloud-free images over the city in 2017 (only 4 out of 12 available images in
USGS). Thus, the study period for LST analysis was from June 2017 to May 2018 using
40 Landsat-8 images.

Table 3. Landsat-8 image information used for LST mapping. Cloud cover percentages are in
parentheses.

Season Acquisition Date Path/Row Acquisition Date Path/Row

Summer

20170605 (0.0) 166/43 20170723 (0.0) 166/43
20170614 (0.0) 165/43 20170801 (0.0) 165/43
20170621 (0.0) 166/43 20170808 (0.0) 166/43
20170630 (0.0) 165/43 20170817 (0.0) 165/43
20170707 (2.1) 166/43 20170824 (0.5) 166/43
20170716 (0.0) 165/43

Fall

20170902 (0.0) 165/43 20171011 (0.0) 166/43
20170909 (0.3) 166/43 20171020 (0.0) 165/43
20170918 (0.0) 165/43 20171027 (0.0) 166/43
20170925 (0.0) 166/43 20171105 (4.4) 165/43
20171004 (0.0) 165/43 20171112 (0.04) 166/43

Winter

20171207 (0.7) 165/43 20180115 (0.3) 166/43
20171214 (0.4) 166/43 20180124 (1.5) 165/43
20171223 (2.5) 165/43 20180131 (1.8) 166/43
20171230 (0.3) 166/43 20180209 (0.7) 165/43
20180108 (0.8) 165/43 20180216 (0.3) 166/43

Spring

20180523 (0.0) 166/43 20180414 (0.0) 165/43
20180507 (0.3) 166/43 20180329 (0.1) 165/43
20180430 (0.0) 165/43 20180320 (1.1) 166/43
20180421 (0.0) 166/43 20180313 (0.1) 165/43
20180304 (0.1) 166/43

To assess the differences in LSTs among LCZs, the departure of each LCZ class’s
mean LST from the mean LST of the region of interest (ROI) and the UG-II was computed.
To quantify the differences in LSTs among LCZs, pairwise comparisons were applied
using a two-sample Kolmogorov–Smirnov (K–S) test [41]. The K–S test is a nonparametric
test and was applied to assess significant differences among different LCZs in terms
of the cumulative distribution of LSTs. Although the magnitude/intensity of a UHI
(SUHI) is simply defined as the air temperature (LST) difference between urban and rural,
determining it is not a straightforward task. The current literature does not have a standard
and clear method by which urban and rural areas are defined [32]. This issue is related
to the lack of clear physical and climatic boundaries between urban and rural areas [5].
Additionally, LCZs can be found in urban and rural areas with different spatial coverages
and distributions.

Consequently, this study relied and focused on the overall patterns of LSTs, not on
the absolute magnitude of the SUHI. To investigate the nature of the SUHI, longitudinal
and latitudinal profiles of mean and standard deviation (STD) of LSTs were computed. By
analyzing the spatial patterns of both profiles, the overall spatial patterns of LSTs could
be summarized across the city and SUHI could be reorganized. To minimize possible bias
related to the size and spatial configuration of LCZs, all analyses were performed for both
the ROI and the UG-II.
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3. Results and Discussion
3.1. LCZ Classification

