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Abstract: Crosshole ground-penetrating radar (GPR) is an important tool for a wide range of geo-
scientific and engineering investigations, and the Markov chain Monte Carlo (MCMC) method is a
heuristic global optimization method that can be used to solve the inversion problem. In this paper,
we use time-lapse GPR full-waveform data to invert the dielectric permittivity. An inversion based
on the MCMC method does not rely on an accurate initial model and can introduce any complex
prior information. Time-lapse ground-penetrating radar has great potential to monitor the properties
of a subsurface. For the time-lapse inversion, we used the double difference method to invert the
time-lapse target area accurately and full-waveform data. We propose a local sampling strategy
taking advantage of the a priori information in the Monte Carlo method, which can sample only the
target area with a sequential Gibbs sampler. This method reduces the calculation and improves the
inversion accuracy of the target area. We have provided inversion results of the synthetic time-lapse
waveform data that show that the proposed method significantly improves accuracy in the target
area.

Keywords: time-lapse inversion; MCMC; full-waveform; double difference strategy; crosshole
ground-penetrating radar (GPR)

1. Introduction

Crosshole ground-penetrating radar is widely used in geoscientific and engineering
investigations (e.g., identify cracks, analysis moisture) [1,2]. It is a popular tool for mapping
subsurface electrical properties, especially electrical conductivity and dielectric permittivity,
which are closely related to the underground characteristics of environments (e.g., water
content) [3–6]. It has also shown great potential for mapping and monitoring time-lapse
changes, which improves our understanding of dynamic processes [7–9]. This technique
uses transmitting radar antennas to generate high-frequency electromagnetic energy in a
borehole to acquire crosshole radar data.

To invert GPR data, both deterministic inversion algorithms and probabilistic inver-
sion methods have been proposed [10–15]. Most deterministic inversion methods depend
on an accurate prior model. In contrast, probabilistic inversion methods in which prior
information is based on probability statistics reduce dependence on an accurate prior
model. In a Bayesian formulation, the solution of inverse problem is a posteriori probability
density. The extended Metropolis algorithm [16] is proposed to sample the posteriori prob-
ability density which can solve highly nonlinear inverse problems. Hansen et al. proposed
a sequential Gibbs sampler to sample a priori information defined by any geostatistical
algorithm [17,18]. Sequential Gibbs sampling could serve as a black box algorithm which
performs a random walk according to a priori information in the extended Metropolis
algorithm [19]. In this way, for choosing a priori model, the extended Metropolis algorithm
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becomes very flexible [20–23]. Regarding complex statistical models, Remy et al. give
various examples [24].

According to the forward assumptions, conventional ray tomography has weaknesses,
including low resolution, as a result of utilizing only a small portion of the signal informa-
tion to solve the inversion problems [25,26]. Ernst applied the waveform inversion (FWI)
method to improve the resolution by using all the received signals [4]. FWI was tested on
synthetic crosshole data, and proved successful for characterizing a gravel aquifer [27]. Qin
proposed two-stage Bayesian inversion to decrease the computational cost using crosshole
GPR data [15]. Cordua implemented the first inversion example, which used full-waveform
data to get a solution of a posteriori probability density [28]. Here, we study full-waveform
time-lapse GPR data to image changes in dielectric permittivity, which are believed to
indicate moisture content.

There are two time-lapse inversion strategies for performing the time-lapse inver-
sion: a sequential difference strategy and a double difference strategy [29,30]. The main
difference between the two strategies is that the double difference strategy reduces the
influence of the non-target area and improves the inversion accuracy of the target area. In
this work, we use the double difference strategy combined with Monte Carlo inversion.
For the time-lapse GPR data, this requires at least two inversion calculations of the two sets
of data at different observation times. These two inversions cost much calculation time,
and at the second inversion, the non-target region will also affect the accuracy of target
region. To solve this problem, we use the Monte Carlo inversion to achieve local sampling.
In this way, the reduction of the sampling area eliminates the impact of the non-target area
and improves computational efficiency.

In this paper, we use MCMC method combined with double difference strategy to
realize time-lapse GPR inversion. Taking the advantage of a priori information in the
MCMC method, we achieve local sampling in time-lapse inversion. In this way, we
can only sample the target area which eliminates the impact of the non-target area and
reduce the calculations. The paper is organized as follows: Firstly, we introduce the
formula of the probabilistic inversion method and the forward method based on the
waveform. Subsequently, we present the implementation of local sampling using an
extended Metropolis algorithm. Further, we briefly introduce double difference as a time-
lapse inversion strategy. Finally, we present an analysis of results from synthetic data using
local compared with full sampling.

