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Abstract: The rapid increase in infrastructural development in populated areas has had numerous
adverse impacts. The rise in land surface temperature (LST) and its associated damage to urban
ecological systems result from urban development. Understanding the current and future LST
phenomenon and its relationship to landscape composition and land use/cover (LUC) changes is
critical to developing policies to mitigate the disastrous impacts of urban heat islands (UHIs) on urban
ecosystems. Using remote sensing and GIS data, this study assessed the multi-scale relationship of
LUCC and LST of the cosmopolitan exponentially growing area of Beijing, China. We investigated
the impacts of LUC on LST in urban agglomeration for a time series (2004–2019) of Landsat data
using Classification and Regression Trees (CART) and a single channel algorithm (SCA), respectively.
We built a CA–Markov model to forecast future (2025 and 2050) LUCC and LST spatial patterns. Our
results indicate that the cumulative changes in an urban area (UA) increased by about 908.15 km2

(5%), and 11% of vegetation area (VA) decreased from 2004 to 2019. The correlation coefficient of
LUCC including vegetation, water bodies, and built-up areas with LST had values of r = −0.155
(p > 0.419), −0.809 (p = 0.000), and 0.526 (p = 0.003), respectively. The results surrounding future
forecasts revealed an estimated 2309.55 km2 (14%) decrease in vegetation (urban and forest), while an
expansion of 1194.78 km2 (8%) was predicted for a built-up area from 2019 to 2050. This decrease in
vegetation cover and expansion of settlements would likely cause a rise of about ~5.74 ◦C to ~9.66 ◦C
in temperature. These findings strongly support the hypothesis that LST is directly related to the
vegetation index. In conclusion, the estimated overall increase of 7.5 ◦C in LST was predicted from
2019–2050, which is alarming for the urban community’s environmental health. The present results
provide insight into sustainable environmental development through effective urban planning of
Beijing and other urban hotspots.

Keywords: urban heat island (UHI); sustainable spatial planning; CA–Markov; urban geography;
urban planning and development; urban change modeling

1. Introduction

Land use/cover change (LUCC) most often surrounds natural vegetation alteration for
logging, urbanization, and agriculture expansion [1,2]. LUCC generates many environmen-
tal problems at both local and global scales, including biodiversity loss due to greenhouse
gas release [2–4], changes in land surface temperature (LST), and precipitation shifts. The
negative environmental consequences of urbanization, which include population growth,
large-scale industrial and infrastructure development, and rapidly changing landscapes,
are a global concern [5,6]. LUCC associated with urbanization is one of the major causes of
shifting LST. LUCC and LST hold great importance due to the consequential impacts of
LST on the urban environment. China, the world’s second-largest economy, is undergoing
rapid urbanization with dramatic infrastructure and urban area growth [5,7]. The efficient
development of urbanization policies aimed at the adjustment of land use structure and
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landscape patterns is imperative. Understanding the association between urbanization and
landscape patterns will support sustainable urban ecological management [8]. Population
increases and other related socio-economic activities in newly developed cities have posed
enormous sustainability challenges for housing, infrastructure, food security, and natural
resource management [9–11].

Recent studies have recognized that LUCC brought on by human activities can cause
radical changes within the radiative, thermodynamic, and hydrological processes at the
earth’s surface that can eventually modify local climate metrics such as temperature,
cloud coverage, and precipitation [12–15]. Relative land surface temperature (RLST) is
a critical physical property of the land surface directly influenced by LUCC, with study
implications for climate change and other environmental impacts [16–19]. Measuring LST
has never been easy, but remote sensing and associated technologies have opened up
new perspectives and applications [20]. With the advent of thermal images acquired from
satellites, it is now conceivable to monitor LST changes temporally and compare them to
those seen in LUCC [12,21–24].

LUCC has been quantified and simulated using various methods and algorithms that
have been developed over time. The Markov chain [25,26], cellular automata (CA) [27,28],
and artificial neural network (ANN) [29] are all popular models. When it comes to pro-
jecting short-term values over a large area, the Markov chain is a stochastic model that is
frequently used [8,26]. Incorporating CA–Markov and CA–stochastic models allows for
the prediction of multi-directional changes. They outperform previously used models such
as the autoregression (AR) model, the linear regression model (LRM), and Holt–Winters
Exponential Smoothing (HWES) [30].

The rapid economic growth in metropolitan cities such as Beijing has drastically
affected surrounding urban ecosystems through LUCC. Regular monitoring is needed
at both macro and micro scales to evaluate the effect of LUCC on LST. It is among the
significant urbanization hotspots across the country. Information regarding the LUCC and
related impacts on LST is currently lacking. Using a combination of Classification and
Regression Trees (CART) techniques, single-channel algorithm (SCA), and Pearson’s rank
correlation matrix, this study seeks to quantify urban landscape patterns and land use
changes on surface temperatures recorded during 2004–2019. This study uses the cellular
automata–Markov model (CA–Markov) to predict future land use changes and LST under
a simulated 2025 and 2050 scenario. We evaluate the relationship between LUCC and LST
concerning the changing climate. We hypothesized that climatic change negates the effects
and quantities of individual contributions to LUCC on LST. The outcomes of this study
will provide scientific insight on issues surrounding urban heat islands (UHIs). They will
divulge the underlying dynamics of LUCC to develop effective urbanization policies and
appropriate adjustments in land use structure.

