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Abstract: Although China is the largest producer of rice, accounting for about 25% of global produc-
tion, there are no high-resolution maps of paddy rice covering the entire country. Using time-weighted
dynamic time warping (TWDTW), this study developed a pixel- and phenology-based method to
identify planting areas of double-season paddy rice in China, by comparing temporal variations of
synthetic aperture radar (SAR) signals of unknown pixels to those of known double-season paddy
rice fields. We conducted a comprehensive evaluation of the method’s performance at pixel and
regional scales. Based on 145,210 field surveyed samples from 2018 to 2020, the producer’s and user’s
accuracy are 88.49% and 87.02%, respectively. Compared to county-level statistical data from 2016
to 2019, the relative mean absolute errors are 34.11%. This study produced distribution maps of
double-season rice at 10 m spatial resolution from 2016 to 2020 over nine provinces in South China,
which account for more than 99% of the planting areas of double-season paddy rice of China. The
maps are expected to contribute to timely monitoring and evaluating rice growth and yield.

Keywords: early rice; late rice; double-season rice; time-weighted dynamic time warping; synthetic
aperture radar; planting area; remote sensing

1. Introduction

Paddy rice occupies more than 9% of the global cropland area [1] and is a staple
food resource for more than half of the world population [2], and, therefore, plays an
important role in supporting food security [3–6]. Paddy rice is an important water con-
sumer and greenhouse gas emitter. The global average water consumption of paddy rice
is 1325 m3 ton−1, and the global water requirement of rice production is estimated to be
784 billion m3 yr−1 [7]. In China, irrigating paddy rice needs 1.61 and 2.88 times more
water than wheat and maize, respectively [8]. Paddy rice fields are also important sources
of greenhouse gasses (i.e., methane, nitrous oxide) due to long-term flooding conditions [9].
Global estimates showed that paddy rice emits about 36 million tons of CH4 and con-
tributes 2.5% (−0.1 W·m−2) to radiative forcing [10]. Therefore, the accurate identification
of paddy rice is quite important for monitoring food security, evaluating water resources,
and accounting for greenhouse gas emissions.

Satellite-based methods are widely used to identify planting areas of paddy rice
across regional and national scales as they provide spatially and temporally continuous
observations [11–18]. Numerous efforts have been made to distinguish paddy rice from
other crop types using optical and synthetic aperture radar (SAR) datasets separately or
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together [19,20]. Initially, traditional supervised and unsupervised methods were widely
used for the classification of paddy rice [21,22]. More recently, machine learning methods
such as random forest, support vector machine, and deep learning have been increasingly
used for identifying paddy rice [23–28]. Thorp, et al. [29] used deep neural network
methods with SAR and optical data from Sentinel 1 and 2 to produce multitemporal maps
of paddy rice production stages across West Java, Indonesia. Based on the random forest
algorithm and Sentinel data, Fiorillo, et al. [30] mapped lowland rice crop areas in the
Sédhiou region (Senegal) from 2017 to 2019. However, the accuracy of these methods
strongly depends on the number of training samples [31], which are difficult to obtain and
update on a large scale [32].

An alternative method for mapping paddy rice takes advantage of its unique phe-
nological characteristics [33]. The most important feature differentiating paddy rice from
other crops is the flooding during the growing season [34]. Previous studies developed an
automated mapping algorithm by using satellite-based water and vegetation indexes to
detect the phase of flooding and open-canopy of paddy rice [11,12]. This phenology feature
has been used for mapping paddy rice in Southern China and Southeast Asia using MODIS
data. However, the planting areas of paddy rice are usually distributed in humid regions
with frequent cloud cover, which largely limits the availability of optical data [35–37].
MODIS data can provide more cloud-free images because of high temporal resolution,
but can’t capture the heterogeneity of small and fragmented farmlands. In contrast, high
spatial resolution optical remote sensing datasets have low temporal resolution, and are
therefore severely impacted by the presence of clouds for mapping paddy rice in humid
areas [36,37].

In contrast to optical remote sensing, SAR signals penetrate through clouds and,
therefore, can be used under various weather conditions [38–40]. SAR systems are active
sensors that emit a radar pulse and record the land surface signal return at the satellite.
Water bodies are specular reflectors of the radar pulse, resulting in a minimal or no signal
to be returned to the satellite [41,42]. During the flooding and rice transplanting periods,
the canopy of rice seedlings is not closed and, therefore, surface waters dominate the
satellite response with low values. Guo, et al. [43] added four SAR features to capture the
flooding signals, reducing the limitations of lacking optical data during the flooding and
transplanting periods. There have been several studies that have used SAR data to map
paddy rice, such as in Shanghai of China [44] and Camargue of France [45]. The SAR-based
methods were shown to be an effective method for identifying rice areas across different
latitudes and planting systems [46,47].

About 25% of global rice production takes place in China. The most common crop-
ping type is double-season rice (early rice and late season rice) and its planting area is
concentrated in nine southern provinces. In spite of its importance, there is no high spatial
resolution double-season paddy map (i.e., 10 or 30 m) covering the entire region. The
objectives of this study are to fill this gap by: (1) developing a pixel- and phenology-
based algorithm to classify double-season rice using SAR images; and (2) mapping the
distribution map of double-season paddy rice over nine provinces in South China.

2. Materials and Methods
2.1. Study Area

In China, there are two rice cropping systems: one-season rice and double-season rice.
This study aims to identify the planting areas of double-season rice over nine provinces
(Table 1; Figure 1), which account for more than 99% of the planting areas of double-
season rice in China according to the statistical data from 2016 to 2019. Double-season rice
includes two types of cropping patterns: early rice-late rice (Type I) and other crops-late
rice (Type II). Type I accounts for 91.45% of areas of double-season rice averaged over all
provinces (Table 1).
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Table 1. Statistical area of early rice and late rice averaged from 2016 to 2019.

Province Early Rice (103 ha) Late Rice (103 ha)

Anhui 195.03 197.15
Fujian 115.12 248.59

Guangdong 845.05 953.09
Guangxi 799.32 839.78
Hainan 124.03 119.92
Hubei 176.45 193.80
Hunan 1317.08 1370.96
Jiangxi 1219.70 1320.21

Zhejiang 92.22 97.33
Sum 4883.99 5340.83
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the provinces. The red triangles indicate 25 unmanned aerial vehicle (UAV) field survey sites in 2018, and each site covers
1 km2 field area. The blue dots indicate GPS survey points from 2018 to 2020.