Figure 2 shows the obtained LCZ classification, and Figure 3 presents the distribution
of the accuracy matrices over the 25 bootstraps. The average OA, OAu, OAbu, and OAw of
the LCZ classification were 87, 87, 98, and 95%, respectively. While the average F1-score
for urban-type LCZs ranged from 59% for LCZ-54 (open midrise with open high-rise) to
90% for LCZ-8 (large low-rise), the average land-cover-type F1-score ranged from ~70% for
LCZ-E (bare rock/paved) to 95% for LCZ-F (bare soil/sand). LCZ-54 showed the lowest
average F1-score, and studies have shown that both LCZ 4 and 5 classes are challenging
to map [37]. LCZ-54 recorded a lower average F1-score (a harmonic average of the user’s
and producer’s accuracy, [37]) as the corresponding average user’s accuracy (53%) was
lower than the average producer’s accuracy (94%). LCZ-54 was often confused with LCZ-3
(compact low-rise). The confusion among urban-type LCZs, particularly when the main
distinctions among them were geometric characteristics (e.g., building heights, spacing,
and sky view factor), is a typical issue in LCZ classification due to resampling input data
at 100 m resolution and the limitation of high-quality geometric data [9,37]. Nevertheless,
the OAu indicated a fair overall accuracy (87%) for the urban-type LCZ classes, and all the
average overall accuracy indices exceeded the suggested minimum accuracy of 50% [20].
Moreover, the obtained mean OA (87%) was within the commonly recognized target
accuracy of 85% [9,42].
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Over the region of interest (ROI) and urban growth limit phase II (UG-II), bare
soil/sand (LCZ-F) was the largest LCZ class, covering 68 and 41% of the total areas,
respectively (Table 4). The second-largest LCZ class was compact low-rise zone (LCZ-3),
and it was the most dominant urban type within both the ROI and UG-II, covering 685
(18%) and 657 km2 (37%), respectively. LCZ-54 (open midrise with open high-rise) was
confined to the UG-II (99.6%) and only constituted 1% (17 km2) of the UG-II area. Most
of this class was found within the old city center and along the main commercial roads
(Figures 1 and 2). The main building types within this class were offices and tall residen-
tial apartment buildings. These results are consistent with the findings of Wang et al.
(2018a) [9], who found that bare soil/sand and open low-rise zones were the predominant
LCZs in Phoenix and Las Vegas, USA, as cities in desert environments tended to develop
more horizontally because of abundant land for development. LCZ-6 (open low-rise)
covered 114 km2, 67% (~77 km2) of which was within the UG-II. The zone spread mostly
in the eastern and western outskirts of the city. LCZ-8 (large low-rise) covered 156 km2,
80% (~125 km2) of which was within the UG-II. This zone was occupied mostly by light
industrial activities and was largely limited to the southeastern outskirts in compliance
with city regulations.

Table 4. Area (km2) statistic of LCZs in Riyadh for 2017.

LCZ
ROI UG-II

Area (%) Area (%)

3 685 18 657 37
54 17 <1 17 1
6 114 3 77 4
8 156 4 124 7
B 46 1 30 2
D 79 2 26 2
E 167 4 111 6
F 2633 68 714 41

Total 3897 100 1756 100

LCZ-E (bare rock/paved) accounted for 4% (6%) of the ROI (UG-II) area, consisted
predominantly of asphalt, and was mainly found alongside transportation features (e.g.,
highways, airports, parking lots). Accordingly, LCZ-E could not be regarded as a natural
cover in Riyadh City. LCZs B and D had the lowest area coverages of 46 (30 km2) and
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79 (26 km2) km2, respectively, within the ROI (UG-II). Both classes are human-made (desert
city), and LCZ-B was found over large parks and farming fields with trees (commonly
ornamental trees and palms), whereas agricultural lands and grassy parks constituted
the LCZ-D class. Within the UG-II, both zones were spatially distributed along Wadi
Hanifa (Hanifa valley, Figure 1), where agricultural sites are clustered. LCZ-D had a lower
frequency across the built-up areas as low plant cover within the city was restricted to small
neighborhoods parks, which are difficult to detect and classify at 100 m resolution. Thus,
agricultural activities are suggested as the major contributor to those land-cover classes.

