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Abstract: The three-dimensional (3D) information of buildings can describe the horizontal and
vertical development of a city. The GaoFen-7 (GF-7) stereo-mapping satellite can provide multi-view
and multi-spectral satellite images, which can clearly describe the fine spatial details within urban
areas, while the feasibility of extracting building 3D information from GF-7 image remains under-
studied. This article establishes an automated method for extracting building footprints and height
information from GF-7 satellite imagery. First, we propose a multi-stage attention U-Net (MSAU-Net)
architecture for building footprint extraction from multi-spectral images. Then, we generate the
point cloud from the multi-view image and construct normalized digital surface model (nDSM) to
represent the height of off-terrain objects. Finally, the building height is extracted from the nDSM
and combined with the results of building footprints to obtain building 3D information. We select
Beijing as the study area to test the proposed method, and in order to verify the building extraction
ability of MSAU-Net, we choose GF-7 self-annotated building dataset and a public dataset (WuHan
University (WHU) Building Dataset) for model testing, while the accuracy is evaluated in detail
through comparison with other models. The results are summarized as follows: (1) In terms of
building footprint extraction, our method can achieve intersection-over-union indicators of 89.31%
and 80.27% for the WHU Dataset and GF-7 self-annotated datasets, respectively; these values are
higher than the results of other models. (2) The root mean square between the extracted building
height and the reference building height is 5.41 m, and the mean absolute error is 3.39 m. In summary,
our method could be useful for accurate and automatic 3D building information extraction from
GF-7 satellite images, and have good application potential.

Keywords: GF-7 image; building footprint; building height; multi-view; deep learning; point cloud

1. Introduction

The structure of urban areas in both two and three dimensions has a significant impact
on local and global environments [1]. As the basic element of a city, buildings are the main
sites of production and housing. The three-dimensional (3D) information of buildings
portrays the horizontal and vertical morphological characteristics of a city, both of which
play a crucial role in urban construction and management for sustainable development.
Research on the 3D information extraction of urban buildings can serve the research fields
of urban climate [2–5], urban expansion [6,7], pollutant dispersion [8], urban 3D recon-
struction [9–12], urban scene classification [13], energy consumption [14], and population
assessment [15–17]. Therefore, large-scale and high-precision 3D information extraction of
urban buildings is essential for a comprehensive understanding of urban development.
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With the development of remote sensing equipment, remote sensing technology
provides an effective tool for surveying and mapping buildings at the urban scale. Due to
the limited availability of 3D data, most studies on urban building extraction focus on
the two-dimensional level [18–25], and only a small number of studies focus on the 3D
structure of buildings [26–32]. Huang et al. [26] used ZY-3 data combined with A-map (a
map service provider of China) building height data and proposed a multi-view, multi-
spectral, and multi-objective neural network (called M3Net) to extract large-scale building
footprints and heights, and verified the applicability of the extraction method in various
cities. Wang et al. [27,28] proposed an inversion method of building heights using GLAS
data assisted by QuickBird imagery and used satellite-borne LiDAR full waveform data to
extract building height within a laser spot footprint. Li et al. [29] realized the extraction
of building height with a resolution of 500 m based on Sentinel-1 data, and verified
results in most cities of the United States. Qi et al. [30] estimated the height of buildings
based on the shadows of buildings from Google Earth images. It is more economical to
use shadow information to estimate the height of buildings. However, this method is
susceptible to many restrictions, such as building heights, shadow effects, and viewing
angles. Liu et al. [31] used a random forest method to extract building footprints from ZY-3
multi-spectral satellite images and combined this approach with the digital surface model
(DSM) constructed by ZY-3 multi-view images to estimate building heights. However,
the accuracy of building footprint extraction using random forest method is low, and the
estimated height of a building is easily affected by the height of the ground’s surface.

In summary, although previous studies have made some progress in building 3D
information extraction, there are still the following limitations:

1. Building semantic segmentation accuracy is not high, and there are many prob-
lems, such as unclear edges of buildings and difficulty in extracting large build-
ings [22–24,33].