2. Methods
2.1. Probabilistically Formulated Inversion

For geophysical inverse problems, a set of parameters m is used to describe the
subsurface; the observed data can be represented by a dataset d. The forward problem
refers to the use of a function f to obtain d

d = f (m) (1)

where the function f is solved by a physical relation. The corresponding inverse problem
can be expressed as

m = f−1(d) (2)

The main difficulty of the inversion is the inverse operator f−1, which is non-trivial to
obtain or does not exist. Furthermore, the forward operator f is based on an approximation
to the correct physical relation. In this paper, the model m represents a relative dielectric
permittivity of the subsurface, and the data are the waveform data between boreholes. The
inverse problem uses a priori information to obtain the model parameters. A probabilistic
approach to solving inverse problems can be formulated [10].
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σM(m) = kρM(m)L(m) (3)

where σM(m) is a posteriori probability distribution that is the solution of the inverse
problem. k is a normalization factor. A priori probability density ρM(m) represents the
prior information of the model parameters. L(m) is the likelihood function, which is a
probabilistic measure of how well the data can match a given the model of data uncertainty.
Its general formula is given by

L(m) =
∫

dd
ρD(g(m))θ(d|m)

µD(d)
(4)

where ρD(g(m)) represent measurement uncertainties. It is mainly related to the instrument
where the data is recorded. θ(d|m) represents the modeling error due to the defective
forward method or an defective parameterization. µD(d) describes the homogeneous state
of information. It ensures that when the coordinate system changes, parameterization is
invariant. In most cases, µD(d) can be assumed to a constant.

In this research, we mainly consider the data uncertainties and we do a perfect assume
about other errors. The particular likelihood function as follows:

L(m) = c
K
∏

k=1
exp
[(
− 1

2 g(m)k − dk
obs

)T
C−1

D

(
g(m)k − dk

obs

)]
(5)

where g(m)k and dk
obs are vectors that contain the simulated and observed waveform traces

related to the kth transmitter-receiver pair. K is the total number of waveform traces (i.e.,
transmitter-receiver pairs). The factor c is a normalization constant. Where CD is the
covariance matrix that describes the variances and covariances of the data uncertainty.
It is the Gaussian-distributed data uncertainties that are added to the waveform data in
Synthetic examples.

2.2. Forward Model Based on Waveform

There are several types of forward model to simulate the GPR signal’s wavefield. In
the forward model of our time-lapse inversion scheme, we used a 2D FDTD solution of
Maxwell’s equations in transverse electric mode. The forward data of this FDTD method is
the vertical component of the electrical field and its conceptual simplicity.

Using Cartesian coordinates for wave propagation in the (x, z) plane, the transverse
electric or TE mode of Maxwell’s equations are as follows [31]:

∂Ex

∂t
=

1
ε

(
−

∂Hy

∂z
− σEx

)
(6a)

∂Ez

∂t
=

1
ε

(
∂Hy

∂x
− σEx

)
(6b)

∂Hy

∂t
=

1
µ

(
∂Ez

∂x
− ∂Ex

∂z

)
(6c)

In the formula, Ex and Ez represent the horizontal and vertical components of the
electric field, respectively. Hy is the magnetic field perpendicular to the propagation plane,
σ is the electrical conductivity, ε is the dielectric permittivity, and µ represents the magnetic
permeability which is equivalent to the free-space permeability assuming to be constant in
the following. A generalized perfectly matched layer (GPML) surrounding the edges of
the FDTD grid absorbs the artificial reflections at the edges of the model space.

We used FDTD techniques [31,32] based on staggered-grid finite-difference operators
that are second-order accurate in both space and time to solve Equations (6a)–(6c). In
near-surface, electromagnetic signals are mainly affected by dielectric permittivity and
electrical conductivity. Permittivity and conductivity primarily control the phases and
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the amplitudes of the observed signals, respectively. In this study, we consider only the
influence of the dielectric permittivity. For all examples presented in this paper, we inverted
for permittivity while keeping the conductivities fixed [33].

2.3. Local Sampling Based on Extended Metropolis Algorithm

In most cases, geophysical inversion problems are non-linear and require non-Gaussian
statistics to describe. We require an algorithm that can use the priori probability density
without an explicit expression. The extended Metropolis algorithm can solve this by using
sequential Gibbs sampling to serve as a black box algorithm. Sequential Gibbs sampling can
perform a random walk in the a priori probability density [16]. There are two randomized
steps constitute the extended Metropolis algorithm:

(1) Giving a current model mcur, it conforms the a priori probability density. Generating
a perturbation in the current model mcur, we get a candidate model, mpro.