2. Material and Methodology
2.1. Study Area and Datasets

Beijing, the People’s Republic of China’s capital, covers 14 districts and two counties,
and the total urban area is approximately 16,410.54 km2 with a population of 21.893 million
(Beijing Statistics Bureau, November 2020). According to Beijing’s urban master plan
(2004–2020), Beijing is divided into four functional zones [31–33]. The city has a sub-humid,
mild tropical monsoon climate and four seasons, with a chilly, windy winter and dry, sticky
summer (Figure 1). However, environmental issues in Beijing have drawn international
attention. The region is experiencing sand and dust storms in spring, UHIs forming
in summer, and pollution fog in winter, all arising from combinations of soil, location,
drainage, sources of pollution, land utilization, and urbanization.
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Figure 1. This map shows the geographical overview of the study area. On the left hand, the map 
represents the ancillary data and digital elevation model (DEM). This map was generated by using 
ArcGIS 10.7. 

Spatial images of Landsat-5 (TM) and Landsat-8 OLI (ETM) having a 30 m resolution 
over various periods between 2004 and 2019 were obtained by using Google Earth Engine 
(GEE) for evaluating changes in LUCC and LST. From 2004 to 2019, the minimum cloud 
cover for the entire Landsat scene was chosen. They overlapped with the area of study 
(Table 1). Before LUCC classification, the Landsat images were pretreated to remove at-
mospheric effects [24,26,34,35]. For LUCC classification accuracy, a ground survey was 
conducted to collect 250 ground control points for each land cover class. The digital ele-
vation model (DEM) was collected from SRTM by using GEE. Each spatial scene was en-
hanced using the histogram equalization approach to attain a higher image contrast 
[36,37]. 

Table 1. Details of the Landsat data used in this study. 

Acquired Date Spacecraft ID Resolution (m) Cloud Cover 
21 July 2004 Landsat-5 TM/TIRS 30 × 30/100 × 100 0.01% 
6 July 2009 Landsat-5 TM/TIRS 30 × 30/100 × 100 0.05% 
26 July 2014 Landsat-8 ETM/TIRS 30 × 30/120 × 120 0.06% 
29 July 2019 Landsat-8 ETM/TIRS 30 × 30/120 × 120 0.03% 

A series of steps were completed in a step-wise workflow pattern (Figure 2). First, 
information sets were processed in GEE to construct a False Color Composite (FCC). The 
study area was extracted from all spatial imaginaries via masking of Beijing’s geo-refer-
enced outline boundary map. The Supervised Classification method was used to improve 
classification results from Landsat images. Statistical inferences from the mean LST and 
the percentage proportion of different land cover types, vegetated and non-vegetated ar-
eas, were drawn through correlation analysis from 2004 to 2019. The CA–Markov model 
was applied to predict future (2025 and 2050) trends of LUCC and LST.  

Figure 1. This map shows the geographical overview of the study area. On the left hand, the map
represents the ancillary data and digital elevation model (DEM). This map was generated by using
ArcGIS 10.7.

Spatial images of Landsat-5 (TM) and Landsat-8 OLI (ETM) having a 30 m resolu-
tion over various periods between 2004 and 2019 were obtained by using Google Earth
Engine (GEE) for evaluating changes in LUCC and LST. From 2004 to 2019, the mini-
mum cloud cover for the entire Landsat scene was chosen. They overlapped with the
area of study (Table 1). Before LUCC classification, the Landsat images were pretreated
to remove atmospheric effects [24,26,34,35]. For LUCC classification accuracy, a ground
survey was conducted to collect 250 ground control points for each land cover class. The
digital elevation model (DEM) was collected from SRTM by using GEE. Each spatial
scene was enhanced using the histogram equalization approach to attain a higher image
contrast [36,37].

Table 1. Details of the Landsat data used in this study.

Acquired Date Spacecraft ID Resolution (m) Cloud Cover

21 July 2004 Landsat-5 TM/TIRS 30 × 30/100 × 100 0.01%
6 July 2009 Landsat-5 TM/TIRS 30 × 30/100 × 100 0.05%

26 July 2014 Landsat-8 ETM/TIRS 30 × 30/120 × 120 0.06%
29 July 2019 Landsat-8 ETM/TIRS 30 × 30/120 × 120 0.03%

A series of steps were completed in a step-wise workflow pattern (Figure 2). First,
information sets were processed in GEE to construct a False Color Composite (FCC).
The study area was extracted from all spatial imaginaries via masking of Beijing’s geo-
referenced outline boundary map. The Supervised Classification method was used to
improve classification results from Landsat images. Statistical inferences from the mean LST
and the percentage proportion of different land cover types, vegetated and non-vegetated
areas, were drawn through correlation analysis from 2004 to 2019. The CA–Markov model
was applied to predict future (2025 and 2050) trends of LUCC and LST.