2. Most high-resolution building height information extraction is limited to a small
scale, and there is a lack of large-scale high-resolution building height extraction
methods [12,26–31].

3. The GaoFen-7 (GF-7) multi-view satellite image can describe the vertical structure of
a ground object well. However, there are few studies on the extraction of building
information from GF-7 satellite images, and satellite vertical structure extraction
capabilities still require evaluation.

To fill this knowledge gap on urban building 3D information estimation over large
areas, we developed a building footprint and height extraction method and assessed the
quality of the results from GF-7 imagery.

Our research is divided into three parts. First, we use deep learning methods to
extract building footprints from GF-7 multi-spectral images. To solve the problem of
accuracy in terms of building footprint extraction, we propose a multi-stage attention
U-Net (MSAU-Net). Second, this study used the multi-view images of GF-7 to construct
the point cloud of the study area and performed point cloud filtering process to obtain the
ground point. The DSM, the digital elevation model (DEM), and the normalized digital
surface model (nDSM) of the study area are generated from the point cloud. Afterward,
the building footprint extraction results of the study area are superimposed with the nDSM
data to generate a 3D product of the building. Finally, this study verified the accuracy
of the building footprint extraction and compared our network with other deep learning
methods; we then collected actual building height values in the study area as the reference
buildings to verify the accuracy of estimated building height information.

The remainder of this paper is arranged as follows. Section 2 introduces the GF-7 data
and study area. Our methodology is presented in Section 3. The results and discussion are
reported in Section 4. Finally, conclusions are drawn in Section 5.
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2. Data and Study Area

GF-7 was successfully launched in November 2019. It is China’s first civilian sub-
meter stereo surveying and mapping satellite equipped with a two-line array scanner.
The ground sample distance (GSD) is 0.8 m for the oblique panchromatic cameras viewing
in a forward direction (26◦), 0.65 m for the oblique panchromatic cameras viewing in a
backward direction (−5◦), and 2.6 m for the infrared multi-spectral scanner. The GF-7
satellite has many applications, such as natural resource surveys, basic surveying and
mapping, and urban 3D building model generation.

Our study area is located in Beijing, China. As the capital of China, Beijing has a
complete urban infrastructure and dense, built-up environments. The GF-7 satellite image
we selected was captured on 16 October 2020. The scope of the study area we selected is
shown in the red box in Figure 1. The study area covers the central area of Beijing, including
landmark high-rise buildings, large building groups, middle- and high-rise residential
areas, low-rise residential areas, urban green spaces, and other typical features covering an
area of 169 square kilometers. For the task of building footprint extraction base with deep
learning, we selected the area in the light blue and the yellow box in Figure 1 to make the
training and test dataset, which we refer to as the “GF-7 self-annotated building dataset”.
The area in the light blue box was used for the training and verification datasets, while the
area in the yellow box was used for the test dataset. We chose a field surveying the height
data of 213 buildings as the reference building height data for the evaluation of building
heights. The reference building location is shown in Figure 1 below.
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Figure 1. GF-7 multi-spectral and multi-view image of the study area.

3. Methodology
3.1. Overview

The 3D information extraction method of the building in this study is shown in
Figure 2. First, we fused the GF-7 backward-view multi-spectral image with the backward-
view panchromatic image and proposed MSAU-Net to extract the urban building footprint
from the pan sharpening result. We modified the traditional decoder–encoder network
structure, used ResNet34 as the backbone feature extraction network, and integrated an
attention block in the skip connection part of the network. The attention mechanism was
used to improve the building extraction ability of the neural network. Second, the point
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cloud of the study area was constructed from the multi-view images of GF-7, and then
the DSM of the study area was constructed based on the point cloud. Then, we used a
cloth simulation algorithm (CSF) [34] to filter the point cloud to obtain the ground point
and used it to construct the DEM of the study area. Then, the nDSM was constructed to
represent the height of off-terrain objects. Finally, the building footprint extraction results
were superimposed with the nDSM to generate building height. In the accuracy assessment
part of our study, the test dataset and the reference building height value were used to
verify the accuracy of the 3D information of the building.
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Figure 2. Workflow of the building footprint and building height extraction.