3.2. LST and LCZs

The estimated morning LST demonstrated large seasonal and spatial variability
(Figure 4). Summer recorded the highest mean LST (52 ◦C), followed by fall (46 ◦C),
spring (40 ◦C), and winter (26 ◦C) within the ROI (i.e., the study area as a whole). The UG-
II experienced similar seasonal patterns with mean LSTs about one-degree lower (Figure 4).
Alghamdi and Moore [21] reported similar findings for the city’s UHI due to seasonal
changes in solar inclination. In summer (winter), the sun is at higher (lower) elevation, and
incoming radiation is more (less) direct and concentrated over smaller (larger) areas. As a
result, LSTs are higher in summer and lower in winter. The ROI displayed higher seasonal
LST variability (standard deviation) compared to the UG-II (Figure 4D). LSTs experienced
increasingly higher variability during fall, summer, spring, and winter. This pattern was
observed over both the ROI and UG-II, yet the seasonal differences in variability were
higher over the ROI (Figure 4D). The higher mean LSTs over the ROI could be explained by
its larger area and a higher presence of sand cover compared to the UG-II (Figure 1). The
latter factor might be more important, as sand warms at a higher rate during the daytime
and has high heat capacity [21]. In fact, maximum LSTs were detected over areas with
pure sand cover in all four seasons. Pan et al. [43] reported similar results in Zhangye City,
located in the northern arid region of China. These differences between the ROI and UG-II
highlighted the importance of accounting for possible bias related to the size and spatial
distribution of land cover (i.e., LCZs) in assessing SUHIs.
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Daytime LST exhibited considerable seasonal variability among LCZ classes over both
the UG-II and the ROI (Figure 5). In summer and over the ROI, the LCZ-8, LCZ-E, and
LCZ-F classes displayed the highest mean LST of ~53 ◦C, whereas the LCZ-B class recorded
the lowest mean LST of 49 ◦C. Within the UG-II, LCZ-8 and LCZ-E classes displayed the
highest mean LST of 53 ◦C, and LCZ-B class had the lowest LST of 49 ◦C. The similarity
in summer mean LST values of LCZ-8, LCZ-E, and LCZ-B classes over both the ROI and
UG-II could be due to the observation that more than two-thirds of these classes are within
the UG-II. In fall, the highest (lowest) mean LST of 47 ◦C (43 ◦C) was recorded by the LCZ-8
(LCZ-B) class within both the ROI and UG-II. Over both the ROI and UG-II both LCZ 8 and
D classes exhibited the highest mean winter and spring LST, whereas LCZ-B and LCZ-3
classes showed the lowest mean winter and spring LST. Overall, the large low-rise class
(LCZ-8) had the highest average LST in all seasons. Other studies showed similar findings
for low-rise classes in different cities (e.g., [9,44]). LCZ-B class showed the lowest mean
LST across seasons. This class mainly consists of high-height vegetation (e.g., palms), and
thus, lower average LSTs could be related to shadowing effects.
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To further explore differences among the LSTs of LCZs, and between the ROI and
UG-II, the departure of each LCZ from the mean LST was calculated at ROI and UG-II
scales (Figure 6). All LCZs showed similar anomaly directions (positive/negative) over
both the ROI and UG-II and across all seasons, except the LCZ-54 class in summer, LCZ-D
in spring and summer, and LCZ-E in winter. While urban-type LCZs tended to have
large LST departure values (positive and negative) across the ROI (except LCZs 8 and
E, largely distributed within the UG-II), land-cover-type LCZs showed large departure
values over the UG-II, except the LCZ-B class. Thus, it was important to evaluate LSTs
over the UG-II to understand the urban LST variabilities/differences (UG-II) and how
urban LSTs differed from the surroundings (ROI). LCZs 3, 54, 6 (urban types), and B classes
experienced cooler (negative departure) daytime mean LST in all seasons across the ROI.
Similar results were seen across the UG-II, except for the LCZ-54 class during summer. The
LCZ-D class exhibited a lower LST than the average in summer across both the ROI and
UG-II and in spring over the UG-II. The negative departure values were larger across the
ROI for LCZs 3, 54, and B classes compared to the UG-II. This can be attributed to the lower
contribution of these classes to the ROI and the higher seasonal mean LSTs of the ROI.
These classes were largely confined to the UG-II (Table 4), which had lower seasonal mean
LSTs compared to the ROI (Figure 4D). Warm LST deviations (positive departures) were
found for the LCZ-8 class (urban-type) and all land-cover types (except LCZ-B) during
most of the seasons and across both the ROI and UG-II. For these classes, the magnitudes
of LST departures were higher over the UG-II, unlike negative LST deviations.
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Figure 6. Departure from the ROI (right) and UG-II (left) winter (blue), spring (green), summer (red),
and fall (orange) daytime mean LSTs (◦C) for each LCZ class.

