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Abstract: Pine wood nematode (PWN), Bursaphelenchus xyophilus, originating from North America,
has caused great ecological and economic hazards to pine trees worldwide, especially affecting
the coniferous forests and mixed forests of masson pine in subtropical regions of China. In order
to prevent PWN disease expansion, the risk level and susceptivity of PWN outbreaks need to
be predicted in advance. For this purpose, we established a prediction model to estimate the
susceptibility and risk level of PWN with vegetation condition variables, anthropogenic activity
variables, and topographic feature variables across a large-scale district. The study was conducted
in Dangyang City, Hubei Province in China, which was located in a subtropical zone. Based on the
location of PWN points derived from airborne imagery and ground survey in 2018, the predictor
variables were conducted with remote sensing and geographical information system (GIS) data, which
contained vegetation indices including normalized difference vegetation index (NDVI), normalized
difference moisture index (NDMI), normalized burn ratio (NBR), and normalized red edge index
(NDRE) from Sentinel-2 imagery in the previous year (2107), the distance to different level roads
which indicated anthropogenic activity, topographic variables in including elevation, slope, and
aspect. We compared the fitting effects of different machine learning algorithms such as random
forest (RF), K-neighborhood (KNN), support vector machines (SVM), and artificial neural networks
(ANN) and predicted the probability of the presence of PWN disease in the region. In addition,
we classified PWN points to different risk levels based on the density distribution of PWN sites
and built a PWN risk level model to predict the risk levels of PWN outbreaks in the region. The
results showed that: (1) the best model for the predictive probability of PWN presence is the RF
classification algorithm. For the presence prediction of the dead trees caused by PWN, the detection
rate (DR) was 96.42%, the false alarm rate (FAR) was 27.65%, the false detection rate (FDR) was
4.16%, and the area under the receiver operating characteristic curve (AUC) was equal to 0.96; (2)
anthropogenic activity variables had the greatest effect on PWN occurrence, while the effects of
slope and aspect were relatively weak, and the maximum, minimum, and median values of remote
sensing indices were more correlated with PWN occurrence; (3) modeling analysis of different
risk levels of PWN outbreak indicated that high-risk level areas were the easiest to monitor and
identify, while lower incidence areas were identified with relatively low accuracy. The overall
accuracy of the risk level of the PWN outbreak was identified with an AUC value of 0.94. From the
research findings, remote sensing data combined with GIS data can accurately predict the probability
distribution of the occurrence of PWN disease. The accuracy of identification of high-risk areas is
higher than other risk levels, and the results of the study may improve control of PWN disease spread.
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1. Introduction

Pine wood nematode (PWN), also known as Bursaphelenchus xylophilus, is a micro-
scopic creature that has been found worldwide. They infect pine trees and cause a condition
called pine wilt disease. Such disease is fatal to pine trees, and therefore PWN outbreaks
are commonly referred to as ‘smokeless fires’ [1].

PWN was first observed in North America [2] and was soon reported elsewhere in the
world. It is an invasive species to many countries including China, and it has devastating
impacts on those countries’ forests [3,4]. PWN has been recorded on affecting more than 15
species of Pinus, including Pinus massoniana, which is one of the most endangered species
in the world [2,5]. Affected trees will show physiological and morphological changes
shortly after the infection, specifically, the changes will be observed in leaf colors [6], leaf
water content, and chlorophyll content [7].

While most research was focusing on understanding PWN outbreaks from physio-
logical, molecular, or genetic studies [8–10], recent evidence indicates that those spatial
distributions of PWN are also important in mitigating and controlling PWM outbreak.
However, obtaining such information in a timely and accurate manner remains an open
challenge [11–13]. There are currently two ways of obtaining such information. One is
relying on a conventional ground survey. However, this time and labor consuming process
will always lead to an under estimation of the spatial pattern due to the time lag between
the observation and the event. Another way is to model the spatial patterns by using
data that was remotely obtained and was relevant to the outbreak. For example, some
works used topographic features [14], stand attributes [15], and landscape patterns [16,17]
in the modeling of PWN spread. The justification for this is that if the response of PWN
outbreak is related to those factors, a more accurate PWN spread can be estimated when
the modeling function includes these factors and consider their effects. However, those
contributing factors are largely inconsistent across different studies [18–20], and therefore
a further investigation is still needed. In addition, the performance of modeling techniques
can also vary dramatically depending on the application set-up (e.g., the availability of
data, data size, data type), which will introduce biases into the conclusion if the appropriate
techniques were not used.