(2) Decide whether to accept the proposed model mpro, the probability of acceptance is
measured by the ratio of likelihood function:

Pacc = min(1,
L(mpro)

L(mcur)
) (7)

where L(mcur) and L
(
mpro

)
are the likelihood evaluated of the current model and the

proposed model, respectively. If accepted, the proposed model instead of the current model.
Therefore, a realization of the posteriori probability density is completed. Otherwise, we
reject the proposed model and the current model is counted again.

For time-lapse inversion, two inversions are required; we mainly focus on the change
in the target area. The ideal method would be only to invert the target area in the second
inversion. However, this is difficult to achieve. Instead of local inversion, we can take
advantage of the a priori information of the MCMC method to implement local sampling.
The prior information of the MCMC method is a large number of model distributions
obtained by sampling. Thus, in the second inversion, we can sample only the target
area to ensure that changes occur only in the target range, reducing the influence of the
non-target area.

To perform the local sampling Monte Carlo inversion, we used a sequential Gibbs
sampler to sample ρM(m) directly, as part of the extended Metropolis algorithm. The flow
of the second inversion was as follows:

1. Starting in the current model, mcur, which is the result of the first inversion, the range
size of the target area is ∇mloc. A new model candidate, mpro, which samples in the
∇mloc only using the sequential Gibbs sampler.

2. The proposed model is accepted with probability Pacc = min(1,
L(mpro)
L(mcur)

).

3. If mpro is accepted, we use mpro instead of mcur. Consequently, the proposed model
takes the place of the current model, mcur = mpro. Otherwise, the random walker stays
at a location in mcur, and mcur is counted again.

2.4. Time-Lapse Inversion-Double Difference Strategy

There are two widely used time-lapse inversion strategies: sequential difference
strategies and double difference strategies. The main difference between two methods is
the setting of the initial model and the forward data processing before inversion. We will
briefly introduce the two methods. In time-lapse inversion, at different times T1,T2, we
obtain two corresponding observational data dobs1,dobs2. The target models mT1 and mT2
are the solution of GPR inversion at time T1,T2. After completing the time-lapse inversion,
the change region can be obtained by subtracting mT1 from mT2.

The sequential difference strategy uses mT1 as the initial model to obtain mT2. As the
change in the model is localized and only occurs in a small region, starting from the model
mT1 is a good candidate for the time-lapse inversion and can reduce the computation
cost [34,35].
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To improve the accuracy of the inversion results in the change region, Waldhauser
and Ellsworth proposed the double difference strategy, which improves on the sequential
difference strategy [29]. Compared with the sequential difference strategy, the main differ-
ence in the double difference strategy is using the mT1 to get forward data d∗obs1 instead of
dobs1, which reduces the influence of the non-target region. In this paper, we for the most
part use the double difference strategy to solve the time-lapse inversion.

Figure 1 shows schematic diagrams of the double difference method combing a local-
sampling Monte Carlo inversion.
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Figure 1. The double difference strategy. dobs1,dobs2 are the corresponding observational data at
different times T1,T2. The models mT1 and mT2 are the inversion result at time T1,T2. The result of
time-lapse inversion can be obtained by subtracting mT1 from mT2.

3. Synthetic Examples

To test the effectiveness of the method, we simulate synthetic GPR data mT1 in Figure 2.
A reference model mT1, of size 5.2× 12 m (52× 120 = 6240 pixels of size 0.1 m× 0.1 m), was
generated from a multivariate Gaussian probability distribution. The electrical conductivity
of the synthetic reference model was set to a constant value of 3 mS/m. The mean of the
relative dielectric permittivity εr is 3.97 and the variance is 0.75.
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connecting black line.

Figure 2 shows the recording geometry of the ground-penetrating radar (GPR) cross
borehole. There are four transmitters represented by red crosses and each borehole contains
two transmitters (one at 3 m and one at 9 m). Black dots are receivers equally spaced in two
boreholes (the interval is 1.5 m). Due to the effects of wave guiding [36], the travel path is
not between the center of the antenna, but the tips of the antenna [37]. We omitted data
where the angle between a transmitter-receiver and horizontal is larger than 45◦. These are
similar parameters to those in Cordua et al. [28].