3.2. Building Footprint Extraction

This paper designs the MSAU-Net that can coordinate global and local context in-
formation to improve the results of building extraction. This section will describe the
proposed network architecture and its components. Our model is based on U-Net [35].
We incorporate spatial attention and channel attention in the skip connection part of the
original network. To avoid excessive parameters, our model uses ResNet-34 [36] as the
backbone of the feature extraction network. This is because ResNet-34 has suitable feature
extraction abilities and its parameter and calculation cost are small. Figure 3 show the
structure of the proposed MSAU-Net.
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3.2.1. Attention Block

Some studies [37–39] showed that making full use of long-range dependencies can
improve the performance of a network. However, U-Net only uses convolution and pooling
operations, which limits the acquisition of long-range dependencies. Choosing a large
convolution kernel can increase the receptive field size of a network, but it can also increase
GPU memory occupation. An attention mechanism can effectively refine feature maps
to improve the performance of neural networks, and it has become a common method
in semantic segmentation problems. However, an attention mechanism will generate
computational cost and increase GPU memory usage.

Figure 4 shows the structure of the attention block. The attention block includes the
channel attention module and the spatial attention module. The following sections will
describe the spatial attention and channel attention modules in detail.
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1. Spatial Attention Block

Due to the small spectral difference between buildings, roads, sports fields, etc., only
using convolution operations is insufficient to obtain long-distance dependencies, as this
approach easily causes classification errors. This study introduces the non-local mod-
ule [40] to obtain the long-distance dependence in spatial dimension of remote sensing
images, which makes up for the problem of the small receptive field of convolution opera-
tions. The non-local module is an especially useful technique for semantic segmentation.
However, it has also been criticized for its prohibitive graphics processing unit (GPU) mem-
ory consumption and vast computation cost. Inspired by [41–43], to achieve a trade-off
between accuracy and extraction efficiency, spatial pyramid pooling was used to reduce the
computational complexity and GPU memory consumption of the spatial attention module.
Figure 4 shows the structure of the spatial attention module.

A feature map X of the input size (C × H ×W, where C represents the number of
channels in the feature map, H represents the height of the feature map, and W represents
the width) was used in a 1 × 1 convolution operation to obtain the Query, Key, and Value
branches. After entering the Q branch, the feature map with a size of C × H × W was
flattened into a two-dimensional vector with a size of C × N, where N = H ×W. Feature
map Q was transposed to obtain a feature vector Q’ with a size of N × C. After the feature
map entered branch K, the feature map with a size of C × H ×W was obtained through
spatial pyramid pooling to achieve a reduction in dimensionality. The spatial pyramid
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pooling operation is shown in Figure 5 below. The spatial pyramid pooling module
performed the maximum pooling of the input feature map with a window size of n × n to
obtain the feature map with a size of C × n × n. The feature map with a size of C × n × n
was used to represent the sampling results of representative anchor points in each area of
the origin feature map. Then, all the feature maps after the spatial pyramid pooling were
flattened and concatenated to obtain a feature vector with a size of C × S, where S was
determined by the size and number of the selected pooling windows. For example, in this
article, the pooling widow is 1 × 1, 3 × 3, 6 × 6, and 8 × 8, and S is equal to:

S = ∑
n∈{1,3,6,8}

n2 = 110
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After the feature map, X entered the Query and Key branches, and the feature vectors
Q’ with a size of N × C and K’ with a size of C × S are matrix multiplied to obtain feature
map QK’. Feature map QK’ was normalized by SoftMax to obtain the attention map QK.
The purpose of this was to calculate the relationship between each pixel in feature vector
Q’ and each pixel in K’. In this way, we can obtain a feature map of C × S size, which
represents the attention relationship between the Query pixel and the feature anchor point
in the Key, and represents the long-range dependency in the image.

The Value branch is similar to the Key branch. Feature map X inputs the Value
branch can obtain feature vector V’ with a size of C × S. After the feature vector was
transposed, it was multiplied with attention map QK to generate feature map QKV with a
size of C × H ×W. Then, feature map QKV and origin feature map X were merged using
element-wise summation to obtain the result of the spatial attention module.