In this work, we propose a framework to guide the modeling process, which helps
to timely and accurately model the spatial patterns of PWN. The framework consists of
five steps: (1) study design, (2) data collection, (3) data processing, (4) feature importance
analysis and model development, and (5) model validation and spatial modeling. The
methods used in each step can be replaced by different methods if more suitable ones are
available, and we provide a recommendation based on our evaluation result and selection
criteria according to our experience to look for an appropriate method. Although there are
a number of works that have already used machine learning techniques and remote sensing
data to model the spatial distribution of an outbreak [14,21–23], the existing processes may
not be generalized as they provide no recommendations on how to select the methods. This
paper aims to address the following questions: (1) how can machine learning algorithms
perform in identifying the occurrence and mapping the distribution of PWN disease and
which is the best model for predicting the probability of presence and the risk levels of
PWN? (2) What factors are potential important driving factors affecting the occurrence
of PWN?

Detailed descriptions about the study area, methods, results, and discussion are
provided as follows.
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2. Materials and Methods
2.1. Study Area

The study was conducted in the city of Dangyang, located in the western part of
Hubei province, central China (30◦30′23′′–31◦11′42′′N, 111◦32′42′′–112◦04′42′′E). The city
is situated in the transition zone from the Jingshan mountains to the Jianghan plain, with
the elevation ranging from 37.4 m to 1083.0 m above mean sea level. Dangyang has a typical
subtropical monsoon climate, with an average annual temperature and precipitations of
16.4 ◦C, and 992 mm, respectively. There is 68,905.5 ha of forest in this city, which accounts
for 38.32% of the land (Figure 1). The forest has high species diversity and the majority of
trees being Pinus massoniana Lamb. and Pinus elliottii. Since January 2017, a sub-area of
the forest has been characterized as an epidemic area by the State Forestry Administration,
and it reported a PWN outbreak in 2018.

Figure 1. Research area with different forest types.
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2.2. Methods

The framework of obtaining spatial patterns of PWN outbreak is illustrated in Figure 2,
which consists of five steps: (1) study design, (2) data collection, (3) data processing, (4) fea-
ture importance analysis and model development, and (5) validation and spatial modeling.

Figure 2. Workflow chart of study which includes study design, data collection, data processing, model development,
and validation.

2.2.1. Study Design

To achieve the research objects, we need the dead tree location caused by PWN and
the response driving factors to these locations across the research area.
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Two steps were used to acquire PWN locations over the large-scale site. First, the
airborne multispectral imagery acquired on August 10, 2018, with 0.2 spatial resolution was
used to derive the dead tree points by artificial interpretation, and then the ground survey
was carried out to verify these points and determine the dead tree points caused by PWN
at last. Due to the color and texture changes in high spatial resolution imagery, artificial
interpretation is a common method in pest and disease identification [24–26], which can get
high accuracy in detecting dead trees with a high spatial resolution (<0.5 m). The middle
coordinates of the deadwood crown were recorded in the artificial interpretation. The
ground survey was used to verify and remove the points which were dead trees but not
caused by PWN. The ground survey was carried out from August to November in 2018,
organized by the local forestry administration. On the ground survey, we went to trees
identified as dead trees in remote sensing imagery and to collect the pine wood samples
at 1.3 m from the base of the trunk to diagnose whether it was caused by PWN in the
laboratory [1]. All the standing dead trees were checked.

In the end, the total number of dead tree points in the 2018 period caused by PWN was
19,046 as in Pinus massionana coniferous pure forests (13,122), Pinus elliottii coniferous pure
forest (358), coniferous mixed forest (41), and coniferous and broad-leaf mixed forest (5525).
Simultaneously, we randomly generated a similar number of background points (BK) as
the absence of PWN samples in the research area. These background points (absences
PWN) were all in Pinus forest types due to the PWN only presences in Pinus forest [2,5]. So,
the background points located in broad-leaf mixed forest, bamboo forest, and shrub forest
were removed. Finally, 2839 points were selected as background points. We assigned the
value 1 and 0 for PWN points (presences) and background points (absences) respectively.
At last, there were 21,885 points of PWN (presences) and background points (absences)
which were obtained as the reference dataset in this paper to train and test the model.