2.2. Time-Weighted Dynamic Time Warping Method

In this study, we used the time-weighted dynamic time warping (TWDTW) method to
identify the planting area of early rice and late rice. The TWDTW is an upgraded version
of the DTW algorithm [48,49]. The DTW algorithm calculates the degree of dissimilarity
between two time series (we assume the satellite pixel time series X is the known early
rice or late rice field and series Y is that of an unknown land cover pixel) by warping the
series Y by adjusting the time dimension and find the minimally modified path to X, which
represents the degree of dissimilarity between the two series. Considering the phenological
changes of different land covers, Maus, et al. [50] optimized the DTW with a time constraint
to develop TWDTW, which avoids excessive warping and thus improves the reliability of
the DTW method for crop area recognition [31].
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2.3. Methods for Identifying Double-Season Paddy Rice Fields

To identify planting areas of early rice and late rice, we need to distinguish them from
other land cover types, including non-vegetated land, forest, grassland, other croplands,
and water-related cover types. Non-vegetated land includes built-up and barren surfaces.
This study used the FROM-GLC10 dataset (see Section 2.6), which classifies non-vegetated
land surfaces, forest and grassland with high accuracy [51], to mask them out and exclude
them from further processing. To distinguish double-season rice from other crops and
water-related cover types, we used the TWDTW method to compare phenological features
extracted from seasonal variations of SAR signals.

The definition of rice growth stages is a prerequisite for identifying paddy rice [52].
The growth of rice is commonly divided into four stages [53–55]: (1) The nursery stage
(–1 month, from sowing to transplanting); (2) the vegetative stage (1.5–3 months, from
transplanting to panicle initiation, including tillering); (3) the reproductive stage (–1 month,
from panicle initiation to flowering, including stem elongation, panicle extension and
flowering); (4) the ripening stage (–1 month, from flowering to full maturity, including milk
stage, dough stage, and mature grain). To highlight the flooding signal and simplify the
description of rice growth stages, based on the above four stages, the growth of rice was
divided into three stages for this study (Figures 2 and 3): (1) The flooding-transplanting
stage (the nursery stage); (2) the growing stage (the vegetative and reproductive stage);
(3) the harvest stage (the ripening stage). The rice cropping calendar (Figure 3) was obtained
from the field surveys that were conducted from 2018 to 2020 (Section 2.5).

The most important phenological feature of paddy rice is the mixture of surface water
and rice seedlings. During the flooding-transplanting stage, the rice canopy is not closed,
and surface water contributes substantially to the satellite signals. Water bodies are a
specular reflector of the radar pulse of SAR systems, resulting in a minimal or no signal
returned to the satellite [41,42]. During the flooding-transplanting stage, the fields of paddy
rice are a mix of flooded soils and sparse rice plants, and therefore, the VH (dual-band
cross-polarization, vertical transmit/horizontal receive) backscatter coefficient of SAR is
quite lower than that of other stages and natural vegetation [56,57]. Subsequently, the VH
of rice increases sharply with the growth of rice plants. Therefore, the temporal changes of
VH show a “V”-shape curve through the flooding-transplanting and early growing stages
(Figure 2).
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Based on the unique temporal features of VH during the early growth periods
(Figure 2), this study used TWDTW to compare the VH curve of a given pixel to that
of the standard curve retrieved from known rice fields. Dissimilarity values were calcu-
lated to indicate the seasonal change differences of VH between each unknown pixel and
known paddy rice pixel. Pixels with lower dissimilarity values have a higher probability
of being paddy rice. In this study, we used the statistical area of paddy rice at the province
level to determine the thresholds of dissimilarity. Specifically, we selected N pixels with
the lowest dissimilarity values as paddy rice in a given province, with the total area of all
N pixels equal to the census area of paddy rice in the investigated province. However, the
timing of the flooding-transplanting stage of the same kind of paddy rice vary throughout
the region, owing to the differences in environments, topography and planting system.
Therefore, we shifted the standard VH curve through the potential flooding-transplanting
and early growing stages of rice (Figure 3).
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We used a simple random sampling approach to select 100 field investigated paddy
rice pixels in each province and extracted the time series of the VH curves during the
potential flooding-transplanting and early growing stages. Then, we first detected the
lowest values of the VH curves from the flooding-transplanting stages to first half periods of
the growing stages of early rice and generated the standard VH curves for five time periods:
the time of the lowest VH value (TLOW), two times prior to TLOW and two times after TLOW,
totally covering about 60 days (Figure 4a, red curve). In the investigated pixels, we used
a moving window covering 60 days to extract the time series of VH from the flooding-
transplanting stages to first half periods of the growing stages (Figure 3) and calculated
the dissimilarity values by comparing them with the above 100 standard curves. Figure 4
shows how to calculate the dissimilarity values of an unknown pixel compared with one
standard curve of early rice in Guangdong Province. Firstly, we generated a standard curve
of early rice from a known double-season rice pixel (Figure 4a, red curve). Secondly, we
extracted the time series of VH from the unknown pixel with a moving window covering
60 days (Figure 4b–d). In Guangdong Province, the flooding-transplanting stages to the
first half periods of the growing stages were from March to April (Figure 3a), so there
were three moving windows—18 Feb to 7 Apr (Figure 4b, green curve), 2 Mar to 19 Apr
(Figure 4c, green curve), 14 Mar to 1 May (Figure 4d, green curve); we extracted three time
series from the same pixel (Figure 4b–d, green curve). Thirdly, based on TWDTW, we
calculate the dissimilarity values by comparing the standard curve (Figure 4a, red curve)
with each of the three time series (Figure 4b–d, green curve). As a result, we obtained
three dissimilarity values. Comparing with 100 standard curves, we calculated a total
of 300 dissimilarity values for each unknown pixel, and the lowest dissimilarity value
(ERmin) was selected to represent the degree of dissimilarity between the unknown pixels
and known early rice pixels.
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Following the same process, we also calculated the lowest dissimilarity value of late
rice (LRmin) by comparing the standard VH curves of late rice with the VH curve of
unknown pixels. The fields planting early rice also plant late rice in the same year, so the
study used the sum of ERmin and LRmin to represent the degree of dissimilarity between
the unknown pixel and known early rice pixels (ERdist). We first identified planting
areas of early rice-late rice type (i.e., Type I) based on the TWDTW method by comparing
ERdist of all pixels. Then we chose LRmin to represent the degree of dissimilarity between
the unknown pixel and known other crops-late rice pixels (LRdist). In each province,
the area differences of late rice and early rice were used to determine the thresholds of
LRdist for identifying planting areas of other crops-late rice type (i.e., Type II) based on the
TWDTW method.