2. Channel Attention Block

In the process of building extraction, each channel of high-level feature maps can be
regarded as a response to the specific features of a building, and different channels are
related to each other. By extracting the long-range dependence between channel dimension
feature maps, we can emphasize the interdependence of the feature maps and improve the
feature representation. Therefore, this study used a channel attention module to model the
long-range dependence relationship of channel dimensions. The structure of the channel
attention module is shown in Figure 4.

The channel attention map was calculated from the original feature map X with a size
of C × H ×W. Specifically, feature map X was flattened into a feature vector of C × N
size (N = H ×W). Then, matrix multiplication operations were performed on the feature
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vector, and the transposition of the feature vector and SoftMax normalization were applied
to obtain the channel attention map with a size of C × C.

The channel attention map represents the long-range dependence between the channel
dimension of the feature maps. After obtaining the channel attention map, we performed
a matrix multiplication operation on input feature map X and the channel attention map
to obtain the feature map with a size of C × H ×W. After that, the result was multiplied
by learnable scale factor α and merged with origin feature map X using element-wise
summation to obtain the result of the channel attention module.

3.2.2. Training Strategy

In order to attain better building footprint extraction results from GF-7 images, we per-
formed pre-training on the Wuhan University (WHU) [44] building dataset to get the initial
pre-training weights. Then, we selected the area in the light blue box in Figure 1 to make
training and verification samples. In this paper, the training epoch was set at 120 and
80 for WHU building dataset and GF-7 self-annotated building dataset, the batch size
parameter (the number of samples during each training iteration at the same time) was set
to 8, the initial learning rate was 0.01, and the input image size was 512 × 512. The learning
rate gradually decreases with the increase in training generations to optimize the model.
In the training process, sample enhancement processing was performed, including random
scale scaling, rotation, flipping, and blur processing.

3.3. Point Cloud Generation

This section uses a stereo pipeline [45–47] to generate point cloud from the backward-
and forward-view panchromatic GF-7 images. The generation process is shown in Figure 2,
and this section will briefly introduce the process of point cloud generation. Since the
imaging method of the satellite is push-broom imaging, it was determined that the epipolar
line is hyperbolic [46,47]. Research [47] has proven that, when an image is cut into small
tiles, a push-broom geometric imaging model can be approximately regarded as a pinhole
model; after that, it uses standard stereo image rectification and stereo-matching tools to
process the small tiles. However, due to errors in the RPC parameters of satellite images,
local and global corrections need to be performed according to the satellite image RPC
parameters and feature point matching results to improve the accuracy of the point cloud.

First, the original image performed block processing according to the RPC parameters
given by the satellite image to divide the original image into 512 × 512 tiles. The push-
broom imaging model can be regarded as a pinhole model in a 512 × 512 size area. Due to
the limited accuracy of camera calibration, there is bias in the RPC functions. This bias
will cause the global offset of the images; for some purposes, this bias can be ignored [45].
However, the epipolar constraint is derived from the RPC parameters, so it has to be as
precise as possible. Thus, the relative errors between the RPC parameters of the multi-view
images must be corrected. The local correction method also approximates the push-broom
imaging model as a pinhole camera model in small tiles. This study used SIFT [48] to
extract and match the feature points in each tile. According to the feature point matching
result and combined with the RPC parameter, the translation parameter of the satellite
image can be calculated to realize local correction. However, for the whole study area, the
local correction will fail, and it must integrate the results of local corrections for global
corrections. The global correction method is used to calculate the center of feature points
in each tile and combine the local correction results to calculate the affine transformation of
the satellite image.