According to the researches on the pest influence on large areas [14,21,22,27], the
topographic variables, vegetation condition variables, the distribution of forest type, and
human imprint variables were derived as driving factors to model the relationship with pest
occurrence. In this research, we collected the topographic data, the forest type information,
human imprint data, and vegetation indices which reflect the vegetation conditions to
derive predictors.

2.2.2. Data Collection

Data collection is the second step of the framework, which combines raw data from
different sources. The data has to cover the same spatial areas, and the temporal difference
between the data should be minimized or can be justified for a reason. Three types of
datasets were collected in this study as shown in Figure 2.

The geographical information system (GIS) data stands for forest management plan-
ning inventory (FMPI) data and road information. FMPI data were obtained from the local
foresty administration in 2018, which contains information on forest boundary and land
cover types especially contain the forest type. The roads data were collected to derive
human driving factors. According to previous research, the distance roads especially to
the different level roads can reflect the human activities as it has been identified as a key
driving factor of PWN outbreak in existing works [2,28,29].

We collected Sentinel-2 L2A level image data to derive the vegetation indices. It
was downloaded from the Google Earth Engine platform and has a spatial and temporal
resolution of 20 m and five days, respectively, from the website (https://developers.google.
com/earth-engine/datasets/catalog/COPERNICUS_S2_SR accessed on 18 August 2019).
The L2A level data is atmospherically corrected with sen2cor algorithm and provides the
bottom of atmosphere reflectance. In order to depict the gradual changes of the canopy as
a contributing factor of the PWN outbreak [30], we used the image data one year before
PWN outbreaks. The remote sensing image data was used to extract the vegetation index
of the study area from 1 January to 31 December 2017.

https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR
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To represent the topographic variables, the Shuttle Radar Topography Mission (SRTM)
data were collected. The SRTM dataset is a digital elevation model (DEM) and has 30 m
spatial resolution, which was obtained from the USGS website (https://earthexplorer.usgs.
gov/ accessed on 18 August 2019) and used to extract topographical variables.

2.2.3. Data Processing

There are two purposes in data processing. The first is to minimize the errors inherent
in the data and to extract essential information from raw data, and the second is to ensure
each dataset represents one hypothetic contributing factor of PWN outbreak, which will be
used for the reasoning of the potential causes of PWN outbreak.

From FMPI data, we extract the forest types boundary based on the attribution filed
“species composition” in FMPI attribute table. The type of forest was classified into seven
categories as Pinus massionana coniferous pure forests, Pinus elliottii coniferous pure forest,
coniferous mixed forest, broad-leaf mixed forest, coniferous and broad-leaf mixed forest,
bamboo forest, and shrub forest. Forest type boundary was used for the screening wood
point not in the Pinus forest area.

Bases on the road information, all roads were classified into one of three categories:
(a) roads above the township, (b) township roads, and (c) paths through the woods. The
shortest Euclidean distances to the different levels of roads were calculated as a numeric
vector. We assume that humans can access the forest through roads, and the shortest
distance to different levels of roads will correlate to the different levels of human activities.
Therefore, in this paper, we used the shortest distances to different levels of roads to
indirectly reflect these factors.

From remote image data, we extract vegetation index using the bottom of atmosphere
reflectance of sentinel-2 L2A data. First, the pixels covered by clouds were removed. Then,
four spectral index indicators including normalized difference vegetation index (NDVI),
normalized difference moisture index (NDMI), normalized red edge index (NDRE), and
normalized burn ratio (NBR) were calculated, and we derivde the maximum, minimum,
and median value of those indices from the calculation. These values of indices were
selected as variables to predict PWN spatial distribution as they reflect the physiological
and biochemical conditions of leaves. According to the existing work, the PWN outbreak
affects the water content of pine needles and causes them to exhibit wilting symptoms [31].
Consequently, severe water stress damages the lamella structure of chloroplasts and leads
to decreased chlorophyll content [32]. The NDMI and NBR were used to indicate vege-
tation water content [33]. In addition, NDVI and NDRE were used to reflect chlorophyll
content [34].

Local topographical variables (slope, aspect, altitude) were considered as indirect
factors that can impact the likelihood and severity of forest pests and disease (Mulder et al.
2020). In order to better understand the impact of topographical variables, we included
slope, the aspect with sine and cosine, slope*aspect, and altitude as predictor variables in
our model, which were generated from the SRTM DEM. Before calculating topographical
variables, we resampled 30 m SRTM DEM to 10 m to be in line with the resolution of other
variables acquired from sentinel-2 data.

