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Abstract: Synthetic Aperture Radar (SAR), an active remote sensing imaging radar technology, has
certain surface penetration ability and can work all day and in all weather conditions. It is widely
applied in ship detection to quickly collect ship information on the ocean surface from SAR images.
However, the ship SAR images are often blurred, have large noise interference, and contain more
small targets, which pose challenges to popular one-stage detectors, such as the single-shot multi-box
detector (SSD). We designed a novel network structure, a combinational fusion SSD (CF-SSD), based
on the framework of the original SSD, to solve these problems. It mainly includes three blocks,
namely a combinational fusion (CF) block, a global attention module (GAM), and a mixed loss
function block, to significantly improve the detection accuracy of SAR images and remote sensing
images and maintain a fast inference speed. The CF block equips every feature map with the ability
to detect objects of all sizes at different levels and forms a consistent and powerful detection structure
to learn more useful information for SAR features. The GAM block produces attention weights
and considers the channel attention information of various scale feature information or cross-layer
maps so that it can obtain better feature representations from the global perspective. The mixed
loss function block can better learn the positions of the truth anchor boxes by considering corner
and center coordinates simultaneously. CF-SSD can effectively extract and fuse the features, avoid
the loss of small or blurred object information, and precisely locate the object position from SAR
images. We conducted experiments on the SAR ship dataset SSDD, and achieved a 90.3% mAP and
fast inference speed close to that of the original SSD. We also tested our model on the remote sensing
dataset NWPU VHR-10 and the common dataset VOC2007. The experimental results indicate that
our proposed model simultaneously achieves excellent detection performance and high efficiency.

Keywords: object detection; feature fusion; remote sensing; attention mechanism; Synthetic
Aperture Radar

1. Introduction

As an active remote sensing imaging radar technology, Synthetic Aperture Radar
(SAR) remote sensing has a certain surface penetration ability and can work all day and in
all weather conditions, which makes up for the shortcomings of optical remote sensing and
infrared remote sensing. Therefore, SAR has been widely applied to disaster monitoring,
environmental monitoring, resource exploration, mapping, and military fields. In ship
detection, this technology can quickly collect ship information on the ocean surface, which
is important for marine safety [1].

Popular state-of-the-art object detection algorithms are mainly divided into two cate-
gories: one-stage algorithms and two-stage algorithms [2–5]. At present, one-stage algo-
rithms, such as the You Only Look Once (YOLO) series, fully convolutional one-stage object
detection (FCOS), and single-shot multi-box detector (SSD) [6–10], with both efficiency
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and performance, have gained more favor in several real-world practical applications and
industrial fields. However, unlike images in ordinary target detection tasks, the ship’s SAR
images often have some special characteristics. The images are blurred, have large noise
interference, and contain more small targets. Moreover, the scale of different objectives
may vary greatly. The targets have almost no texture features, resulting in high similarity
between some background entities and the target. Therefore, it is insufficient to deal with
the ship’s SAR images by relying on an object detection structure such as the SSD, which is
directly designed for ordinary images. It is generally believed that there are two obvious
drawbacks of the original SSD. First, the feature representations are inadequate and rough
for final precise locations. Multi-scale features are not fully utilized to generate enough
information for blurry or small targets. Actually, the problem usually belongs to feature
fusion methods. Second, the prior anchors are usually predefined roughly and do not
exactly match those of actual training datasets. In this study, according to the characteristics
of the SAR image, we designed a novel network structure named the combinational fusion
single-shot multi-box detector (CF-SSD), based on the framework of the original SSD. Our
main contributions are summarized as follows:

First, we designed a new feature fusion module named combinational fusion (CF).
Unlike feature pyramid networks (FPNs), CF fuses different feature maps by up-sampling
and down-sampling operations. It enables every feature map to detect objects of all sizes at
different levels. Therefore, the feature maps with CF fusing can complement and support
each other for every target size, forming a consistent and powerful detection structure to
learn more useful information for SAR features. In addition, the fusion process is concise
and efficient.

Second, we designed a cross-layer global attention module (GAM). Unlike other
attention mechanisms, which consider a single layer or a feature map, it considers the
channel attention information of different scale feature information or cross-layer maps. It
can reinforce important information in a single feature map, distinguish the importance
between feature maps at different scales, be performed before the existing feature fusion
modules (e.g., FPN), and be executed independently.