Remote Sens. 2021, 13, 4697 4 of 20Remote Sens. 2021, 13, x FOR PEER REVIEW 4 of 21 
 

 

 
Figure 2. Methodology flow chart of this study. 

2.2. Land Use/Cover Change 
The Supervised Classification method is an algorithmic probability program applied 

to land cover classification. Classification and Regression Trees (CART) [21,38,39] is a pri-
mer supervised classification algorithm used in remote sensing techniques of spectral im-
ages. Ground verification in uncertain areas was completed through Google Earth Pro and 
GEE, where misclassified areas were corrected by positioning and rearranging the GEE 
script samples. The ground truth point was used to estimate mapping accuracy. Finally, 
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LUC Classes Abbreviations Description 
Urban area UA Urban and rural built-up areas, roads, buildings and concrete structures 
Cropland CL Kharif and Rabi, agricultural plantation, bushes, etc. 

Vegetation VA Urban plantation, grassland 
Forest area FA Forest plantation, deciduous plantation 
Barren land BL Exposed rock, waste lands, bare soil and impervious surfaces, etc. 

Water bodies WB Tank, pond, lake, river, etc. 

Producers and users assessed the remote sensing image; overall, a confusion matrix 
was calculated for the classification accuracy and kappa coefficient. Producer precision is 
the number of pixels that have been correctly identified as a percentage of the classifier’s 
pixels as a training sample of each batch. User precision is the pixels that have been accu-
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Figure 2. Methodology flow chart of this study.

2.2. Land Use/Cover Change

The Supervised Classification method is an algorithmic probability program applied
to land cover classification. Classification and Regression Trees (CART) [21,38,39] is a
primer supervised classification algorithm used in remote sensing techniques of spectral
images. Ground verification in uncertain areas was completed through Google Earth Pro
and GEE, where misclassified areas were corrected by positioning and rearranging the GEE
script samples. The ground truth point was used to estimate mapping accuracy. Finally,
Landsat-5 (TM) and Landsat-8 OLI (ETM) were classified into six land cover types using
the CART classification algorithm (Table 2).

Table 2. Land use and land cover types in the study area.

LUC Classes Abbreviations Description

Urban area UA Urban and rural built-up areas, roads, buildings and concrete structures
Cropland CL Kharif and Rabi, agricultural plantation, bushes, etc.
Vegetation VA Urban plantation, grassland
Forest area FA Forest plantation, deciduous plantation
Barren land BL Exposed rock, waste lands, bare soil and impervious surfaces, etc.

Water bodies WB Tank, pond, lake, river, etc.

Producers and users assessed the remote sensing image; overall, a confusion matrix
was calculated for the classification accuracy and kappa coefficient. Producer precision is
the number of pixels that have been correctly identified as a percentage of the classifier’s
pixels as a training sample of each batch. User precision is the pixels that have been
accurately categorized as percentages of the total number of pixels identified as the class.
Overall classification accuracy is the ratio of the total number of pixels correctly assigned
to the total number. Equation (1) defines the kappa coefficient. The number of random
points used to determine accuracy for each image was 250.

Kappa Coe f f icient =
N ∑m

i Xii − ∑m
i (Xi + X+i)

N2 − ∑m
i (Xi − X+i)

(1)
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2.3. Calculation of Normalized Difference Vegetation Index (NDVI)

The Normalized Difference Vegetation Index (NDVI) is the most commonly used
vegetation index to observe greenery globally. The Near-Infrared (NIR) and red band ratio
are also used to map vegetation to test its condition using Equation (2) [40]. The magnitude
of that index is between −1 and 1. For green plants, the standard range is between 0.2
and 0.8 [41].

NDVI = (NIR − RED/NIR + RED) (2)

where NIR = Band 4 (For Landsat TM) and Band 5 (For Landsat 8) and RED = Band 3 (For
Landsat TM and ETM) and Band 4 (For Landsat 8).

2.4. Retrieval of Land Surface Temperature (LST)

Radiometrically corrected Landsat images with a thermal infrared band (Band 6) were
used to derive LST. The Digital Number (DN) was converted to at-satellite brightness
temperature and corrected for equal weights of atmospheric absorption, re-emission, and
surface emissivity [16,38,42–44]. To restore the spectral radiance to Top of Atmosphere
(TOA), we used the brightness temperature beneath uniform emissivity [20,45]. The Land
Surface Temperatures (LSTs) were computed using Equations (3)–(9) [16,24] (Figure 3).

Lλ = 0.0003342 ∗ DN + 0.1 (3)

where Lλ is the spectral radiance in Wm−2 sr−1 mm−1.
We converted the spectral radiance to at-satellite brightness temperature (TB) under

the assumption of uniform emissivity. The conversion formula is given in Equation (4).

TB =
K2

ln((K1/Lλ) + 1)
(4)

TB is the brightness temperature in Kelvin (K), Lλ is the spectral radiance in Wm−2

sr−1 mm−1, and K2 and K1 are calibration constants. For Landsat-8 OLI, K1 is 774.89 and
K2 is 1321.08.

The fractional vegetation, Fv, of each pixel was determined from the NDVI using
Equation (5) [46,47].