The variables for predicting the PWN in this research are summarized in Table 1.
We further categorized PWN points into five risk levels according to the number of

dead trees within the 50 m radius of a point [5,16], as lower intensity (L), small intensity
(S), median intensity (M), severely intensity (E), and critical intensity (C). The threshold for
the number of dead trees to classify the level of risk is determined using percentile rank as
20%, 40%, 60%, 80% in the reference dataset. The risk levels of categories are presented in
Table 2.

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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Table 1. Variables used for predicting the PWN spatial variability.

Dataset Variable Describe

Sentinel-2

NDMI_MIN Normalized difference moisture index [35]
NDMI = B8−B11

B8+B11
NDMI-MIDIAN

NDMI-MAX
NBR_MIN Normalized burn ratio [36]

NBR = NIR−SWIR2
(NIR+SWIR2)

NBR_MIDIAN
NBR_MAX
NDVI_MIN Normalized difference vegetation index [37]

NDVI = (NIR−Red)
(NIR+Red)

NDVI_MIDIAN
NDVI_MAX
NDRE_MIN Normalized difference red-edge index [27]

NDRE =
(NIR−Rededge)
(NIR+Rededge)

NDRE_MIDIAN
NDRE_MAX

SRTM

Slope The degree of steepness of the surface unit [degrees]
altitude Vertical distance above sea level(dem)

SIN(Aspect) Sine of the aspect(sinasp)
COS(Aspect) Cosine of the aspect(cosasp)

Slope*SIN(Aspect)() Product of slope and sine of the aspect(slop_sinasp)
Slope*COS(Aspect) Product of slope and cosine of the aspect(slop_cosasp)

roads above the township Euclidean distance [m] (dis_r1)
Road

network
township roads Euclidean distance [m] (dis_r2)

paths through the woods Euclidean distance [m] (dis_r3)

Table 2. The number of different risk levels of PWN points.

Risk Level Number of Dead Trees Caused by PWN
in 50 m Radius Number of Points

Lower intensity (L) 1 ≤ n ≤ 3 4308
Small intensity (S) 3 < n ≤ 6 3780

Median intensity (M) 6 < n ≤ 10 3684
Severely intensity (E) 10 < n ≤ 16 3394
Critical intensity (C) 16 < n ≤ 95 3880

2.2.4. Feature Importance Analysis and Model Development

The feature variables listed in Table 1 were used as input to develop the model.
Firstly, the feature importance was analyzed using Gini and permutation importance
analysis methods with RF model [38]. Gini importance showed the decrease in node
impurity from splitting on each predictor variable, averaged over all trees in RF model [38].
Alternatively, the permutation importance analysis method evaluated how much worse the
model performed when each predictor variable is assigned as random but realistic values.
The worse the model performs, the more relevance that variable has in predicting [38].
After the feature importance analysis, the feature variables that showed little importance
were removed.

Then, four off-the-shelf machine learning techniques were used in this study and their
performance was compared. They are random forest (RF), support vector machine (SVM),
K nearest neighbor (KNN), and artificial neural networks (ANN). The reasons to choose
those methods are: (1) they can deal with high-dimensional datasets, (2) they have been
used for modeling spatial patterns of the outbreak in other studies [39,40], and (3) they
are ready to use and can be easily intergraded or implemented. The probability of PWN
presence or absence (from 1 to 0) was modeled using RF, SVM, KNN, and ANN, and the
performance of these models was compared. Finally, a PWN risk level was modeled by the
best-fitted model in the probability of presence modeling in the last step.

RF is an ensemble machine learning (ML) algorithm for classification derived from
classification and regression trees (CART) [41]. In this paper, we built RF model using
the RandomForestClassifier function in the scikit-learn library (version 0.24.2) in program
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Python version 3.7 [38]. The main parameters in the random forest classification model are
the number of subtrees (nt) and the number of predictor variables for training at each split
(nf ). We used ten-fold cross-validation technology to fine tune these two parameters. The
nt was set from 50 to 1000 stepped by 50, and nf was set from 3 to 21 steeped by 1. The
Gini importance [41] and permutation importance for feature evaluation (BRE) [38] were
used to assess the importance of variables. In this paper, we obtained the best accuracy
when nt was set to 500 and nf to 7.

KNN is a statistical-based classification method. KNN is an import nonparametric
classification method without prior statistical knowledge, which classified input samples
according to the majority of the K nearest neighbor inputs. The main parameter is the
value of K. In this paper, according to the ten-fold cross-validation, we set K = 5 and use
the KNeighborsClassifier function in the scikit-learn library for model building.