2.4. Satellite Data

This study used the Ground Range Detected (GRD, Level-1) product from Sentinel-1,
which has dual-polarized vertical transmission with VV (vertical transmit/vertical receive)
and VH (vertical transmit/horizontal receive) bands. We composited the VH data from
2016 to 2020 into corresponding 12-day mean images. Each image was processed to perform
thermal noise removal, radiometric calibration, terrain correction and obtain the backscatter
coefficient on the Google Earth Engine platform. Even when standard noise-reduction
techniques are applied, SAR images contain residual speckle noise due to the interferences
between adjacent backscatter returns. To further correct the SAR images for speckle noise,
a Savitzky–Golay (SG) filter was applied on the temporal axis for each pixel to smooth the
time series. The window size was set to 5, the order and polynomial degree were set to 2 in
the SG filter.

2.5. Field Data

To obtain the standard seasonal change curve of early rice and late rice, and evaluate
the identification accuracy at the pixel level, this study conducted several field surveys
during the growing season of early rice and late rice from 2018 to 2020 (Figure 1). First,
at 25 investigated sites, we used an unmanned aerial vehicle (UAV) (eBee Extended User
Manual, 2015) to take field images in 2018. The UAV was equipped with an RGB camera
(Canon S110), which acquired images with a resolution finer than 0.1-m, covering an area of
about 1 km2. These images were classified into paddy rice, other crops, natural vegetation
and non-vegetation types based on an object-oriented supervised classification as well as
field investigations. When using UAV images to generate 10 m surveyed pixels, pixels
with 100% double-season rice inside were defined as double-season rice pixels, while 100%
non-double-season rice inside were defined as non-double-season rice pixels. In total, these
aerial images contained 126,858 pixels at 10 m spatial resolution, of which 48,326 pixels
were double-season rice samples, and 78,532 were non-double-season rice samples. Then,
we surveyed 18,352 field samples with a hand-held GPS over seven provinces during
2018 and 2020, of which 6127 pixels were double-season rice samples, and 12,225 were
non-double-season rice samples (Figure 1).

2.6. Land-Cover Dataset and Agricultural Census Data

The Finer Resolution Observation and Monitoring of Global Land Cover (FROM-GLC)
product with 10 m resolution was used as a mask to remove non-vegetated land surfaces,
forest and grassland [51]. Agricultural census area data of early rice and late rice at the
province level during the period of 2016–2019 were acquired from the National Bureau of
Statistics of China (2017–2020). The data at the county level during the period of 2016–2019
were acquired from the official website of each municipal-level city statistics bureau.

2.7. Accuracy Assessment

The accuracy of identified double-season rice planting areas was evaluated both at
pixel and regional scales. First, based on a total of 145,210 ground truth samples retrieved
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from field surveys, the study calculated producer’s accuracy (PA), user’s accuracy (UA)
and overall accuracy (OA) to investigate the effectiveness of the method. PA indicates
the proportion of ground truth samples properly classified as the target class, and UA
indicates the proportion of identified double rice on the classification map that is actually
present on the ground. OA is calculated as the ratio of correctly identified samples to total
field samples.

In addition, the planting areas of early rice and late rice identified in this study were
compared with those obtained from agricultural statistical data at the county level. Three
statistical metrics were used:

(1) The coefficient of determination (R2), representing how much variation of statistical
area is explained by the identified area.

(2) Root mean square error (RMSE), measuring the deviation between identified and
statistical areas, was computed as:

RMSE =

√
1
n

n

∑
i=1

(IAi − SAi)
2 (1)

where SAi and IAi are the statistical area and identified area of the i-th county respectively,
and n indicates the number of counties in a given province. The unit of RMSE referred to
in this study is thousand hectares (103 ha), and to simplify the description, only the values
of RMSE are described below.

(3) The relative mean absolute errors (RMAE), quantifying the difference between
identified and statistical areas, was calculated as:

RMSE =
∑n

i=1|SAi − IAi|
∑n

i=1 SAi
× 100% (2)

3. Results

This study generated maps of early rice and late rice over nine provinces in China
from 2016 to 2020, and the distribution maps in 2018 are shown as an example (Figure 5).
With the updating of the satellite data records, the same method can be used to update the
distribution maps of early rice and late rice by the end of each year.
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Figure 5. Distribution map of early rice (a) and late rice (b) in 2018.

Our method shows a good performance in identifying the planting areas of early rice
and late rice over all the nine provinces. Based on the field survey samples containing
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a variety of ground objects, the overall identification accuracy (OA) varied among the
nine provinces, ranging from 88.07% to 95.97% for early rice (Table 2), and from 88.25%
to 95.68% for late rice (Table 3). The user’s accuracy (UA) and producer’s accuracy (PA)
were high in most provinces. However, for early rice, Hubei Province had the lowest UA
of 63.07% and the lowest PA of 73.48% (Table 2). For late rice, Hubei Province achieved the
lowest UA of 60.39% and the lowest PA of 74.11% (Table 3).

Table 2. Confusion matrix for the identification map of planting areas of early rice in nine provinces from 2018 to 2020.

Province Class Early Rice 1 Non-Early Rice 1 User’s
Accuracy

Producer’s
Accuracy

Overall
Accuracy

Guangdong Early rice 2

Non-Early rice 2
11,610
1347

1349
8295

89.59%
86.03%

89.60%
86.01% 88.07%

Guangxi Early rice
Non-Early rice

6796
1579

1051
12,802

86.61%
89.02%

81.15%
92.41% 88.17%

Hainan Early rice
Non-Early rice

5479
1063

639
10,629

89.56%
90.91%

83.75%
94.33% 90.44%

Hunan Early rice
Non-Early rice

12,249
797

2150
15,840

85.07%
95.21%

93.89%
88.05% 90.50%

Jiangxi Early rice
Non-Early rice

7219
200

1027
6674

87.55%
97.09%

97.30%
86.66% 91.88%

Fujian Early rice
Non-Early rice

771
176

252
5629

75.37%
96.97%

81.42%
95.72% 93.73%

Zhejiang Early rice
Non-Early rice

2081
700

277
8790

88.25%
92.62%

74.83%
96.94% 91.75%

Hubei Early rice
Non-Early rice

579
209

339
12,471

63.07%
98.35%

73.48%
97.35% 95.97%

Anhui Early rice
Non-Early rice

1403
195

101
2442

93.28%
92.61%

87.80%
96.03% 92.85%

1 Number of field surveyed samples. 2 Number of identified samples.

Table 3. Confusion matrix for the identification map of planting areas of Late rice in nine provinces from 2018 to 2020.