We used the FDTD algorithm to calculate a full-waveform synthetic dataset. The
FDTD model with a regular grid consisting of square cells of 0.1× 0.1 m to solve Maxwell’s
equations and the number of boundary cells is 40. The source pulse is a ricker wavelet and
the central frequency of the ricker wavelet is 100 MHz. In the synthetic data, we assume
source pulse is known. However, it should be noted that the source wavelet needs to be
estimated for the real data. Some estimation methods can solve this problem [38,39].

The vertical component of the electrical field is the recorded synthetic observational
data which contains a total of 20 waveforms traces. Gaussian-distributed data uncertainties
are added to the waveform data. The average signal-to-noise ratio is set to 25. A transmitter
at depths of 3 m in the left borehole generates five waveform traces as Figure 3 shows.
Blue dotted curves and red curves represent noise-free waveforms and noisy waveforms,
respectively. The signal-to-noise ratios from the top are 8, 15, 24, 32 and 40, respectively.
As can be seen from picture 3, the matching of waveforms from top to bottom gradually
becomes better between the Noise-free waveforms and noisy waveforms.

For the time-lapse inversion, mT1 represents the initial model at time T1. We designed
a perturbation in initial model mT1 to obtain the monitor model mT2, which simulated the
monitor model at observational time T2. Compared with mT1, there was a high region of
the relative dielectric permittivity near the surface in mT2. mT1, mT2 and the perturbation
as shown in Figure 4.

Before the inversion, we first needed to sample the priori probability density that
generated the reference model mT1. Figure 5 shows five sampling models generated from
the priori probability density; each of them is different.
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We used the extended Metropolis algorithm to obtain an a posteriori probability
density. Figure 6 shows five inversion models that are generated from the posteriori
probability density at T1. We can see that the extended Metropolis algorithm obtained
an effective inversion result. The inversion models contain the main features of mT1. It
is clear that relatively high dielectric permittivity structures are located at the bottom of
the model and lower dielectric permittivity structures stay at the top of the model. In
addition, Figure 7 shows the five waveform traces of a transmitter at depths of 3 m in the
left borehole simulated by an a posteriori model. The simulated waveforms are consistent
with observed waveforms.
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In the double difference strategy, to invert the mode mT2, we selected a result of
a posteriori sample as an initial model for the second inversion. In addition, we used
the initial model to calculate forward data instead of observational data in the second
inversion. Unlike the full sampling method in the first inversion, we used the sequential
Gibbs algorithm to sample only the target area in the second inversion. In order to compare
the inversion effect of local sampling, we set up a group of full sampling models for
comparison. The results are shown in Figure 8. They clearly demonstrate that the local
sampling performs better in the target area.
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In order to analyze the disturbance location from the inversion results, we enlarged
the target area in Figure 9. The first picture in Figure 9b is the designed perturbation model.
It shows that Figure 9a is far from the designed perturbation model, while Figure 9b reflects
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the characteristics of the designed perturbation model. Furthermore, we made a statistical
analysis of the target area; the histogram of the statistical data is shown in Figure 10; the
specific mean and variance are shown in Table 1.
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Figure 10. (a) The design perturbation model histogram, (b) perturbation of all sampling histograms,
and (c) perturbation of local sampling histogram.

Table 1. Statistical analysis of different methods of the target area.

Method Mean Variance

Design perturbation 1.25 0.43
All sampling 0.75 0.72

Local sampling 1.21 0.47

Figure 10a–c is the distribution of the designed perturbation, all sampling, and local
sampling, respectively. It is obvious that the local sampling histogram is more similar to
the design perturbation model. From Table 1, the mean and variance of local sampling is
closer to the design perturbation model. It proves the effectiveness of the local sampling
MCMC method.

4. Conclusions

This paper proposes a general framework for time-lapse inversion based on the MCMC
method, which combines the extended Metropolis algorithm with a double difference
strategy. In the double difference strategy, the result of the first inversion is taken as
the initial model and forward data are used instead of observational data, using full-
waveform data to invert the relative dielectric permittivity based on Maxwell’s equations.
The waveform data are able to infer the model parameters effectively. In the extended
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Metropolis algorithm, sequential Gibbs sampling is used as a black box algorithm for
sampling a priori probability density. This method can implement local sampling, which
only samples the target area, reducing the influence of the non-target area. This makes the
inversion result more accurate. The synthetic time-lapse GPR shows that, compared with
full sampling, local sampling can obviously improve the resolution of the target region. It
should be noted that we do a perfect assume about measured error and modeling error.
We mainly consider the data uncertainties. It is a limitation of our current method.
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