After obtaining the local correction result, stereo image rectification was performed in
each tile. The natural method for constructing the epipolar constraint of a stereo image is
to use image feature points to perform image correction. However, for satellite imagery,
since the distance from the imaging plane to the ground is much larger than the ground
fluctuations, it will cause a large error in fundamental matrix F, i.e., the degradation of fun-
damental matrix F. Additionally, in special cases, the set of feature points are on the same
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plane, such as the ground. Fundamental matrix F cannot be calculated. Therefore, this pa-
per uses SRTM terrain as prior knowledge and uses local correction results and satellite
imagery RPC parameters combined with SRTM information to construct virtual matching
points instead of feature matching points. In each tile, virtual points were constructed,
estimated the height of the three-space points from the SRTM information, and used the
RPC parameter to back-project the point into the multi-view images. In this way, the image
of virtual matching points coordinates can be obtained to estimate fundamental matrix
F. According to fundamental matrix F, two rectifying affine transformations of the stereo
image were extracted to perform image rectification in each tile.

For each rectified tile, a disparity map was calculated by applying a stereo matching
algorithm from the stereo rectified image. The SRTM information was used to estimate
the initial disparity range. This study chose the classic semi-global stereo matching (SGM)
algorithm [49] for stereo matching because of its performance. The disparities are then
converted into the point correspondence of the original image coordinates. Combined
with the local and global correction results, the ground point coordinates were iteratively
calculated to generate point cloud. For more detailed point cloud generation, please refer
to the relevant part of the research [45].

3.4. Building Height Extraction

After obtaining the point cloud of the study area, the inverse distance weight inter-
polation method was used to generate the DSM. However, due to the undulations on the
ground, to obtain the height of the building, the elevation value of the lower surface of the
building should be extracted from the point cloud.

The point cloud of the study area was filtered to classify ground points and non-
ground points. The point cloud generated by satellite imagery is different from the point
cloud generated by LiDAR. The point cloud is relatively sparse. Due to viewing angle
limitations, there are more hollow areas. This study chose two filtering methods, cloth
simulation filtering (CSF) [34] and morphological filtering [50], for filtering processing,
and it was found that cloth simulation filtering can achieve better experimental results for
the relatively sparse point cloud generated by satellite images.

The main idea of the CSF filtering method is to invert the point cloud and then simulate
the process of rigid cloth covering the inverted surface. CSF then analyzed the relationship
between the cloth node and the point cloud, determined the position of the cloth node,
and separated the ground point by comparing the distance between the original point
cloud and the generated cloth. Since this research focuses on buildings, the point cloud
of buildings presents a planar distribution far away from the ground points. In the cloth
simulation filtering, the cloth with higher hardness is selected for point filtering. In this
way, CSF can achieve a better filtering result.

After obtaining the ground point cloud of the study area, the inverse distance weight
interpolation method is also used to generate the DEM of the study area. Then, DSM and
DEM were performed for difference processing to generate the nDSM. Combined with
the results produced in Section 3.1, the building footprint results are superimposed with
nDSM. Building heights were assigned as the maximum value of nDSM after removing the
outliers of nDSM within each building footprint.

3.5. Evaluation Metrics

In order to test the feasibility of our building 3D information extraction method,
this study verified the accuracy of the building footprint and building height results, respec-
tively. Experimental results and accuracy verification are shown in Section 4. This section
will introduce the accuracy evaluation method and the indicator calculation method.
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To quantitatively evaluate and compare the segmentation performance of footprint
extraction, five widely used metrics, i.e., overall accuracy (OA), intersection-over-union
(IOU), precision rate, recall, and F1 score, were calculated based on the error matrix:

OA =
TP + TN

TP + TN + FP + FN
(1)

IoU =
TP

TP + FP + FN
(2)

precision =
TP

TP + FP
(3)

recall =
TP

TP + FN
(4)

F1 = 2× precision× recall
precision + recall

(5)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.
Height accuracy was verified by comparing reference buildings and estimated build-

ing heights and selecting the mean absolute error (MAE) and the root mean error (RMSE)
as evaluation indicators. The specific formulas are as follows:

MAE =
1
N

N

∑
i=1

∣∣∣ĥi − hi

∣∣∣ (6)

RMSE =

√√√√ 1
N

N

∑
i=1

(
ĥi − hi

)2
(7)

where ĥi denotes the predicted height at building i, hi denotes the corresponding ground
truth height, and N denotes the total number of buildings.