Third, we designed a new loss function called mixed loss that considers the corner
and center coordinates simultaneously. Compared with the original SSD, the new loss
function can more accurately learn the positions of the truth anchor boxes with almost no
additional computing consumption.

The rest of this paper is organized as follows. Section 2 introduces the related work.
Section 3 introduces the structure details and the key parts of the CF-SSD. Section 4
describes the experiment and settings and provides different comparative results on ship
detection experiments by using the CF-SSD and other models, and some resulting examples
are analyzed. Section 5 summarizes the full text.

2. Related Work

Traditional SAR ship detection methods include constant false alarm rate (CFAR) and
its varieties, which detect ship targets by modeling the statistical distribution of background
clutter information [11]. This kind of method is prone to make false detections and miss true
targets in some complex environments, and cannot ensure stable detection performance.
Recently, the convolutional neural network has gradually become the mainstream method
for object detection owing to its excellent ability to extract the texture and contour features
of the original image. It has better adaptability and higher accuracy than those traditional
object detection methods. Deep learning technology is also applied widely in remote
sensing image processing [12,13].

In terms of popular one-stage object detection technology, the earliest detector was
YOLO, which is based on the regression problem; since then, several improved versions,
including YOLO2, YOLO3, and YOLO4, have been put forward. YOLO3 further integrates
many successful tricks of other detectors, including multi-scale feature fusion and the
residual block. The SSD is another influential and fast one-stage detector, which generates
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prediction boxes of different feature maps and finally merges these predictions. The
deconvolutional single-shot detector (DSSD) [14], an improved variant of SSD, obtains
a new feature map through the deconvolution operation on the original feature map,
making full use of the shallow features and replacing the backbone network with the
Resnet-101 [15]. It obtained better accuracy than SSD in the VOC2007 dataset [16] but
lower frames per second (FPS), which is one of the most important evaluation indicators
for the speed of the detector. Further, the rainbow single-shot detector (RSSD) [17] fuses the
initial features by pooling and deconvolution operations, which have forward and reverse
information at the same time. Its FPS is much higher than that of DSSD. RetinaNet [18]
adopts FPN in its network structure and introduces a new loss function, Focal Loss, to solve
the problem of imbalance in the positive and negative sample proportions. RefineDet [19]
refines twice for anchors and combines the advantages of one-stage and two-stage detectors.
Bidirectional pyramid networks (BPNs) [20] propose a bidirectional FPN structure to obtain
a high-quality detector. There are several other interesting works based on SSD, such as
feature fusion single-shot multi-box detector (FSSD) [21], RFBNet [22], SSADet [23], and
F_SE_SSD [24]. Most of them utilize the careful design of feature information fusion
modules.

There has also been a lot of research on ship detection in SAR images through deep
learning technology. Chang [25] proposed an improved YOLOv2 for ship SAR image
processing by merging some of the convolution layers to achieve faster detection. Jin [26]
proposed a lightweight patch-to-pixel convolutional neural network for ship detection via
PolSAR images. It utilized contextual semantic information at all scales, and all feature
maps from the top down are combined to improve the final result. Wei [27] used the high-
resolution detection network HR-SDNET to reduce the loss of ship feature information
and improve the detection performance. Tang [28] introduced a noise-level classifier to
derive and classify the noise level of SAR images and designed a target potential area
extraction module to extract the complete region of potential objects. Chen [29] combined
the separation attention module into YOLOv3 to improve the detection effect of remote
sensing images. Cui [13] proposed the dense attention pyramid network to replace the
traditional pyramid for SAR images. Zhao [30] proposed an attention receptive pyramid to
enhance the relationships among nonlocal features and adjust the information of different
feature maps. Finally, Yu [31] used a two-way convolution method to learn more feature
information through fewer convolution layers and designed a multi-scale mapping output
structure to make more effective use of feature information.