SVM is a supervised nonparametric statistical learning technique [42]. This method
built a hyperplane with kernel function transformation imposed on input samples as
a classification model. The hyperplane was determined by maximizing the distance
between this hyperplane and the nearest positive and negative training samples when
in the classification field [43]. In this paper, we use the radial basis function (RBF) as
the kernel function. The kernel coefficient (γ) and regularization parameter (C) were the
hyper-parameters for this method, the ten-fold cross-validation method was used to fine
tune these parameters. The model was built using the SVC function in scikit-learn library
in python. In this paper, we obtained the best accuracy when C was set to 5 and γ to 0.2.

ANN is a data-driven model with the ability to simulate arbitrary computing functions
through optimization and has been found in a wide range of applications [44]. With back-
propagation and a gradient-based optimization strategy to train a neural network with one
or two hidden layers with any desired number of nodes, ANN has achieved a breakthrough
in classification and regression [45]. We selected ANN due to good performance on input
data in the classification field. In this paper, we chose a shallow network with one hidden
layer. The model was built with MLPClassifier in scikit-learn library in python. The number
of neurons in the hidden layer was set by ten-fold cross-validation from the following set:
{20,50,100,200}; the optimized value was to 100 in that hidden layer.

2.2.5. Validation and Spatial Modeling

In this paper, multiple metrics were used to evaluate the performance of the methods
as a single metric may not be able to illustrate the trade-offs among them. The evaluation
was carried out by using randomly 20% of the samples whereas the other 80% was used
to train the models and repeated five times. Detecting rate (DR), false alarm rate (FAR),
false discover rate (FDR), receiver operating characteristic curve (ROC), and the area under
ROC curve (AUC) were averaged five times to evaluate the accuracy.

Detection rate (DR) which is often referred to as true positive rate or sensitivity is
calculated according to the Equation (1). It indicates the proportion of actually PWN
points that are correctly classified as PWN points, it is equivalent to 1 minus omission
error of PWN class. In addition, we used false alarm rate (FAR) to indicate the proportion
of background points that the model predicted as PWN points (seen in Equation (2)) to
understand the omission error of the PWN absence class. Moreover, false discovery rate
(FDR) was used to assess the rate of commission error of the PWN presences class, which
is defined as the proportion of all samples that were detected as PWN points but were
background points (seen in Equation (3)).

DR = TP/(TP + FN), (1)

FAR = FP/(TN + FP) (2)

FDR = FP/(TP + FP) (3)
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Here, TP denotes the numbers of positively classified as positive; FN denotes the
number of positively classified as negative; FP denotes the number of negative classified as
positive; and TN denotes the number of negative classified as negative.

Generally, a high DR and a low FDR and FAR are clearly desirable, however, these
cannot be fixed independently in a two-class detection problem and are both dependent
on the classification threshold (T) value settled in the model. For example, in RF model,
an observation assigned to a class is based on the predicted probability to this class by RF
model with a set of trees voting. As if predicted probability greater than the T, the pixel
was classified as presence PWN otherwise as absence one. The default T value is 0.5 in a
two-class classification in RF. So, T is a key to influence the accuracy, which may influence
the FAR, DR, and FDR. In this paper, we also tested how the change of T value affects
the accuracy of the result, which helps to select the best T for the RF model depending on
the context.

In addition, the receiver operating characteristic (ROC) curve and AUC were used
to assess the overall performance of different models. ROC curve is a graph showing the
performance of the classification model at all classification thresholds T, which is used to
depict relative trade-offs between true positive and false positive and can be interpreted
as the trade-offs between the benefit and costs [46]. In our study, ROC plots true positive
rate (DR) vs. false positive rate (FAR) at different classification thresholds T. AUC is
the area under ROC curve, the higher AUC, the better the performance of the model at
distinguishing between the positive and negative classes. Generally, an ideal ROC cure
will show the maximum benefit (true positive rate = 1) and with minimum cost (false
positive = 0). Therefore, a better model will be determined as the one that is closer to the
upper left corner with a higher AUC value.

After evaluating model performance, we used the best performance model for spatial
modeling. The distribution of the probability of PWN presence and the PWN risk level
were mapped with the best performance model.