4. Results and Discussion
4.1. Performance of Building Footprint Extraction

In order to verify the performance of building footprint extraction, classic networks
such as PSPNet [37], FCN [51], DeepLab v3 + [52], SegNet [53], and U-Net [35] were used
for comparison. Experimental results of the WHU building segmentation dataset and
the GF-7 self-annotated building dataset are as follows. Experiments are conducted on
a computer that has an Intel®Core™ i9-10980XE GPU @3.00 GHz and 64 GB memory.
The GPU type used in this computer is RTX 3090 with 24 GB GPU memory.

4.1.1. WHU Building Dataset

The WHU building dataset consists of an aerial image dataset and two satellite image
datasets. It has become a benchmark dataset for testing the performance of building
footprint extraction bases with deep learning because of the high quality of data annotation.
This study uses the WHU aerial dataset to test our model. The WHU aerial dataset contains
8188 non-overlapping images (512 × 512 tiles with spatial resolution 0.3 m), covering
450 square kilometers of Christchurch, New Zealand. Among them, 4736 tiles (containing
130,500 buildings) are separated for training, 1036 tiles (containing 14,500 buildings) are
separated for validating, and the rest, 2416 tiles (containing 42,000 buildings), are used
for testing. The proposed deep learning of the MSAU-Net is implemented using PyTorch
in the Window platform. After 120 epochs (3.8 h of training time), our network achieves
a better result on the WHU dataset (Table 1). The changing losses and IOU of the WHU
building dataset with the increasing epochs are shown in Figure 6.
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Table 1. Experimental results of the WHU building dataset.

Method OA (%) IOU (%) Precision
(%) Recall (%) F1-Score (%)

PSPNet 98.55 87.67 92.49 94.39 93.45
FCN 97.42 79.48 89.73 87.42 88.56

DeepLab v3+ 96.84 73.55 78.79 91.71 84.76
SegNet 98.06 84.01 91.40 91.21 91.31
U-Net 98.56 87.94 93.84 93.33 93.58

MSAU-Net 98.74 89.31 94.18 94.52 94.35
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Four representative experimental results were selected for qualitative assessment of
the various building extraction methods. In Figure 7, original image 1 shows a densely
distributed group of small buildings. Our model can suitably maintain the appearance of
buildings. The red box in original image 2 is a container-like object that is easily confused
with buildings. Compared with U-Net, our model can effectively avoid recognizing
objects such as buildings due to its increased long-range dependency. Original picture 3
shows large buildings. It can be seen that PSPNet, SegNet, and ours can produce better
experimental results. However, while PSPNet and SegNet easily cause blurred boundaries,
our model can keep the details of the building’s boundary. The red box in original picture
4 shows buildings with an unusual shape. It can be seen that our method can maintain
the unusual shape of buildings. In summary, due to its increasing long-range dependence,
our model can effectively extract building footprints from fine-resolution remote sensing
images. In relation to large buildings and unusually shaped buildings, our method can
enhance the integrity and accuracy of a building’s shape. This is highly important for the
process of building footprint extraction from GF-7 multi-spectral images.

The experimental results of the WHU building dataset are shown in Table 1. From
Table 1, it is clear that our method shows a significant improvement in IOU and F1-score.
The OA (overall accuracy), precision, and recall are slightly improved. However, OA
describes the proportion of correctly classified pixels to total pixels. The IOU indicator
describes the proportion of correctly classified building pixels to the total number of pixels
in all building categories (including ground truth and predicted buildings). F1-score
integrates accuracy and recall. Therefore, F1-score and IOU indicators are more convincing
metrics. The WHU building dataset experimental result shows that the building footprint
extraction ability of our model is better than other models.
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4.1.2. GF-7 Self-Annotated Building Dataset