3. Approach

We propose a series of measures to solve the above problem of inadequate feature
fusion of SSD-style one-stage object detectors. To verify the effectiveness of our proposed
methods, we built a new detection model based on the SSD framework. Figure 1 shows an
overview of our model, where the backbone network can be any deep neural network, such
as VGG [32], ResNet, EfficientNet [33], MobileNet [34], CBResNet [35], or DenseNet [36].
In order to ensure fairness and impartiality in the comparison with other algorithms, we
only used ResNet50 as the backbone network. As shown in Figure 1, after the proposed
normalization preprocessing, input images are fed into the backbone network to generate
four feature maps, C2, C3, C4, and C5. Then, the proposed GAM is plugged into the SSD
framework. GAM takes C2, C3, C4, and C5 as input data and generates global channel
weights for them. After integrating the four original feature maps with their own channel
weights, new feature maps, C2’, C3’, C4’, and C5’, are obtained. Then, the CF process is
triggered to merge multi-scale feature information and produce fused features P2, P3, P4,
and P5. Finally, P5 creates four final feature maps with the sizes of 1 × 1, 3 × 3, 5 × 5, and
10 × 10 by continuous convolution operations. P2, P3, and P4 generate two final big feature
maps with the scales 19 × 19 and 38 × 38, respectively. The model would be performed
under the appropriate anchor design and loss function design. To show this more clearly,
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our works are illustrated in Figure 1, which shows four parts: the GAM, CF module, anchor
design, and loss function design.
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Figure 1. The proposed framework of the CF-SSD. The input image is normalized first and then sent to the backbone
network to produce four basic feature maps. Then, the feature maps are converted into new features by the GAM and CF
modules. Our work comprises (I) GAM, (II) CF, (III) anchor design, and (IV) loss function design.

3.1. Global Attention Module

Many types of multi-scale feature fusion, such as FPN, realize the feature fusing layer-
by-layer from the shallowest layer to the deepest layer of the CNN backbone. Many studies
have enabled various improvements of feature fusion in object detection to further promote
detection performance, including EFPN [37], DyFPN [38], and BPN [20]. Unlike those
works, we were interested not in feature fusion but in the step before or after it. Therefore,
we proposed a small block called GAM, containing the fusing channel information of all
the feature maps. It can be plugged before any multi-scale feature fusion module.

Typically, GAM takes a series of features generated from the backbone network
{C2, C3, C4, C5} as input and then outputs the integrated features {C2

′, C3
′, C4

′, and C5
′}.

The process is as follows, and is also shown in Figure 2:

K1 = ∑ concat(avgpool(conv1×1(Ci))) i = 2, 3, 4, 5 (1)

K2 = ReLU( f c1(K1)) (2)

wi = sigmoid( f ci(K2)) (3)

Ci
′ = Ci ⊗ wi (4)

where avgpool denotes the global average pooling operation, concat denotes the concate-
nation operation for multiple vectors, fc is the full connection layer, with sigmoid as its
activation operator, ReLU is the rectified linear unit, and ⊗ is the element-wise multiple
operation on channel dimension. Traditionally, the channel attention mechanism is only im-
plemented on each feature map, just as in SENet [39] or CBAM [40]. It obtains new feature
maps with a stronger feature description by weighting the channels. The proposed GAM is
different from these channel attention processes. GAM takes all the features into the full
connection layer and outputs the weights of the channels of all the features. Therefore, the
process is global-oriental, and the output weights can carry potential global information.
In other words, these weights contain not only the important information of channels of
individual maps but also the importance ratio between different feature maps. The reason
for doing this is to make the next step, FPN or another multi-scale feature fusing module,
more effective. By ignoring GAM, we need to perform feature fusion operations such
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as FPN directly on the multi-scale features {C2, C3, C4, C5} generated from the backbone
network. For example, we will achieve new features {P2, P3, P4, P5} after FPN, and P2 can
be seen as the fusion of multiple features:

P2 = C2 ⊕ C3 ⊕ C4 ⊕ C5 (5)

Here, the multiple features are seen as equally weighted. Therefore, P2 cannot reflect
the difference of importance between different feature maps. When GAM is added, the out-
put features {C2

′, C3
′, C4

′, C5
′} carry the potential weights for different features. Therefore,

P2 can be approximated as follows:

P2 = C2
′ ⊕ C3

′ ⊕ C4
′ ⊕ C5

′

= α2C2 ⊕ α3C3 ⊕ α4C4 ⊕ α5C5
(6)