Fv =

(
NDVI − NDVImin

NDVImax − NDVImin

)
(5)

NDVImin’s value (0.2) and pixels considered bare soil, NDVImax is the maximum NDVI
value (0.5), and pixels are regarded as healthy vegetation.

dε is the effect of the geometrical distribution of natural surfaces and internal reflec-
tions calculated by Equation (6).

dε = (1 − εs)(1 − Fv)Fεv (6)

where εv is vegetation emissivity, εs is soil emissivity, Fv is fractional vegetation, and F is a
shape factor with a mean of 0.55 [16,38,46,48].

ε = εvFv + εs(1 − Fv) + dε (7)

where ε is emissivity, and ε may be determined by Equation (8):

ε = 0.004 ∗ Fv + 0.986 (8)

Finally, the LST was derived using Equation (9) [41,46–48]:

LST =
TB

1 + (λσTB/(hc)) ln ε
(9)
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where λ is the effective wavelength (10.9 mm for band 10 in Landsat 8 data), σ is the
Boltzmann constant (1.38 × 10−23 J/K), h is Plank’s constant (6.626 × 10−34 Js), c is the
velocity of light in a vacuum (2.998 × 10−8 m/s), and ε is emissivity.
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2.5. Relative LST Change Detection

For the years 2004 and 2019, the relative LST was calculated to compare the effects of
LUCC on the thermal urban climate. RLST changes from LUCC (increase/decrease) are
derived from the study region’s mean LST and using Equation (10) via increasing pixel
value [35,44,49].

RLSTjk = LSTjk − LSTj mean (10)

where RLSTjk represents the relative temperature of pixel j of class k, LSTjk is the tempera-
ture of cell j of class k, and LSTj indicates the mean value of LST for urban landscape j. If
RLSTk j > 0, the pixel shows a positive contribution of LUCC conversion, and if RLSTk j < 0,
then it is a negative contribution to the thermal environment.

2.6. Cellular Automata–Markov Chain (CA–Markov) Model Analysis

This model is developed based on a Markov stochastic probability matrix for pre-
dicting the transition of one status to another [26,50,51]. Generally, the Markov chain
model is used to simulate transitions, parameters, and trends. It generated probability
transition matrices to predict and classify potential land use/cover change (LUCC) and
urban development scenarios and examined land surface temperature (LST) simulation pat-
terns [20,52,53]. Trends were estimated using Equations (11)–(13) based on the conditional
probability formula.

S(t + 1) = Pij × S(t) (11)

Pij =

 P11
P21
Pn1

P12
P22
Pn2

P1n
P2n
Pn3

 (12)

Moreover, (
0 ≤ Pij < 1 and

N

∑
j=1

Pij = 1, (i, j = 1, 2, . . . . . . .n)

)
(13)

where S(t) is the state of the system at time t, S(t + 1) is the state of the system at the time
(t + 1), and Pij is the matrix of the transition probability in a state.

The cellular automata (CA) and Markov chain model is used to calculate LUCC and
LST’s future scenario by projecting 2025 and 2050. Forecasting LUCC and LST for the
projected period was made through the CA–Markov model using the land use change
modeler (LCM) in Terrset (Clark Labs TerrSet 18.31).

3. Results
3.1. Land Use/Cover Changes (LUCC)

Land use/cover change (LUCC) was generated for the years 2004, 2009, 2014, and
2019 focusing on urban area (UA), vegetation area (VA), forest area (FA), barren land
(BL), cropland (CL), and water bodies (WB). The results in Figure 3 illustrate that an area
of 1743.73 km2 in 2004 and 2651.89 km2 in 2019 fell under UA’s category, indicating a
cumulative change of 5% in UA of about 908.15 km2 from 2004 to 2019. The VA decreased
from 2266.87 km2 to 363.57 km2 for a net decrease of 11%. WB decreased from 559.65 km2

in 2004 to 472.64 km2 in 2019, with an inverse accumulative change of 1%. FA increased
from 7775.58 km2 in 2004 to 7921.90 km2 in 2019, a cumulative increase of 1% during
2004–2019. In 2004, BA was about 511.79 km2 and it was 319.81 km2 in 2019, showing an
inverse change of 1%. At the same time, a 7% net increase was observed in CL from 2004
to 2019.

The kappa coefficient value was above 0.85 for all three classified images. The overall
classification accuracy was 89.56%, 91.89%, 91.86%, and 94.26% for 2004, 2009, 2014, and
2019, respectively.
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According to the statistics (Table 3), about 44% of the urban area remained unchanged
from 2004 to 2019, while 23% loss and 33% gain were observed in LUCC types in the urban
landscape. For vegetation overall, 755.10 km2 (69%) of the area was lost, 288.93 km2 (26%)
was added, and 55.22 km2 (5%) of sites remained unchanged, which clearly shows the
massive changes in urban vegetation.

Table 3. The land area gained, lost, and unchanged (km2) of LUCC classes from 2004 to 2019.