Province Class Late Rice 1 Non-Late Rice 1 User’s
Accuracy

Producer’s
Accuracy

Overall
Accuracy

Guangdong Late rice 2

Non-Late rice 2
11,751
1206

1450
8194

89.02%
87.17%

90.69%
84.96% 88.25%

Guangxi Late rice
Non-Late rice

6895
1480

1099
12,754

86.25%
89.60%

82.33%
92.07% 88.40%

Hainan Late rice
Non-Late rice

5479
1063

639
10,629

89.56%
90.91%

83.75%
94.33% 90.44%

Hunan Late rice
Non-Late rice

12,261
785

2206
15,784

84.75%
95.26%

93.98%
87.74% 90.36%

Jiangxi Late rice
Non-Late rice

7238
181

1455
6246

83.26%
97.18%

97.56%
81.11% 89.18%

Fujian Late rice
Non-Late rice

771
176

252
5629

75.37%
96.97%

81.42%
95.72% 93.73%

Zhejiang Late rice
Non-Late rice

2082
699

280
8787

88.15%
92.63%

74.87%
96.91% 91.74%

Hubei Late rice
Non-Late rice

584
204

383
12,427

60.39%
98.38%

74.11%
97.01% 95.68%

Anhui Late rice
Non-Late rice

1403
195

106
2437

92.98%
92.59%

87.80%
95.83% 92.73%

1 Number of field surveyed samples. 2 Number of identified samples.

In addition, this method accurately estimated the areas of early rice and late rice
compared to the available agricultural statistical data at the county level for all investigated
provinces (Figure 6). The maps reproduce well the spatial variations of the planting area
of paddy rice. For early rice in each province (Figure 7), the averaged R2 over three years



Remote Sens. 2021, 13, 4609 10 of 16

of 2016-2019 ranged from 0.50 to 0.87, the averaged RMSE ranged from 1.53 to 6.94, and
the average of RMAE ranged from 22% to 59%. For Guangdong, Guangxi, Hunan and
Jiangxi Provinces, which occupies 85.61% of the planting area of early rice in China, the
classification shows good performance according to three metrics (Figure 7). Fujian and
Hubei Province show large classification errors at the county level (Figure 7). For example,
the averaged RMAE in Fujian is more than 59%, and R2 is less than 0.50 (Figure 7). Among
the four validation years (i.e., 2016–2019), 2016 shows the largest error at the county level
(Figure 6).
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The classification accuracy of late rice is similar to that of early rice over almost all
provinces. The averaged R2 ranged from 0.56 to 0.86, and the averaged RMAE ranged from
23% to 51% (Figure 8). In four major planting provinces, including Guangdong, Guangxi,
Hunan and Jiangxi Provinces, the classification shows high R2 and low identification errors.
The largest classification errors are found in Fujian and Hubei Provinces.

To analyze the spatial distribution of isolated patches, we used maps of early rice and
late rice for 2018 as an example, and calculated the cumulative area percentage of different
patch sizes ranging from 1 pixel to 106 pixels per patch (Figure 9). In nine provinces,
early rice patches with only one pixel accounted for 2.31% to 10.59%, but this percentage
accounted for 2.31% to 5.97% in the major early rice planting zones including Guangdong,
Guangxi, Hunan and Jiangxi Provinces. For late rice, patches with only one pixel accounted
for 2.11% to 8.19% in nine provinces but 2.11% to 5.82% in the major late rice planting
zones. Considering the cumulative area percentage of early rice patches of 100 pixels, four
provinces of the main producing area rank at the bottom, with Guangxi Province with
less than 51%; this indicates that the main producing area has mostly large patches, as we
would expect for this area. A similar result is found for late rice. It is worth noting that
the cumulative area percentage of patches with 100 pixels in Fujian Province drops from
85.29% of early rice to 52.61% of late rice. Because early rice-late rice (Type I) only accounts
for 46.31% of the areas of double-season rice in Fujian province (Table 1), this area, and
adjacent fields where early rice and other crops are grown during the first cropping season,
will plant late rice in the next period. For curves with the cumulative area percentage
reaching 100%, four provinces of the main producing area have more large patches, and
Jiangxi Province has the largest proportion of large fields.
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4. Discussion

Paddy rice is one of the most important crops in the world, and information on its
spatial extent is critical for drafting economic and grain subsidy policies. To our knowledge,
there are currently no distribution maps for double-season rice of high spatial resolution
in China.

In this study, we generated double-season rice distribution maps with a spatial res-
olution of 10 m for the period of 2016–2020 based on the TWDTW method. Validations
based on field surveys and statistical data indicate that the proposed method accurately
identifies the early rice and late rice planting areas over all the nine provinces where most
of the planting takes place. Unlike machine learning methods that require a large number
of training samples [58], our method only requires a small number of field survey samples
to produce the distribution maps of early rice and late rice over nine provinces from 2016
to 2020. Our method demonstrates a great skill for mapping 10 m early rice and late
rice in South China, where the weather is cloudy and rainy during the key phenological
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period, the terrain is mountainous and complex, and fields are fragmented with various
planting patterns.

Regional validation (Figures 6, 7c and 8c) shows that the identification accuracy is
still low for some of the investigated years and provinces. The identification accuracy is
the lowest in 2016 compared to other years and is caused by an inadequate number of
Sentinel-1 (Figure 10). Compared to other years, the effective observations in 2016 are
only 24 averaged over all nine provinces, which is lower than in other years, when they
range from 34 to 40 times. Second, a relatively high RMAE was found in Hubei, Fujian
and Guangxi Provinces, where mountainous terrain may be the main cause for the low
identification accuracy. For example, in Fujian Province, according to statistical data, 64%
of the paddy rice fields are located in the mountainous area of western Fujian province,
including Longyan, Sanming and Nanan prefecture-level cities. The SAR backscatter
signal is corrupted by the terrain effect, even when complex radiometric terrain corrections
are implemented. In addition, mountainous paddy rice fields are small and fragmented,
introducing several mixed 10 m pixels without typical VH characteristics [59,60].

Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 18 
 

 

period, the terrain is mountainous and complex, and fields are fragmented with various 
planting patterns. 

Regional validation (Figures 6, 7c and 8c) shows that the identification accuracy is 
still low for some of the investigated years and provinces. The identification accuracy is 
the lowest in 2016 compared to other years and is caused by an inadequate number of 
Sentinel-1 (Figure 10). Compared to other years, the effective observations in 2016 are only 
24 averaged over all nine provinces, which is lower than in other years, when they range 
from 34 to 40 times. Second, a relatively high RMAE was found in Hubei, Fujian and 
Guangxi Provinces, where mountainous terrain may be the main cause for the low iden-
tification accuracy. For example, in Fujian Province, according to statistical data, 64% of 
the paddy rice fields are located in the mountainous area of western Fujian province, in-
cluding Longyan, Sanming and Nanan prefecture-level cities. The SAR backscatter signal 
is corrupted by the terrain effect, even when complex radiometric terrain corrections are 
implemented. In addition, mountainous paddy rice fields are small and fragmented, in-
troducing several mixed 10 m pixels without typical VH characteristics [59,60]. 