For the test of building footprint extraction, this study uses the GF-7 self-annotated
building dataset to train and test the model. The GF-7 self-annotated building dataset con-
tains 384 non-overlapping images (512 × 512 tiles with spatial resolution 0.65 m), covering
41.2 square kilometers of Beijing. Among them, 300 tiles (containing 4369 buildings) are
separated for training, while 38 tiles (containing 579 buildings) are separated for validation.
In order to verify the performance of building footprint extraction from GF-7 images,
this study selected typical buildings in the study area to establish our test set (contains
46 non-overlapping 512 × 512 images, 886 buildings). During the MSAU-Net training,
the training epoch was set at 80 for the GF-7 self-annotated building dataset, and the
training time was 1.1 h. The changing losses and IOU of the GF-7 self-annotated building
dataset with the increasing epochs are shown in Figure 8.
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Similarly, four representative areas were selected to display the results of the GF-7
self-annotated building dataset for qualitative assessment (Figure 9). Original image 1 is a
typical building group in the study area. From the experimental results, our method can
maintain the appearance of buildings. Original picture 2 shows that, for large buildings,
our method can maintain the integrity of a building footprint due to the increased long-
range dependence. The red box of original image 3 is a building with an unusual shape.
Our method can obtain a relatively better experimental result than other models. The red
box of original image 4 is a landmark building in the study area (the 2008 Olympic venue,
Water Cube). From the experimental results, our method can maintain the integrity of the
Water Cube.
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(g) Proposed model. (h) Ground truth.

The experimental results of the GF-7 self-annotated building segmentation dataset are
shown in Table 2. As can been from Table 2, our model has significantly improved IOU
and F1-score. However, OA and recall are slightly improved. Since the GF-7 multi-spectral
image resolution is 2.6 m, compared with the WHU building dataset with a resolution
of 0.3 m, building footprint extraction is more complicated, and it is prone to confusion
between building areas and non-building areas. Therefore, compared with the results
of the WHU building dataset (Table 1), the IOU indicator on the GF-7 (Table 2) is lower.
Experimental results show that our model can attain a better performance in relation to
building footprints from GF-7 images.
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Table 2. Experimental results of the GF-7 self-annotated building segmentation dataset.

Method OA (%) IOU (%) Precision
(%) Recall (%) F1-Score (%)

PSPNet 94.66 75.27 81.98 90.18 85.89
FCN 93.09 70.21 82.16 82.84 82.50

DeepLab v3+ 91.53 62.55 71.40 83.46 76.96
SegNet 94.16 74.04 84.03 86.03 85.08
U-Net 95.17 77.58 84.21 90.70 87.33

MSAU-Net 95.74 80.27 87.46 90.71 89.06

In order to display the accuracy of the results more intuitively, we display the predicted
results in color (Figure 10). The green area represents true positive, the grey area represents
false negative, the blue area represents false positive, and the red area represents true
negative. When the green area (true positive) is in the majority, and the red area (true
negative) and the blue area (false positive) are in the minority, the extraction effect is good.
From Figure 10, compared with the results of the other five methods, the ratio of the red
part and blue part in the extraction result of our method is significantly reduced.
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4.2. Performance of Building Height Extraction