3. Results
3.1. Variable Importance Analysis

Firstly, the Gini feature importance and the permutation feature importance of each
predictor variable were tested. The results showed that the slope*cos(aspect), slope, and
slope*sin(aspect), the aspect with sine and cosine, showed the least importance in test in
both importance analysis methods, which indicates that the pest outbreak was less related
to the slope direction among the topographic factors in this research area. Therefore, these
variables were taken out from the model, and the importance of the variables of the re-
fitted model is shown in Figures 3 and 4. In both variable importance tests, the importance
ranking results are relatively similar. We found that the distance to path through the wood
and distance to township roads and the elevation and minimal value of NDVI was the
most relevant explanatory variables, followed by the distance to above township roads and
other vegetation indices.
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Figure 3. Predictor variable importance with Gini importance in RF model where dis_r1, dis_r2, and dis_r3 means the
distance to roads above the township, township roads, and paths through the woods, respectively.

Figure 4. Predictor variable importance with BRE importance in RF model.
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3.2. Comparison of Different Models

We validated the model with AUC in ROC curve, DR, FAR, and FDR metrics using
a confusion matrix. Results are shown in Table 3. The ROC curves with different models
were shown in Figure 5. From Figure 5, we found RF outperforms other models since at all
cut-offs the true positive rate is significantly higher and the false positive rate is lower than
others. The AUC for RF is larger than other models. AUCs of RF, KNN, SVM, and ANN
were 96.39%, 83.21%, 71.98%, and 70.74%, respectively.

Table 3. Accuracy of different models in predicting PWN.

Models DR FAR FDR AUC

RF 98.84% 46.61% 6.66% 96.39%
KNN 98.37% 60.87% 8.56% 83.21%
SVM 99.24% 92.17% 12.32% 71.98%
ANN 93.27% 70.08% 10.21% 70.74%

Figure 5. ROC curve and AUC of different models with independent test data.

Considering the detecting rate, we found that all methods can produce a good result
with the minimum detecting rate being 93%. The result suggests that all models can be
used to detect PWN presence with acceptable performance. However, all models show
a high level of false alarm rate in the results. RF model has the lowest FAR with 49.57%,
and SVM has the highest FAR with 92.17%, and KNN and ANN were 60.87% and 70.08%,
respectively. The results indicate that all models are more likely to classify background
points to PWN points.
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Considering the false discovery rate, we found that all models have good results,
among which RF has the best performance (FDR = 6.66%) compared to the worst
FDR = 12.32% from SVM. The results indicate that the proportion of background points
which detecting as PWN points was low.

From the above analysis, we found RF model outperforms other models. Furthermore,
we used the RF model to analyze how the threshold T influences the accuracy. Figure 6
presents the change of DR, FDR, FAR, and AUC with a gradual increase of threshold value
using the RF model. DR was close to 1 before the threshold exceeds ~0.7, while FAR was
gradually down to 0 when the threshold increased. The FDR was lower than 10% when
the threshold exceeds 0.4. The threshold value was set to 0.65 in this study as it maximizes
the result with DR 87.16%, FAR 6.61%, FDR 1.13%, and AUC 90.28%.

Figure 6. Random forest model performance across the range of threshold values for PWN detection.

3.3. Analysis of Risk Levels

The classification results of different PWN risk levels are shown in Table 4. The critical
class has a DR value of 84.35% and a FAR value of 2.19% and a FDR value of 9.64%, which
are the highest values in these PWN risk levels. However, the background class is easily
misclassified into the lower class, indicating that disease-free points are more difficult to
separate with low level, but are more clearly distinguished from medium and high degree
levels. On the other hand, the critical class is less likely to be misclassified, indicating that
the model was able to identify signs for high disease degree. Overall, the model has a
good fit with an AUC area of 93.57% (Figure 7), which indicated that the model had a good
performance for risk level classification.



Remote Sens. 2021, 13, 4682 13 of 20

Table 4. Confusion matrix of classification with RF model with different PWN risk levels.

Risk Level BK L S M E C DR FAR FDR

BK 401 128 19 9 8 10 76.11% 3.80% 25.22%
L 87 581 103 58 23 23 64.56% 8.95% 35.89%
S 24 140 422 115 27 16 62.99% 8.41% 41.67%
M 9 58 97 471 65 28 63.90% 6.54% 32.42%
E 5 20 11 98 458 64 72.45% 6.43% 30.64%
C 1 9 6 12 50 721 84.35% 2.18% 9.64%

Figure 7. ROC curve of classification with RF model with different PWN risk levels.