 
Figure 10. Times of Sentinel-1 original observations from February to December during 2016 (a) to 
2020 (e). 

The future use of satellite data with higher spatial and temporal resolutions are ex-
pected to further improve classification accuracy because higher spatial resolution data 
will help reduce the number of mixed pixels in mountainous areas and higher temporal 
resolution data will more easily capture the weak flooding signals resulting from the rapid 
harvesting and replanting cycles (i.e., the harvest stage of early rice and flooding-trans-
planting stage of late rice). Future work will also need to use other satellite data to produce 
rice maps before 2016 when Sentinel-1 data was not available yet. However, data such as 
those from TerraSAR-X data have a high spatial resolution (3–10 m) and temporal resolu-
tion (11-day) but are expensive to use for rice monitoring over large regions. TerraSAR-X 
data have been used for rice monitoring over smaller regions, like in Spain [61], Mekong 
Delta, Vietnam [62] and Sanjiang Plain in Heilongjiang Province, Northeast China [63]. 
Finally, the method can be applied for mapping different planting systems of paddy rice 
over large regions (i.e., the single-, double- and triple-season paddy rice). The most im-
portant difference between the different planting systems is the number of flooding sig-
nals in a year. For example, the triple-season paddy rice will have three “V”-shape curves 
of VH data owing to planting paddy rice three times in a year. 

5. Conclusions 
Based on the available Sentinel-1 images and a time-weighted dynamic time warping 

(TWDTW) method, this study produced the first 10 m spatial resolution early rice and late 
rice maps over nine provinces of South China, which account for more than 99% of the 
planting area of double-season paddy rice in China. Based on 145,210 survey samples, the 
overall identification accuracy for early rice and late rice were 90.74% and 90.46%, respec-
tively. Compared with the agricultural statistical data at the county level over nine prov-
inces, the maps explain 79.20% and 78.96% of the spatial variability of early and late rice. 

Figure 10. Times of Sentinel-1 original observations from February to December during 2016 (a) to 2020 (e).

The future use of satellite data with higher spatial and temporal resolutions are ex-
pected to further improve classification accuracy because higher spatial resolution data
will help reduce the number of mixed pixels in mountainous areas and higher temporal
resolution data will more easily capture the weak flooding signals resulting from the
rapid harvesting and replanting cycles (i.e., the harvest stage of early rice and flooding-
transplanting stage of late rice). Future work will also need to use other satellite data
to produce rice maps before 2016 when Sentinel-1 data was not available yet. However,
data such as those from TerraSAR-X data have a high spatial resolution (3–10 m) and
temporal resolution (11-day) but are expensive to use for rice monitoring over large re-
gions. TerraSAR-X data have been used for rice monitoring over smaller regions, like
in Spain [61], Mekong Delta, Vietnam [62] and Sanjiang Plain in Heilongjiang Province,
Northeast China [63]. Finally, the method can be applied for mapping different planting
systems of paddy rice over large regions (i.e., the single-, double- and triple-season paddy
rice). The most important difference between the different planting systems is the number
of flooding signals in a year. For example, the triple-season paddy rice will have three
“V”-shape curves of VH data owing to planting paddy rice three times in a year.

5. Conclusions

Based on the available Sentinel-1 images and a time-weighted dynamic time warping
(TWDTW) method, this study produced the first 10 m spatial resolution early rice and
late rice maps over nine provinces of South China, which account for more than 99% of
the planting area of double-season paddy rice in China. Based on 145,210 survey samples,
the overall identification accuracy for early rice and late rice were 90.74% and 90.46%,
respectively. Compared with the agricultural statistical data at the county level over nine
provinces, the maps explain 79.20% and 78.96% of the spatial variability of early and late
rice. The timely and accurate 10 m double-season rice maps provide critical information for
quantifying methane emissions, water resource management and ensuring food security.
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The maps are also useful for commercial companies to make rice production plans or
conduct futures transactions while for farmers to formulate personal production plans.

Author Contributions: Conceptualization, T.Y. and W.Y.; data curation, B.P., Y.Z., R.S., W.Z., J.D.
and H.M.; formal analysis, B.P., Y.Z., R.S., W.Z., J.D. and H.M.; funding acquisition, T.Y. and W.Y.;
investigation, B.P. and Y.Z.; methodology, B.P. and W.Y.; project administration, T.Y. and W.Y.;
software, Y.Z., W.Z., J.D. and H.M.; supervision, T.Y. and W.Y.; validation, B.P. and R.S.; visualization,
R.S.; writing—original draft, B.P.; writing—review and editing, T.Y. and W.Y. All authors have read
and agreed to the published version of the manuscript.

Funding: This research has been supported by the China National Funds for Distinguished Young
Scientists (grant no. 41925001), the National Youth Top-Notch Talent Support Program (grant no. 2015-
48), the Changjiang Young Scholars Program of China (grant no. Q2016161), and the Fundamental
Research Funds for the Central Universities (grant no. 19lgjc02).

Data Availability Statement: The data presented in this study are available in the article.

Acknowledgments: The authors would like to thank the reviewers and editors for their constructive
comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. FAOSTAT. FAO Statistical Databases (Food and Agriculture Organization of the United Nations) Databases-UW-Madison

Libraries. 2020. Available online: http://digital.library.wisc.edu/1711.web/faostat (accessed on 12 November 2021).
2. Kuenzer, C.; Knauer, K. Remote sensing of rice crop areas. Int. J. Remote Sens. 2013, 34, 2101–2139. [CrossRef]
3. Piedelobo, L.; Hernández-López, D.; Ballesteros, R.; Chakhar, A.; del Pozo, S.; Gonzalez-Aquilera, D.; Moreno, A.M. Scalable

pixel-based crop classification combining Sentinel-2 and Landsat-8 data time series: Case study of the Duero river basin. Agric.
Syst. 2019, 171, 36–50. [CrossRef]

4. Waldner, F.; Canto, G.S.; Defourny, P. Automated annual cropland mapping using knowledge-based temporal features. ISPRS J.
Photogramm. Remote Sens. 2015, 110, 1–13. [CrossRef]