Figure 11 shows the results of point cloud generation. The results show that the point
cloud generation results are relatively sparse but can reflect surface elevation information.
In Figure 11c, for single large buildings, the point cloud results are better, as they present a
planar distribution far away from the ground points. Additionally, Figure 11a shows that
the average seabed in the northeast is lower than the southwest in the study area, which
is also in line with the actual geography of Beijing. However, due to the limited viewing
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angle of satellite images, the point cloud results are poor for dense low-rise buildings, such
as the middle and lower parts of the research area. Figure 11d–i show the ground point
cloud results and the off-ground point cloud results after CSF. The results show that our
method can obtain a relatively complete ground point cloud.
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The results of the building footprint and height extraction in the study area are
shown in Figure 12 to demonstrate the effectiveness of our method. Based on the original
image Figure 12a, the corresponding building footprint Figure 12c, point cloud Figure 12e,
and building height results Figure 12g are generated; they are enlarged and displayed
Figure 12b,d,f,h, respectively. The accuracy of our building footprint extraction results has
been quantitatively analyzed in the previous section. It can be seen from Figure 12c,d that
our method can obtain relatively complete and accurate building footprint information.
Figure 12g is the building height result of the study area; the following section will verify
the building height results based on the reference building heights.
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In order to quantitatively analyze the accuracy of an estimated building height,
we measured 213 buildings with different height levels as the reference building height.
By comparing the height of the extracted building with the height of the reference build-
ing, a quantitative evaluation is carried out according to the RMSE and MAE indicators.
The evaluation result is shown in Figure 13. Building height RMSE is 5.41, the average
building error is 3.38, and the correlation coefficient is 0.96, all of which point to an excellent
experimental result. Linear fitting was performed on the extracted building height, and it
can be seen that the line after fitting indicates that the building height value extracted by
our method fluctuates up and down in relation to actual building height. Compared with
other building height extraction methods based on optical satellite images, our method can
achieve better experimental accuracy [26,31].
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To analyze whether there was a correlation between the accuracy of the building
height value extracted by our method and the actual building height, the building was
divided into three groups according to the actual height, i.e., below 30 m, between 30 and
70 m, and higher than 70 m, and the RMSE and MAE were calculated for each group,
respectively. The results are shown in Table 3 below. The results show that there is not
much difference between the three sets of RMSE, indicating that our height extraction
accuracy has little relationship with the height of the building. However, the RMSE of the
building height above 30 m is greater than the RMSE of the building height below 30 m,
indicating that the estimation of middle- and high-rise buildings is unstable.

Table 3. Experimental results of GF-7 building height.

Number RMSE MAE

Below 30 m 83 4.95 2.83
From 30 m to 70 m 67 5.99 3.91

Above 70 m 63 5.35 3.55

All 213 5.41 3.39

The 3D information results of our method are shown in Figure 14. The experimental
results and quantitative verification show that our method could be useful for accurate
and automatic 3D building information extraction from GF-7 satellite images. However,
for dense, low-rise buildings, such as the center of Beijing (which consists of mostly ancient
buildings), due to the diversity of buildings and the viewing angle limitations of satellite
imagery, both the result of footprint extraction and the result of point cloud are poor.
Therefore, for dense and low-rise buildings, our method cannot get a good 3D information
extraction effect.
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5. Conclusions

This study aimed to extract building footprint and height information based on GF-7
satellite images. This was done in view of the existing problems in the current research
field: the accuracy of building semantic segmentation is not high; most high-resolution
building height information extraction is limited to small scales, and there is a lack of
large-scale high-resolution building height extraction methods; GF-7 multi-view satellite
images can describe the vertical structure of ground objects, but there is little research on
building information extraction from GF-7 satellite images, meaning that satellite building
information extraction capabilities are yet to be evaluated fully. Given these issues, we have
carried out this research to develop a method for extracting 3D building information from
GF-7 satellite images. We proposed a multi-stage U-Net (MSAU-Net) for building footprint
extraction from GF-7 multi-spectral images. Then, we generated point cloud data from GF-
7 multi-view images and constructed an nDSM to represent the height of off-terrain objects.
Building height is generated by combining the results of the building footprint. Finally,
we evaluated the accuracy of the extraction results based on reference building information.

We chose the Beijing area as the study area to verify the performance of our proposed
method. We tested our model on two datasets: the WHU building dataset and the GF-7
self-annotated building dataset. Our model achieved IOU indicators of 89.31% and 80.27%
for the WHU and GF-7 self-annotated datasets, respectively; these values were higher than
the IOU indicators of other models. The RMSE between the estimated building height and
the reference building height is 5.42 m, and the MAE is 3.39 m, which is higher than other
building height extraction methods. The experimental results and quantitative verification
show that our method could be useful for accurate and automatic 3D building information
extraction from GF-7 satellite images, which has potential for application in various fields.
Our method is the first attempt to extract 3D building information in dense urban areas
based on GF-7 satellite images, proving the ability of GF-7 satellite images to extract 3D
information of buildings. Similarly, our future work will examine 3D modeling on urban
buildings based on GF-7 satellite images.

Author Contributions: Conceptualization, J.W. and Q.M.; methodology, J.W.; software, J.W.; valida-
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