To quantify LST differences among LCZs and between different areas of interest/analysis
(ROI vs. UG-II), the K–S test was applied. The results revealed that all LCZs differed
significantly in terms of their cumulative distributions of LSTs (i.e., coming from different
populations) at all seasons within both the ROI and UG-II (Figure 7, upper and mid panels).
This result suggested that the developed LCZs could identify distinctive LSTs among
classes [45]. That is, the developed LCZ classification is suitable for the city, as it groups
distinct LSTs into different zones. The K–S test also revealed significant differences among
LSTs of LCZs over the ROI and those over the UG-II across seasons (Figure 7, lower panel).
This indicated that the definition of the research/analysis area is an important aspect, as
different definitions can result in significantly different LST cumulative distributions. Such
differences might be more related to the spatial configurations of LCZ classes, as they
showed different distributions over the ROI and UG-II (Figure 2). Subsequently, different
definitions would result in different LST magnitudes and, thus, different SUHI intensity.
The results from Figures 6 and 7 revealed the developed LCZs can be used to investigate
daytime SUHIs in Riyadh City. Accordingly, the negative LST departures of urban-type and
the positive LST departures of land-cover type (excluding LCZ-B) were highly suggestive
of SUHI sink presence in Riyadh City.
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no significant differences at p < 0.05 or 0.1 levels.
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To further explore the nature of daytime SUHIs (i.e., positive or negative) in the city,
mean and standard deviation (STD) of LSTs for each LCZ class were mapped, and longitu-
dinal and latitudinal profiles were evaluated (Figures 8 and 9). This approach allowed for
a more comprehensive spatial view of the LST profiles, in which LST differences between
urban and surroundings could be evaluated. To account for the observed differences in
LSTs between the ROI and UG-II due to differences in LCZs distribution, the analyses
were performed for both areas. Results in Figure 8 were in line with those in Figure 6 and
clearly showed that urban areas experienced lower daytime mean LSTs across seasons
compared to the surroundings. This indicated that daytime SUHI sink was highly evident.
Longitudinal and latitudinal LST profiles (upper and left sides of each season map in
Figures 8 and 9) provide west–east and north–south, respectively, views of mean LSTs
and indicate the presence of SUHI sink. For instance, the latitudinal (longitudinal) mean
shows the north–south (west–east) profile of LSTs and demonstrates that the mean LSTs
started at higher values over northern (western) areas and decreased toward the south
(east) over the urban area and then increased south (east) afterward. This observed pattern
was seen across all the analyzed seasons, but with different magnitudes, as summer has
higher daytime LSTs followed by fall, spring, and winter, in that order. Generally, both the
ROI and UG-II areas displayed similar profile patterns, and the UG-II tended to show a
detailed profile version of this over the ROI.
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The consistent profile patterns of low mean LSTs over urban areas across seasons
and both the ROI and UG-II agreed with the results in Figure 6. These combined results
indicated that Riyadh City had daytime SUHI sink during the studied period (June 2017–
May 2018). The urban class types of LCZs 3, 54, and 6 were where lower mean LSTs were
recorded, and these classes were what mostly constituted the urban area. The spatial
distribution of low mean LSTs (Figure 8) corresponded well with the spatial destitution
of these classes in Figure 2. Similarly, higher mean LSTs were recorded over the LCZ 8, E,
and F classes and their spatial distribution (Figure 2) was similar to that of high mean LSTs
(Figure 8). For example, a closer look at the latitudinal and longitudinal profiles showed
that mean LSTs have a peak around the middle of the profiles, and this peak parallels
the area of LCZ-8. This class had the largest positive departure from mean area LSTs
(Figure 6). This was consistent with the findings of Aina et al. [23] and Abulibdeh [46], in
which industrial lands (in our case LCZ-8) in Riyadh had the highest daytime LSTs within
the urban agglomeration. The higher values at the beginning and end of LST profiles
corresponded to areas where the LCZ-F class was primarily distributed.

Generally, profiles of STDs of LSTs showed patterns similar to those found for the
mean profiles, where lower values are over urban areas (Figure 9). LST variabilities (STDs)
were low over urban areas in all seasons over both the ROI and UG-II, and thus, the
daytime SUHI sink appears to have homogenous LSTs. In fall, LSTs had higher variability,
followed by summer and winter across most of the LCZs. Higher STD values were found
mainly over the areas of the LCZ B and D classes across seasons, with higher magnitudes
in summer and fall. The frequent small peaks along the STD profiles of LST (Figure 9)
corresponded to the areas of both classes (Figure 2). In summer and fall seasons, the lowest
mean LSTs were over both classes (Figure 8), more notably in summer. During warm
seasons, evapotranspiration is high (higher sun elevation angle), and most of the heat is
transported as latent heat [47]. Accordingly, low mean LSTs in winter were not found
across LCZs B and D (Figure 8), and both showed positive LST departure values (Figure 6)
as evapotranspiration is lower in this season. This is also combined with the observation
that both classes were distributed largely along Wadi Hanifa, which suggested there was
more heat trapped near the ground during winter. Furthermore, we noticed that there
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was a notable frequency of relatively lower LSTs over the LCZ-3 class coupled with the
presence of small parks and sparse residential vegetation, which were omitted at the 100 m
resolution. Kwarteng and Small [48] detected lower LSTs over residential areas in Kuwait
City due to cooling effects of vegetation, even when the proportion of vegetation was low.