5. Wang, S.; Azzari, G.; Lobell, D.B. Crop type mapping without field-level labels: Random forest transfer and unsupervised
clustering techniques. Remote Sens. Environ. 2019, 222, 303–317. [CrossRef]

6. Elert, E. Rice by the numbers: A good grain. Nature 2014, 514, S50. [CrossRef] [PubMed]
7. Chapagain, A.K.; Hoekstra, A.Y. The green, blue and grey water footprint of rice from both a production and consumption

perspective. Ecol. Econ. 2010, 70, 749–758. [CrossRef]
8. Yuan, W.; Liu, S.; Liu, W.; Zhao, S.; Dong, W.; Tao, F.; Chen, M.; Lin, H. Opportunistic market-driven regional shifts of cropping

practices reduce food production capacity of China. Earth’s Future 2018, 6, 634–642. [CrossRef]
9. Kritee, K.; Nair, D.; Zavala-Araiza, D.; Proville, J.; Rudek, J.; Adhya, T.; Loecke, T.; Esteves, T.; Balireddygari, S.; Dava, O.; et al.

High nitrous oxide fluxes from rice indicate the need to manage water for both long-and short-term climate impacts. Proc. Natl.
Acad. Sci. USA 2018, 115, 9720–9725. [CrossRef]

10. Netz, B.; Davidson, O.R.; Bosch, P.R.; Dave, R.; Meyer, L.A. Climate Change 2007: Mitigation. Contribution of Working Group III to the
Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers; Intergovernmental Panel on
Climate Change (IPCC): Geneva, Switzerland, 2007.

11. Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore, B., III. Mapping paddy rice agriculture in southern
China using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [CrossRef]

12. Xiao, X.; Boles, S.; Frolking, S.; Li, C.; Babu, J.Y.; Salas, W.; Moore, B., III. Mapping paddy rice agriculture in South and Southeast
Asia using multi-temporal MODIS images. Remote Sens. Environ. 2006, 100, 95–113. [CrossRef]

13. Johnson, D.M.; Mueller, R. The 2009 cropland data layer. Photogramm. Eng. Remote Sens 2010, 76, 1201–1205.
14. Gumma, M.K.; Nelson, A.; Thenkabail, P.S.; Singh, A.N. Mapping rice areas of South Asia using MODIS multitemporal data. J.

Appl. Remote Sens. 2011, 5, 053547. [CrossRef]
15. Bridhikitti, A.; Overcamp, T.J. Estimation of Southeast Asian rice paddy areas with different ecosystems from moderate-resolution

satellite imagery. Agric. Ecosyst. Environ. 2012, 146, 113–120. [CrossRef]
16. Gumma, M.K.; Thenkabail, P.S.; Maunahan, A.; Islam, S.; Nelson, A. Mapping seasonal rice cropland extent and area in the high

cropping intensity environment of Bangladesh using MODIS 500 m data for the year 2010. ISPRS J. Photogramm. Remote Sens.
2014, 91, 98–113. [CrossRef]

17. Dong, J.; Xiao, X.; Zhang, G.; Menarguez, M.A.; Choi, C.Y.; Qin, C.Y.; Luo, P.; Zhang, Y.; Moore, B. Northward expansion of paddy
rice in northeastern Asia during 2000–2014. Geophys. Res. Lett. 2016, 43, 3754–3761. [CrossRef]

18. Dong, J.; Xiao, X.; Menarguez, M.A.; Zhang, G.; Qin, Y.; Thau, D.; Biradar, C.; Moore, B. Mapping paddy rice planting area in
northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sens. Environ. 2016, 185,
142–154. [CrossRef] [PubMed]

http://digital.library.wisc.edu/1711.web/faostat
http://doi.org/10.1080/01431161.2012.738946
http://doi.org/10.1016/j.agsy.2019.01.005
http://doi.org/10.1016/j.isprsjprs.2015.09.013
http://doi.org/10.1016/j.rse.2018.12.026
http://doi.org/10.1038/514S50a
http://www.ncbi.nlm.nih.gov/pubmed/25368886
http://doi.org/10.1016/j.ecolecon.2010.11.012
http://doi.org/10.1002/2017EF000641
http://doi.org/10.1073/pnas.1809276115
http://doi.org/10.1016/j.rse.2004.12.009
http://doi.org/10.1016/j.rse.2005.10.004
http://doi.org/10.1117/1.3619838
http://doi.org/10.1016/j.agee.2011.10.016
http://doi.org/10.1016/j.isprsjprs.2014.02.007
http://doi.org/10.1002/2016GL068191
http://doi.org/10.1016/j.rse.2016.02.016
http://www.ncbi.nlm.nih.gov/pubmed/28025586


Remote Sens. 2021, 13, 4609 15 of 16

19. Singha, M.; Dong, J.; Zhang, G.; Xiao, X. High resolution paddy rice maps in cloud-prone Bangladesh and Northeast India using
Sentinel-1 data. Sci. Data 2019, 6, 1–10. [CrossRef]

20. Ramadhani, F.; Pullanagari, R.; Kereszturi, G.; Procter, J. Automatic mapping of rice growth stages using the integration of
SENTINEL-2, MOD13Q1, and SENTINEL-1. Remote Sens. 2020, 12, 3613. [CrossRef]

21. Yin, Q.; Liu, M.; Cheng, J.; Ke, Y.; Chen, X. Mapping paddy rice planting area in northeastern China using spatiotemporal data
fusion and phenology-based method. Remote Sens. 2019, 11, 1699. [CrossRef]

22. Lasko, K.; Vadrevu, K.P.; Tran, V.T.; Justice, C. Mapping double and single crop paddy rice with Sentinel-1A at varying spatial
scales and polarizations in Hanoi, Vietnam. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 498–512. [CrossRef] [PubMed]

23. Chen, N.; Yu, L.; Zhang, X.; Shen, Y.; Zeng, L.; Hu, Q.; Niyogi, D. Mapping paddy rice fields by combining multi-temporal
vegetation index and synthetic aperture radar remote sensing data using google earth engine machine learning platform. Remote
Sens. 2020, 12, 2992. [CrossRef]

24. Manjunath, K.R.; More, R.S.; Jain, N.K.; Panigrahy, S.; Parihar, J.S. Mapping of rice-cropping pattern and cultural type using
remote-sensing and ancillary data: A case study for South and Southeast Asian countries. Int. J. Remote Sens. 2015, 36, 6008–6030.
[CrossRef]

25. Hoang, H.K.; Bernier, M.; Duchesne, S.; Tran, M.Y. Rice mapping using RADARSAT-2 dual-and quad-pol data in a complex
land-use Watershed: Cau River Basin (Vietnam). IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3082–3096. [CrossRef]