Water % Vegetation % Urban % Forest % Cropland % Barren %

Losses 164.90 27% 755.10 69% 729.97 23% 1896.40 20% 1431.29 21% 228.71 43%
Unchanged 272.87 45% 55.22 5% 1436.27 44% 6337.30 68% 2989.21 44% 67.82 13%

Gains 172.75 28% 288.93 26% 1072.54 33% 1115.74 12% 2321.39 34% 234.92 44%

Based on the change detection map (Figure 4A), about 61.42% of the land use area
remained unchanged from 2004 to 2019. Overall, 38.58% of changes were observed in LUCC
types in the city landscape, in which 3.7% were observed in CL converted into an urban
area, followed by BL (1.23%) into cropland, FA (7.09%) swapped to impervious surfaces,
and CL into FA (6.24%) (Figure 5). A good change was observed in the conversion of BL
(1.22%) and WB (0.78%) into an urban area, cropland (0.92%) converted to urban vegetation,
and 0.54% of agricultural land replaced by impervious land (Figure 4A). Additionally, a
slight change was found in the conversion of WB (0.4%) into the forest area, VA (0.39%)
into impervious surfaces, and BL (0.15%) into FA. Rapid anthropogenic activities have
significantly replaced the natural surface area with semi-natural or impervious surfaces
and other land uses between 2004 and 2019.
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Figure 4. The portion of land use/land cover changes (LUCC), (A) represent the relative proportion (km2) of various classes
of land use cover (LUC) in Beijing during the years of 2004, 2009, 2014 and 2019. (B) shows the cumulative changes in
various land use categories between the three periods of 2004–2009, 2009–2014, and 2014–2019.

3.2. Estimation of Land Surface Temperature (LST)

Land surface temperature (LST) for Beijing city (Figure 3) was estimated with the
minimal and peak value of 7.15–30.05 ◦C in 2004, 6.24–34.09 ◦C in 2009, 11.85–43.98 ◦C in
2014, and 15.08–43.85 ◦C in 2019. Generally, the mean LST investigated was 14.70 ◦C in
2004, whereas it peaked at 26.70 ◦C in 2019. Finally, the LST range is classified into five
various thermal comfort zones (Table 4).
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Table 4. Outdoor thermal comfort sensation classified from LST (◦C) range.

Sr. Ranges (◦C) Thermal Sensation

1 <20 Neutral
2 20–25 Slightly Warm
3 25–30 Warm
4 30–35 Hot
5 >35 Very Hot

The results in Figures 5 and 6 illustrate an area of 968.45 km2 in 2004 and 69.33 km2 in
2019, falling under the neutral category, indicating a cumulative change of −5% in neutral
areas (<20) of about 899.12 km2 from 2004 to 2019. The slightly warm (20–25 ◦C) area
decreased from 9158.75 km2 to 5079.99 km2 for a net decrease of 24%. The area under the
warm (25–30 ◦C) category increased from 5940.89 km2 in 2004 to 8637.82 km2 in 2019, with
an accumulative change of 16%. The hot (30–35 ◦C) area increased from 1137.23 km2 in
2004 to 3362.27 km2 in 2019, with a cumulative increase of 13% during 2004–2019. An
area of 79.91 km2 in 2004 and 129.88 km2 in 2019 fell under the very hot category (>35 ◦C),
indicating a cumulative change of 0.003% of about 55.98 km2 during 2004–2019.
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Apart from global warming and climate change, the city’s surface temperature was
minimal in 2004 because of the proliferation of green space and a low percentage of
impervious surfaces spread around the city center. In 2019, the minimum and maximum
surface temperatures increased due to urbanization.

3.3. Relationship between LUCC and LST

A non-significant negative linear relationship between vegetation and land surface
temperature (LST) was observed with an R-value of −0.155(p > 0.419) (Figure 7). Simultane-
ously, the water index showed a strong negative correlation with land surface temperature,
resulting in an R-value of −0.809 (p = 0.000). A significant positive correlation between
urban areas and LST was found with an R-value of 0.526 (p = 0.003).

3.4. Warming and Cooling Impacts of LUCC from 2004 to 2019

LUCC had warming and cooling impacts on urban climate (Figures 8 and 9). The
overall maximum warming effects of 5.10 ◦C, 4.92 ◦C, and 4.58 ◦C were observed in the
urban area (UA) transformed from barren land (BL), the vegetation area (VA), and agricul-
ture/cropland (CL). Continued urbanization replaced BL with UA and CL, respectively,
which raised the RLST by 2.90 ◦C and 2.84 ◦C. In the forest area (FA) transition by vege-
tation, urban, and barren areas, the mild warming effects of 2.82 ◦C, 2.36 ◦C, and 1.86 ◦C
were quantified. The minimum positive effect on LST was noticed in the conversion of UA
and CL to water bodies.

On the other side, the optimum cooling impact of about −3.20 ◦C, −2.28 ◦C, and
−1.05 ◦C was observed in converting the urban area, cropland, and vegetation area into wa-
ter bodies. A restrained decline in LST of approximately −2.41 ◦C, −1.05 ◦C, and −0.66 ◦C
was quantified in the forest area transformed from urban, cropland, and vegetation areas.