4. Summary and Conclusions

Using the LCZ Generator platform, an LCZ classification was developed for Riyadh
City for 2017, based on multiple Earth observation input features. Eight LCZs were
identified with an overall accuracy of 87%. The bare soil/sand (LCZ-F) class was found to
be the largest LCZ class followed by the compact low-rise zone (LCZ-3), which was the
largest urban-type class. Other LCZ classes were not dominant as each covered less than
8% of the total area. This is within the expected nature of an arid climate city.

The seasonal thermal characteristics of the developed LCZs were analyzed using LSTs
estimated from 40 thermal bands (June 2017–May 2018). The results revealed that the urban
area had lower LSTs as urban-type LCZs had low LSTs and experienced a large negative
departure from the mean area LSTs across seasons. However, the large low-rise (LCZ-8)
class showed the highest seasonal LSTs and tended to demonstrate the largest positive LST
departure. The lowest LSTs were found over the scattered trees (LCZ-B) class, except in
winter, when LCZ-3 had the lowest LSTs. All the thermal analyses suggested the presence
of the SUHI sink and were consistent with the findings of previous research. Studies have
indicated that the intensity of Riyadh’s UHI has experienced a decreasing trend [21,31],
while Aina et al. [23] reported LSTs have increased. Alghamdi and Moore [21] showed
that the daytime UHI in Riyadh transitioned to a UHI sink phenomenon in the early 1990s,
which was explained by increases in vegetation cover within the urban area. This study
further provided seasonal analysis and showed that LSTs and, substantially SUHIs have
seasonal variabilities and their magnitudes depend on how the region of study/analysis is
defined. The latter is more related to the spatial distribution of LCZ classes.

The developed LCZ classification has several potential applications in different areas.
For instance, one city zoning policy requires that light industrial and large storage facilities
be limited to certain areas outside the city. The LCZ-8 class is an example of that policy, and
it illustrates how such a strategy has helped to keep higher LSTs outside the city as that
zone had the highest mean LSTs. This would also highlight the importance of a new urban
design strategy for this zone to mitigate its LSTs, such as increasing spacing and vegetation
cover. Another application of the developed LCZ classification is as data input for studies
of population vulnerability to temperature discomfort and heat stress (e.g., [14]). Other
studies have used the LCZ scheme to model and predict diseases in urban areas (e.g., [49])
as this scheme offers detailed information about urban climate. Accordingly, this developed
LCZ classification can be used to provide more insights into several urban-related issues
(e.g., health hazards and diseases) that have spatial patterns in the city, like those related
to air pollution. Detailed knowledge about these aspects would assist the efforts of urban
and health management not only to mitigate UHI/SUHI effects in the city, but also to
improve the overall life quality. For instance, a better understanding of how the current
urban structures influence the local climate, which contributes to heat stress during heat
waves, would not only help improve heat warring and response systems, but would also
help direct planning efforts for some of the mitigation strategies.

Vegetation’s negative effects on UHIs/SUHIs are well established in the literature, yet
the exact effects on Riyadh City’s UHI/SUHI have not been evaluated, and the results pre-
sented here suggest temporal variability as in the winter case. As Collins and Dronova [50]
showed, the replacement of bare soil cover (LCZ-F) with open structures and vegetation
cover could lead to cooling effects. However, abundance of vegetation cover does not
necessarily mitigate UHIs effects, as the low plant cover (LCZ-D) experienced relatively
warm LSTs in fall and winter in this work. In a study by Collins and Dronova [50], a
similar observation was found but in summer. This can be explained by the work of Li
et al. [51], as they found that the spatial configuration of green space plays an important
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role in the association between LSTs and vegetation as higher fragmentation and density of
greenspace increase LSTs. These points emphasize the need for further research as they
have received limited attention in arid climate cities.
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Abbreviations

Abbreviations Full Name
LCLU Land cover/use
LCZ Local climate zones
LCZs Generator Local climate zone generator platform/tool
LST Land surface temperature
ROI Region of interest
SUHI Surface urban heat island
UG-II Urban growth boundary limit phase II
UHI Urban heat island
WUDAPT World Urban Database and Access Portal Tools
STD Standard deviation
OA Overall accuracy
OAu Overall accuracy for urban LCZ classes only
OAbu Overall accuracy of the built versus land-cover LCZ classes only
OAw Weighted accuracy
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