26. Wang, S.; Di Tommaso, S.; Faulkner, J.; Friedel, T.; Kennepohl, A.; Strey, R.; Lobell, D.B. Mapping crop types in southeast India
with smartphone crowdsourcing and deep learning. Remote Sens. 2020, 12, 2957. [CrossRef]

27. Crisóstomo de Castro Filho, H.; Abílio de Carvalho Júnior, O.; Ferreira de Carvalho, O.L.; Pozzobon de Bem, P.; dos Santos de
Moura, R.; Olino de Albuquerque, A.; Rosa Silva, C.; Guimarães Ferreira, P.H.; Fontes Guimarães, R.; Trancoso Gomes, R.A. Rice
crop detection using LSTM, Bi-LSTM, and machine learning models from sentinel-1 time series. Remote Sens. 2020, 12, 2655.
[CrossRef]

28. Zhao, H.; Chen, Z.; Jiang, H.; Jing, W.; Sun, L.; Feng, M. Evaluation of three deep learning models for early crop classification
using sentinel-1A imagery time series—A case study in Zhanjiang, China. Remote Sens. 2019, 11, 2673. [CrossRef]

29. Thorp, K.R.; Drajat, D. Deep machine learning with Sentinel satellite data to map paddy rice production stages across West Java,
Indonesia. Remote Sens. Environ. 2021, 265, 112679. [CrossRef]

30. Fiorillo, E.; Di Giuseppe, E.; Fontanelli, G.; Maselli, F. Lowland rice mapping in Sédhiou Region (Senegal) using sentinel 1 and
sentinel 2 data and random forest. Remote Sens. 2020, 12, 3403. [CrossRef]

31. Dong, J.; Fu, Y.; Wang, J.; Tian, H.; Fu, S.; Niu, Z.; Han, W.; Zheng, Y.; Huang, J.; Yiam, W. Early-season mapping of winter wheat
in China based on Landsat and Sentinel images. Earth Syst. Sci. Data 2020, 12, 3081–3095. [CrossRef]

32. Yang, L.; Huang, R.; Huang, J.; Lin, T.; Wang, L.; Mijiti, R.; Wei, P.; Tang, C.; Shao, J.; Li, Q.; et al. Semantic Segmentation Based on
Temporal Features: Learning of Temporal-Spatial Information from Time-Series SAR Images for Paddy Rice Mapping. IEEE
Trans. Geosci. Remote Sens. 2021, 1–16. [CrossRef]

33. Liu, W.; Dong, J.; Xiang, K.; Wang, S.; Han, W.; Yuan, W. A sub-pixel method for estimating planting fraction of paddy rice in
Northeast China. Remote Sens. Environ. 2018, 205, 305–314. [CrossRef]

34. Jeong, S.; Ko, J.; Yeom, J.M. Nationwide projection of rice yield using a crop model integrated with geostationary satellite imagery:
A case study in South Korea. Remote Sens. 2018, 10, 1665. [CrossRef]

35. Zhou, Y.; Xiao, X.; Qin, Y.; Dong, J.; Zhang, G.; Kou, W.; Jin, C.; Whang, J.; Li, X. Mapping paddy rice planting area in rice-wetland
coexistent areas through analysis of Landsat 8 OLI and MODIS images. Int. J. Appl. Earth Obs. Geoinf. 2016, 46, 1–12. [CrossRef]
[PubMed]

36. Dong, J.; Xiao, X.; Kou, W.; Qin, Y.; Zhang, G.; Li, L.; Jin, C.; Zhou, Y.; Wanh, J.; Biradar, C.; et al. Tracking the dynamics of paddy
rice planting area in 1986–2010 through time series Landsat images and phenology-based algorithms. Remote Sens. Environ. 2015,
160, 99–113. [CrossRef]

37. Son, N.T.; Chen, C.F.; Chen, C.R.; Guo, H.Y. Classification of multitemporal Sentinel-2 data for field-level monitoring of rice
cropping practices in Taiwan. Adv. Space Res. 2020, 65, 1910–1921. [CrossRef]

38. Shao, Y.; Fan, X.; Liu, H.; Xiao, J.; Ross, S.; Brisco, B.; Brown, B.; Staples, G. Rice monitoring and production estimation using
multitemporal RADARSAT. Remote Sens. Environ. 2001, 76, 310–325. [CrossRef]

39. Bouvet, A.; Le Toan, T. Use of ENVISAT/ASAR wide-swath data for timely rice fields mapping in the Mekong River Delta.
Remote Sens. Environ. 2011, 115, 1090–1101. [CrossRef]

40. Phan, H.; Le Toan, T.; Bouvet, A.; Nguyen, L.D.; Pham Duy, T.; Zribi, M. Mapping of rice varieties and sowing date using X-band
SAR data. Sensors 2018, 18, 316. [CrossRef]

41. Chul Jung, H.; Alsdorf, D. Repeat-pass multi-temporal interferometric SAR coherence variations with Amazon floodplain and
lake habitats. Int. J. Remote Sens. 2010, 31, 881–901. [CrossRef]

42. Schlaffer, S.; Matgen, P.; Hollaus, M.; Wagner, W. Flood detection from multi-temporal SAR data using harmonic analysis and
change detection. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 15–24. [CrossRef]

43. Guo, Y.; Jia, X.; Paull, D.; Benediktsson, J.A. Nomination-favoured opinion pool for optical-SAR-synergistic rice mapping in face
of weakened flooding signals. ISPRS J. Photogramm. Remote Sens. 2019, 155, 187–205. [CrossRef]

44. Mansaray, L.R.; Huang, W.; Zhang, D.; Huang, J.; Li, J. Mapping rice fields in urban Shanghai, southeast China, using Sentinel-1A
and Landsat 8 datasets. Remote Sens. 2017, 9, 257. [CrossRef]

http://doi.org/10.1038/s41597-019-0036-3
http://doi.org/10.3390/rs12213613
http://doi.org/10.3390/rs11141699
http://doi.org/10.1109/JSTARS.2017.2784784
http://www.ncbi.nlm.nih.gov/pubmed/30151066
http://doi.org/10.3390/rs12182992
http://doi.org/10.1080/01431161.2015.1110259
http://doi.org/10.1109/JSTARS.2016.2586102
http://doi.org/10.3390/rs12182957
http://doi.org/10.3390/rs12162655
http://doi.org/10.3390/rs11222673
http://doi.org/10.1016/j.rse.2021.112679
http://doi.org/10.3390/rs12203403
http://doi.org/10.5194/essd-12-3081-2020
http://doi.org/10.1109/TGRS.2021.3099522
http://doi.org/10.1016/j.rse.2017.12.001
http://doi.org/10.3390/rs10101665
http://doi.org/10.1016/j.jag.2015.11.001
http://www.ncbi.nlm.nih.gov/pubmed/27688742
http://doi.org/10.1016/j.rse.2015.01.004
http://doi.org/10.1016/j.asr.2020.01.028
http://doi.org/10.1016/S0034-4257(00)00212-1
http://doi.org/10.1016/j.rse.2010.12.014
http://doi.org/10.3390/s18010316
http://doi.org/10.1080/01431160902902609
http://doi.org/10.1016/j.jag.2014.12.001
http://doi.org/10.1016/j.isprsjprs.2019.07.008
http://doi.org/10.3390/rs9030257