The significant positive influence on the RLST is correlated with the transformation
of forest areas into impervious and urban regions, while the cooling impact is due to
BL and UA being converted into FA. We also investigated moderate changes in surface
temperature in the water bodies and grass/agriculture land converted into barren land
and urban counties.

The minimum cooling impact of about −0.58 ◦C and −0.50 ◦C was observed in
converting FA and VA to agriculture/cropland due to the minimum difference in deciduous
plantation and urban vegetation with cultivated land.
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3.5. Cellular Automata–Markov Chain (CA–Markov) Model Analysis

The combination of cellular automata (CA) and the stochastic transition matrix of the
Markov chain model resulted in LUCC and LST for the projected period of 2025 and 2050
(Figure 10). Map accuracy for the projected land use/cover change for predictive years was
classified by the sufficient kappa coefficient value of 0.97. A decrease of 6% and 11% of
forest cover areas was estimated during 2019–2025 and 2019–2050, respectively (Table 5).
The urban area will expand by 5% (2019–2025) and 8% (2019–2050), adding a specific rise in
relative temperature for 2025 and 2050. Urban vegetation will decrease to 482.27 km2 (3%)
and 436.57 km2 (3%), and cropland will increase by 4% and 5%. Between 2019–2025 and
2019–2050, there would be little change in the increase in barren land and water bodies.

During 2019–2025, the area under the slightly warm (20–25 ◦C) and warm (25–30 ◦C)
categories decreased by about 3.51% and 1.60% (Table 6), which shifted to a positive
increase in the hot (30–35 ◦C) and very hot (>35 ◦C) categories up to 5.51% and 0.01%,
respectively. However, this alarming shift continues under warm and slightly warm areas
with a decrease of about 21.60% and 12.15%. Areas under the hot (30–35 ◦C) and very hot
(>35 ◦C) categories increase by about 26.95% and 1.68%, respectively, during 2025–2050
(Table 7).
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Table 5. Statistics of the predicted LUCC area (km2) for 2025 and 2050.

LC 2025 %age 2050 %age 2019–2025 %age 2019–2050 %age

Water 398.75 2% 455.12 3% −19.85 0% 36.52 0%
Vegetation 309.93 2% 355.63 2% −482.27 −3% −436.57 −3%

Forest 7494.97 46% 6664.78 41% −1042.79 −6% −1872.98 −11%
Urban 2833.20 17% 2808.81 17% 855.17 5% 830.78 8%
Barren 303.28 2% 342.84 2% 24.44 0.3% 64.00 0.9%

Cropland 5024.82 31% 5737.78 35% 665.28 4% 1378.24 5%

Table 6. Statistics of the predicted area (km2) under temperature ranges for 2025 and 2050.

Thermal Sensation LST-2025 %age LST-2050 %age 2019–2025 %age 2019–2050 %age

Slightly Warm 4195.63 25.89 1264.00 7.80 −884.36 −3.51 −3815.99 −21.60
Warm 7842.56 48.38 6133.90 37.84 −795.26 −1.60 −2503.92 −12.15
Hot 4047.47 24.97 8415.76 51.92 685.20 5.51 5053.49 32.46

Very Hot 123.05 0.76 395.06 2.44 −6.83 0.01 265.18 1.69
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Figure 9. Relative land surface temperature (RLST) changes from 2004 to 2019.

Table 7. The LUCC warming effect, percentage contribution in surface temperature, and standardized percentage contribu-
tion (10%) of LUCC types.

LUCC Gain Area (km2) Area (10%) RLST (oC) RLST (10%) UHI UHI (10%)

Urban to Water 35.97 0.10 0.80 0.18 0.28 0.18
Water to Cropland 102.15 0.29 0.99 0.22 0.35 0.22

Cropland to Vegetation 153.91 0.44 1.41 0.31 0.50 0.31
Vegetation to Cropland 1187.49 3.42 1.73 0.39 0.62 0.39

Barren to Forest 26.13 0.08 1.86 0.41 0.66 0.41
Urban to Forest 75.58 0.22 2.36 0.53 0.84 0.53
Water to Urban 130.99 0.38 2.57 0.57 0.92 0.57

Cropland to Urban 623.62 1.80 2.71 0.60 0.97 0.60
Barren to Vegetation 15.75 0.05 2.75 0.61 0.98 0.61
Urban to Vegetation 26.14 0.08 2.82 0.63 1.01 0.63
Barren to Cropland 203.44 0.59 2.84 0.63 1.01 0.63
Urban to Cropland 433.42 1.25 2.90 0.65 1.03 0.65

Barren to Urban 204.61 0.59 4.55 1.01 1.62 1.01
Cropland to Barren 90.92 0.26 4.58 1.02 1.63 1.02
Vegetation to Barren 66.49 0.19 4.92 1.10 1.76 1.10
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4. Discussion
4.1. Implication of Land Use/Land Cover Change for LST

Although relationships between land surface temperature (LST) and land use and
cover change (LUCC) have been studied previously [26,28,54], they lack the application of
remote sensing technology to infer patterns and relationship dynamics. Further, 2004 to
2019 provides a unique, nearly two-decade span of extreme growth and economic change
in Beijing’s large metropolitan area. Moreover, we also simulated these parameters for
2025 and 2050 to provide future urban development plans [5,26,55]. The results provide
insight into testable hypotheses, the quantities of individual contributions of LUCC to
LST in hotspot areas, and potential mitigation measures to combat consequential adverse
effects. The findings have shown that urban sprawl is the primary driving force in land
surface temperatures (LSTs). This radiation and heat exchange is essential in rising urban
heat islands (UHIs) [5,56,57]. Land use and land cover change (LUCC) impact RLST,
especially in urban areas [58]. LUCC is essential to active management for awareness of
anthropogenic climate change and global warming [24,26,59].