3.4. PWN Risk Levels Distribution in Research Area

Figure 8 presents the PWN outbreak susceptibility results showing areas with high
susceptibility (1) to low susceptibility (0). Figure 9 presents the PWN risk level from lower
intensity to critical intensity in the research area. The model thus identifies areas with a
high probability of PWN presence in the west-central, east, and north regions of Dangyang.
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Figure 8. The predictive map of probability of PWN presence in the research area.
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Figure 9. The predictive map of risk levels of PWN in the research area.

The area of different PWN risk levels was shown in Table 5. We found that the area
of critical risk level was lowest with 650 ha, which accounts for 1.73% in west-central
regions of the study area. The non-PWN area is the highest which has 22,965 ha accounting
for 61.12% of the research area. The lower, small, median, and severely level areas are
10,347 ha, 1858 ha, 1150 ha, and 607 ha, with the proportion being 27.53%, 4.94%, and
3.06%, respectively.
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Table 5. Summary area and proportion of different PWN risk levels in the research area.

PWN Risk Level Area (ha) Proportion

PWN absence area 22,975 61.12%
Lower intensity 10,347 27.53%
Small intensity 1858 4.94%

Median intensity 1150 3.06%
Severely intensity 607 1.61%
Critical intensity 650 1.73%

4. Discussion
4.1. Analysis and Optimization of the Predictor Variables

From our results, we found that the distance to roads is an important predictor variable
to model the PWN susceptibility. The distance to the roads reflected the human activities
to some extent (i.e., closer to roads indicates more human activities). The results of some
studies suggest that the spread of PWN on a large regional scale is to some extent due to
human activities when transportation of woods such as containers, timber transportation,
and power line erection [2]. The same results were found in the study in the Dangyang
area, where the location of diseased wood was highly correlated with the distance of the
road. We found that distance to roads is an important variable to PWN outbreak, especially
to the road of the path in woods which indicates the pest outbreak is more related to human
activities in this research area. This result is consistent with other research [28,29]. Based
on the results of the study, it is inferred that the source of the initial PWN disease in the
region may have been brought in by anthropogenic activities.

Moreover, our results show that elevation is highly related to the probability of
occurrence of PWN, but the slope and slope orientation, as well as factors calculated from
slope orientation, has little impact. This finding is not inline with other studies [14], and a
possible reason is that the relative variation of slope and aspect in the study area is larger,
and the location of PWN infestation in this study area is major distributed from slope of 0
to 30◦, and the aspect is distributed from 0–360◦, so it is difficult to find the relevant pattern.
In addition, the spatial resolution and accuracy of DEM may influence the result. In our
study, the spatial resolution of DEM was relatively lower than the Sentinel image data.
Thus, the slope and aspect of the diseased wood were relatively coarse. We hypothesize
that higher precision topographic data might have some influence on the results.

Different vegetation indices with maximum, minimum, and median values in a year
are related to the occurrence of PWN; the minimum value of NDVI, the median value of
NBR index, and the maximum value of NDMI were found to be especially related to the
occurrence of PWN. The reason for this might be that the vegetation index can reflect the
state of vegetation after disturbance to some extent, or that the vegetation index of time
series can better reflect the state of vegetation after disturbance [37,47,48], the disturbance
of PWN will cause the pine tree leaves to turn red, wilt, and drop, etc. and these changes
will affect the change of remote sensing signal at canopy level in turn. By selecting the
maximum, minimum, and median values of vegetation index in a year, one can better
reflect the changes of the disturbance information of the canopy. When the pattern of
canopy change caused by PWN and other disturbance events such as the windstorm or fire
can be distinguished, we can use these vegetation indices to better reflect the change of
canopy state and respond to the influence of PWN disturbance more effectively.