Remote Sens. 2021, 13, 4609 16 of 16

45. Bazzi, H.; Baghdadi, N.; El Hajj, M.; Zribi, M.; Minh, D.H.T.; Ndikumana, E.; Courault, D.; Belhouchette, H. Mapping paddy rice
using Sentinel-1 SAR time series in Camargue, France. Remote Sens. 2019, 11, 887. [CrossRef]

46. Zhang, X.; Wu, B.; Ponce-Campos, G.E.; Zhang, M.; Chang, S.; Tian, F. Mapping up-to-date paddy rice extent at 10 m resolution in
china through the integration of optical and synthetic aperture radar images. Remote Sens. 2018, 10, 1200. [CrossRef]

47. Zhan, P.; Zhu, W.; Li, N. An automated rice mapping method based on flooding signals in synthetic aperture radar time series.
Remote Sens. Environ. 2021, 252, 112112. [CrossRef]

48. Sakoe, H.; Chiba, S. Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech
Signal Process. 1978, 26, 43–49. [CrossRef]

49. Petitjean, F.; Inglada, J.; Gançarski, P. Satellite image time series analysis under time warping. IEEE Trans. Geosci. Remote Sens.
2012, 50, 3081–3095. [CrossRef]

50. Maus, V.; Câmara, G.; Cartaxo, R.; Sanchez, A.; Ramos, F.M.; De Queiroz, G.R. A time-weighted dynamic time warping method
for land-use and land-cover mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3729–3739. [CrossRef]

51. Chen, B.; Xu, B.; Zhu, Z.; Yuan, C.; Suen, H.P.; Guo, J.; Xu, N.; Li, W.; Zhao, Y.; Yu, C.; et al. Stable classification with limited
sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci.
Bull. 2019, 64, 370–373.

52. Chang, K.W.; Shen, Y.; Lo, J.C. Predicting rice yield using canopy reflectance measured at booting stage. Agron. J. 2005, 97,
872–878. [CrossRef]

53. Brouwer, C.; Prins, K.; Heibloem, M. Irrigation Water Management: Irrigation Scheduling; Training Manual; FAO: Rome, Italy, 1989.
54. Dong, J.; Xiao, X. Evolution of regional to global paddy rice mapping methods: A review. ISPRS J. Photogramm. Remote Sens. 2016,

119, 214–227. [CrossRef]
55. Zhao, R.; Li, Y.; Ma, M. Mapping paddy rice with satellite remote sensing: A review. Sustainability 2021, 13, 503. [CrossRef]
56. Kurosu, T.; Fujita, M.; Chiba, K. Monitoring of rice crop growth from space using the ERS-1 C-band SAR. IEEE Trans. Geosci.

Remote Sens. 1995, 33, 1092–1096. [CrossRef]
57. Choudhury, I.; Chakraborty, M. SAR signature investigation of rice crop using RADARSAT data. Int. J. Remote Sens. 2006, 27,

519–534. [CrossRef]
58. Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping

analysis. Remote Sens. Environ. 2018, 204, 509–523. [CrossRef]
59. Steele-Dunne, S.C.; McNairn, H.; Monsivais-Huertero, A.; Judge, J.; Liu, P.W.; Papathanassiou, K. Radar remote sensing of

agricultural canopies: A review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2249–2273. [CrossRef]
60. Le Toan, T.; Ribbes, F.; Wang, L.F.; Floury, N.; Kung-Hau, D.; Kong, J.A.; Fujita, M.; Kurosu, T. Rice crop mapping and monitoring

using ERS-1 data based on experiment and modeling results. IEEE Trans. Geosci. Remote Sens. 1997, 35, 41–56. [CrossRef]
61. Lopez-Sanchez, J.M.; David Ballester-Berman, J.; Hajnsek, I. First results of rice monitoring practices in Spain by means of time

series of TerraSAR-X dual-pol images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 4, 412–422. [CrossRef]
62. Gebhardt, S.; Huth, J.; Nguyen, L.D.; Roth, A.; Kunzer, C. A comparison of TerraSAR-X Quadpol backscattering with RapidEye

multispectral vegetation indices over rice fields in the Mekong Delta, Vietnam. Int. J. Remote Sens. 2012, 33, 7644–7661. [CrossRef]
63. Koppe, W.; Gnyp, M.L.; Hütt, C.; Yinkun, Y.; Yuxin, M.; Xinping, C.; Georg, B. Rice monitoring with multi-temporal and

dual-polarimetric TerraSAR-X data. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 568–576. [CrossRef]

http://doi.org/10.3390/rs11070887
http://doi.org/10.3390/rs10081200
http://doi.org/10.1016/j.rse.2020.112112
http://doi.org/10.1109/TASSP.1978.1163055
http://doi.org/10.1109/TGRS.2011.2179050
http://doi.org/10.1109/JSTARS.2016.2517118
http://doi.org/10.2134/agronj2004.0162
http://doi.org/10.1016/j.isprsjprs.2016.05.010
http://doi.org/10.3390/su13020503
http://doi.org/10.1109/36.406698
http://doi.org/10.1080/01431160500239172
http://doi.org/10.1016/j.rse.2017.10.005
http://doi.org/10.1109/JSTARS.2016.2639043
http://doi.org/10.1109/36.551933
http://doi.org/10.1109/JSTARS.2010.2047634
http://doi.org/10.1080/01431161.2012.702233
http://doi.org/10.1016/j.jag.2012.07.016

	Introduction 
	Materials and Methods 
	Study Area 
	Time-Weighted Dynamic Time Warping Method 
	Methods for Identifying Double-Season Paddy Rice Fields 
	Satellite Data 
	Field Data 
	Land-Cover Dataset and Agricultural Census Data 
	Accuracy Assessment 

	Results 
	Discussion 
	Conclusions 
	References