Currently, the available literature has shown that land cover classification could
estimate the existing relationship between LST and LUCC [18,22]. UHIs may have been
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the product of some essential factors such as macro/meso-climates, urban morphology,
population growth, geographical and biophysical shifts in surface area, anthropogenic
changes, wind corridors, population challenges, and human lifestyles. We noticed that
there was a significant trend in LUCC between 2004 and 2050.

The massive changes seen in LUCC could be attributed to Beijing’s rapid development
in the 1990s and 2000s. This period was characterized by the intense deforestation and
demotion of cropland for various developmental projects. Agricultural land shifted to use
as impervious surfaces and built-up areas for housing and industry, characterized by a
simultaneous decline in total vegetation cover (VC) [60,61]. This rapid depletion of VC has
a wide range of impacts on natural cooling due to the shading and evapotranspiration pro-
vided by plants and shrubs [62,63]. To bolster this [24,64], the negative linear relationship
between the Normalized Difference Vegetation Index (NDVI) and LST demonstrated that
VC acts as a sink within a UHI because of its cooling effects. This change could eventually
obliterate the processes of surface evaporation and transpiration in plants [65]. Previous
studies have seconded this phenomenon, while its impact on LST reduction in grasslands
and ornamental plants is less than in vegetation covered by forests and urban treebanks
and gardens [36,66,67].

Our results elucidate that land cover has a dominant impact on LST in urban envi-
ronments. The impact values of LUCC such as Urban/Built-up areas, urban vegetation,
water bodies, and forests on their LST vary according to their proportional area [19,68].
Vegetation is shown to play an essential role in mitigating or controlling temperatures in
urban areas [64]. Moisture is added to the surrounding air by evaporation from the top
of water bodies. Previous studies have shown that water bodies play a significant role
in regulating LST in residential areas [69,70]. Urban areas play an essential role in the
development of urban intricate heat flows.

Our study revealed that the vegetation area was not significant since LST has been
significantly influenced by growth in developed regions. This may be attributed to the
upward extension of external expansion, thereby mitigating vegetation’s impact on LST.
Temperature values measured in densely vegetated areas were low. In contrast, the highest
LST values were observed in barren/impervious land compared to other land cover ar-
eas in various urban districts of Beijing [71]. According to previous findings, our results
are primarily that Beijing’s built-up areas have a strong positive linear relationship with
LST [19,61,72]. A higher temperature rise results from the increase in impervious rough,
dark surfaces, including dirt, metal, and asphalt. Due to low reflection and intense solar
radiation uptake, the building material increased LST, which often emits heat day and
night [9,62]. This analysis shows that UHIs have a negative NDVI trajectory [73]. In addi-
tion to urban expansion, the downtown area of Beijing has undergone significant changes.

Government and private parties have revitalized a substantial amount of land for
new residential, commercial, and industrial plants. This has destroyed traditional wooden
houses and the architecture of rice straw roofs and tile roofs and replaced them with
skyscrapers and tall buildings made with impermeable, anti-transpiring non-evaporated
materials such as concrete, glass, and solid aluminum. These materials directly affect heat
fluxes in urban air spaces. Previous studies have shown that LST in China is severely
affected by urban rather than rural systems [73–76], similar to other countries [77,78]. The
conversion of forest and agricultural land into urban territories has also contributed to the
LST increase. The government has moved several factories and companies to the outskirts
of cities to make them more successful in environmental health. The new factories and
subsidiary infrastructures are often placed in well-conditioned agricultural or forest land,
augmenting the LST of that particular zone. Historically, vegetation or forested areas were
considered a fringe line between urban and rural areas to absorb excess heat generated by
automobiles and factories harbored within city limits [6,78].

These results work in concert to establish urban sprawl as the primary factor pro-
ducing an abnormal heat-flux and impacting LST. This radiation and heat exchange is
considered a significant effect in UHIs, which causes a substantial contribution to climate
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change in the city canyon. While LUCC broadly has an intense impact on the relative LST,
anthropogenically induced LUCC increases RLST within the urban micro-atmosphere [38].

4.2. Land Use Conversion and Its Contribution to UHIs

The land use/land cover changes and associated RLST demonstrate the urban cli-
mate’s positive and negative contributions at the standardized scale (10%). For example,
this study reveals that barren land’s transition into metropolitan areas contributes 1.01%
to UHIs. In comparison, the warming effect is 1.23% in converting the 0.59% area, which
is higher than the warming effect. The reasons for such surprising findings may be the
locations of the LUCC close to water bodies and forest land. On the other hand, the conver-
sion of the same area of 0.15% barren land into forest areas contributes a warming effect
of 0.41% to UHIs. Similarly, the transition of barren land into vegetation areas pays about
0.61% to UHIs, while the negative input is −0.07 in reverse change (Table 8).