4.2. Models Performance and Evaluation

Machine learning methods have been widely applied to a variety of classification and
regression modeling. The performance and effectiveness of models are the main issues to
be concerning for specific application problems. In the paper, four typical machine learning
methods were compared, among which SVM and RF are currently top choices, as they
were often used as baseline methods to compare and analyze with other models. KNN is
a traditional method, considering the nearest neighbor feature also has a wide range of
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applications. ANN uses perceptron model, combined with feedback neuron network to
solve the model parameters, although only a shallow network model is utilized, it performs
well in solving some nonlinear problems. Although the deep learning model based on
the neural network may have better performance when the training data is sufficiently
large, we did not use it in this study considering the number of data samples may not be
sufficient. SVM uses kernel function for space mapping method, which can solve small
sample classification and regression, but the performance in this paper is not outstanding.
KNN method considers the nearest neighbor feature and achieves better results in the
prediction of PWN. This may be related to the spread pattern of PWN in the local area.
In the local area, PWN spread is mainly caused by the migration of the host of PWN in
the local area, which will form a local aggregation effect and make the pine canopy in
the local near-neighborhood area construct similar disturbance characteristics. This leads
to producing better results when using the KNN method than SVM and ANN. The RF
approach shows the best results in our study. As with random sampling of features and
samples through a bootstrap sampling strategy, it is a good solution to the overfitting
problem. Although the RF model performs well overall, the results are also affected by the
imbalance between positive and negative samples, resulting in a relatively high FAR.

4.3. Threshold for Model

Classification threshold plays a significant effect on the final monitoring accuracy
of the RF model. Generally, a high DR and a low FDR, and a FAR are clearly desirable
in PWN detecting. However, these cannot be fixed independently in two-class detection
problems and both depend on the threshold value. The classification threshold represents
a trade-off between true and false detection. How to balance DR, FAR, and FDR depend
on the context. Generally, a viable detection method would expect to achieve a DR > 50%
while limiting FDR < 20%, and FAR < 20%. Our results found that the FDR was low (<13%)
at all thresholds, with DR > 90% at thresholds up to 0.8, but the FAR was more changeable,
basically decreasing gradually with the increasing of the threshold, such as 47.2% at a
threshold of 0.5, and FAR < 20% when the threshold was greater than 0.75 in generally.
This shows that the model is prone to misclassify non-diseased wood as diseased wood.
The adjustment of the threshold value can reduce the FAR while maintaining the relative
stability of DR and FDR.

4.4. The Risk Level of PWN Classification

Overall, it is still difficult to identify different PWN risk levels using remote sensing
data combined with topography and human activity factors. According to our results, we
found that the overall accuracy is not high. Although the identification accuracy of high
risk level areas was high, the low risk level areas were not easily identified. Since the low
risk level area did not differ much from the no infection areas in the input features. There
are some factors to influence these results. The accuracy of the risk level samples from
the ground investigation may influence the results. In our research, we used the number
of diseased wood neighborhood points to measure the intensity of disease occurrence
location to reflect the risk levels of PWN spread to some extent. The distance to the
neighborhood PWN points may impact the risk level determination. Moreover, the forest
stand structural features such as species composition and stand age structure may also
influence the results [49]. These factors need to be considered in future studies, which may
make it easier to identify disease risk levels.

5. Conclusions

Probabilistic prediction of PWN susceptibility is important for monitoring forest
health status, especially Masson pine in the subtropic zone. In this paper, the modeling of
PWN outbreak probability and risk level mapping was implemented using remote sensing
vegetation index, topography, and human activities variables. The main conclusions drawn
are as follows:
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(1) It is possible to achieve the prediction probability of the presence of PWN in a large
extended area with remote sensing data combined with topography, anthropogenic
activities, and other variables. The overall DR can be up to 96%, FAR lower than 28%,
FDR lower than 5%. Moreover, different risk levels of PWN have a certain predictive
effect, especially for areas with a high risk level. Different predictor variables have
different effects on PWN susceptibility, and in the Dangyang region, PWN outbreaks
are highly correlated with anthropogenic activity factors.

(2) Different models have different performances on the prediction of PWN. The per-
formance of the different models is sensitive to many factors as shown in our eval-
uation, such as the selection of hyper-parameter, the use of training and testing
datasets. In this study, we found that the RF method consistently outperforms other
models that we used. Therefore, we recommend using RF first in similar applica-
tions, and only tires other models if the FR cannot provide the modeling result with
sufficient accuracy.

(3) The threshold value plays an important role in model performance, which balances
the trade-off between true and false detection rates. However, the selection of optimal
threshold value will depend on the context and can be difficult, similar to selecting
optimal hyperparameters for a machine learning algorithm.

(4) The predictor variables showed different importance in predicting PWN. The distance
to path through the wood and distance to township roads and the elevation and
minimal value of NDVI were was the most relevant explanatory variables, followed
by the distance to above township roads, and other vegetation indices, the topographic
variables such as slope, aspect showed the least importance. Based on the results of
the study, it is inferred that the source of the initial PWN disease in the region may
have been brought in by anthropogenic activities.
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