Table 8. The LUCC cooling effect, percentage rise in surface temperature, and standardized percentage contribution (10%)
to urban heat islands (UHIs).

LUCC Gain Area (km2) Area (10%) RLST (◦C) RLST (10%) UHI UHI (10%)

Forest to Water 78.86 0.06 −3.20 2.69 2.27 −0.23
Water to Forest 68.91 0.05 −2.41 2.03 1.71 −0.17

Cropland to Water 70.70 0.05 −2.28 1.92 1.62 −0.16
Vegetation to Water 36.49 0.03 −1.21 1.02 0.86 −0.09
Cropland to Forest 1041.16 0.79 −1.05 0.88 0.74 −0.07
Vegetation to Forest 68.86 0.05 −0.66 0.56 0.47 −0.04

The overall contribution is higher than the contribution for ventilation, owing to low to
high surface energy. The results show that the warming contribution of the natural surface
to the impervious surface is much more significant than the cooling contribution. Overall,
this study showed that the maximum contribution to warming is caused by vegetation
change, particularly urban forests, to high LST impervious areas. Simultaneously, the
minimum result is converting from an impervious surface to grass/agricultural land
with minimal surface temperature variation. This reveals that increasing green spaces in
urban regions could benefit the urban climate. Simultaneously, the developed sites and
impervious parts have low heat transmission capacity and trapped solar energy that can
boast the UHI/thermal climate.

Recent scientific literature [47] concluded that the overall contribution of up to ~65%
warming impact associated with LUCC is well-matched with the expected warming effect
due to physical interaction across the Indian region, which supports our findings.

Indeed, the maximum cooling contribution is 0.23% in converting forest areas into
water bodies in the land use dynamic process. In comparison, the minimum cooling
effect of 0.04% was observed from vegetation change to forests. The purpose behind the
least contribution of vegetation area is the minimal difference in surface temperature and
proximity to the impervious surface. Meanwhile, the highest cooling is investigated in the
conversion of forest areas to water bodies. At the same time, the most negligible impact
is obtained from the transformation of vegetation areas to forest land. Some land cover’s
cooling contribution is changed into an urban area, forest area, water bodies, vegetation,
and crop/agriculture land.

Similarly, the inadequate literature on LUCC, associated relative land surface temper-
ature, and their percent contribution makes it hard to make the correct analogy. Recently,
a study also seconded our findings by concluding the impact of LUCC on surface tem-
perature and the percent contribution in LST related to LUCC in Donating Lake Area,
China [48].
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5. Conclusions

The present study evaluated LUCC’s influence on the LST in a large urban area of
Beijing, observing the developmental resolution and different socio-economic parameters
using RS data. This research established a link between LST and the urban environment.
Using coefficient and projections analysis, landscape dynamics’ contribution to temperature
was evaluated using the Pearson correlation and CA–Markov model. It was discovered
that increasing the built-up area by 5% increased the temperature by 1%. Increases in
vegetation cover of 10% had a negative correlation as well. For the study period of 2019 to
2050, the rise in land surface temperature (LST) was 7.5 ◦C (10.35%). Overall, the findings
reveal the average warming effect of 2.80 ◦C and the average cooling effect of −1.41 ◦C
of LUCC in Beijing from 2004 to 2019. Due to forest land transformation to impervious
surfaces, the average warming contribution of LUCC to UHI is 0.5%. In comparison, 0.11%
cooling was found in reverse direction shifts. The positive contribution in UHIs due to the
conversion of forest land into impervious surfaces is higher than the negative contribution.

More targeted green efforts should be placed on urban design, infrastructure planning,
and development to negate temperature increases. Enhancing water bodies such as lakes,
canals, waterfalls, and fountains and a significant increase in green spaces such as artificial
parks, gardens, the linear plantation of woody plants, and the promotion of open-concept
areas are all part of this plan. This study indicates that more extensive research is urgently
required to assess changing land use/cover on local and regional climate. Many areas are
rapidly changing due to the expanding effects of modern climate change and progressive
activity. The geographic environment and known weather patterns of Beijing should
be harnessed to promote natural cooling processes. In amalgamation, environmental
education should be accessible to encourage ecological development concerning resource
planning and management. Hence, there is a greater need for green policy intervention
and effective urban planning to control the soaring thermal environment. A quantitative
examination of these parameters should be included in a prospective study.

Additionally, while we discovered that urbanization has a direct effect on LST, the
inverse relationship will reveal the extent to which urbanization affects LST. Future research
should focus on quantifying the impacts of urbanization on LST. This study suggests
intensive research in the future, specifically investigating the proportion of green space and
impervious surfaces and its effects on RLST for sustainable future cities. The present study
provides practical implications for urban landscape planning that requires the rational use
of landscape connectivity between green and impervious surfaces and their impact on LST.
Future urban research could focus on the issue of public health and infrastructure burden
associated with rapid urbanization.
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