We consider that fusion feature P2 in Equation (6) should be better than that in
Equation (5) for its additional information on the weights of different features. Through
the GAM, both the channel attention and the feature attention are retained. By attaching
the attention weights of multi-scale features, we think that the important detailed features
from shallow layers are not easy to be covered by semantic information from deeper layers
in the subsequent fusing process.
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Figure 2. The structure of GAM. The inputs from the backbone are concatenated into a vector after
1 × 1 convolution operations and average pooling operations. Then, through linear layers, the weight
vectors for every channel of every feature map are obtained.

3.2. Combinational Fusion

Here, we suggested a new feature fusion process called CF, as shown in Figure 3. It
is unlike existing feature fusion methods, such as FPN, which walks a top-down fusion
path from the deep layer to the shallow layer, or BiFPN [41], which contains two fusion
steps with a top-down path and a bottom-up path, separately. The CF module also focuses
on bi-directional fusion of feature maps from different layers, but it performs them at
the same time. The features {C2

′, C3
′, C4

′, C5
′} from the GAM are taken as inputs of

the CF module. They are first transformed into the same dimensions of 512 by 1 × 1
convolutional operations. Then, new features {P2, P3, P4, P5} are obtained through a series
of sampling and combinational fusion processes, as in Equations (8)–(10). Here, the up-
sampling and down-sampling processes adopt an interpolate operator with a ‘bilinear’ and
3 × 3 convolution operator with stride = 2, respectively. Finally, conv3 × 3 operations are
performed for smoothing the fusion results.
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convolution to the same dimension. Then, combinational fusions among them are performed by
up-sampling and down-sampling for different scales.

The big maps from the shallow layers can locate the object well and preserve more
details of targets, whereas the small maps from the deeper layers have a larger receptive
field and can detect large and medium objects well. Therefore, P3 can recognize various
targets better than C3

′ and can detect small targets better than C4
′ and C5

′, the same as in
FPN. However, it is not enough to rely on a single feature map, P3, for detecting small and
occluded targets. Through combinational fusion, these feature maps can assist each other to
detect targets of different scales. For example, P5 is mainly used to detect medium and large
targets, but it can also provide some useful information for detecting small and occluded
targets as a result of fusing C4

′. P3 is mainly used to detect small and occluded targets, but
it can also help detect large, fuzzy, and medium targets as a result of fusing C5

′ and C4
′.

Note that the CF is performed in one step, which is different from the other bi-directional
fusion methods with multi-step fusion, such as BiFPN and PAnet [42]; therefore, it is much
more efficient and concise.

Ci
′ = conv1×1(Ci

′) i = 2, 3, 4, 5 (7)

C3
′ = concat(C3

′, upsampling(C4
′), upsampling(C5

′), downsampling(C2
′)) (8)

C4
′ = concat(C4

′, downsampling(C3
′), upsampling(C5

′)) (9)

C5
′ = concat(C5

′, downsampling(C4
′)) (10)

Pi = conv3×3(Pi) i = 2, 3, 4, 5 (11)

3.3. Reducing Convolution Computation

In the CF-SSD structure, it is inevitable to add several convolution operations, such
as 3 × 3 convolution. These convolution operations will greatly increase the amount
of computation and significantly reduce the inference speed. Therefore, we adopted
bottleneck blocks similar to InceptionV2 [43] to modify some convolution operations.
Figure 4 shows that how to transform feature maps with C × W × H into C′ × W × H
by convolution operations. Scheme (a) uses the conv3 × 3 convolution operation directly,
which produces about 9 × C × C′ × W × H multiplication operations. Scheme (b) first
uses conv1 × 1 to reduce channels to half, and then uses conv3 × 3, which makes about
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0.5 × C × C′ ×W × H + 4.5 × C′ × C′ ×W × H multiplication operations. When C ≥ C’,
the convolution computation of (b) is less than about 55% of that of (a). Scheme (c) uses
two asymmetric conv1 × 3 and conv3 × 1 to replace conv3 × 3 in (b); hence, it can achieve
a computation cost that is lower than (b). We applied schemes (b) and (c) into Equation (11)
of the CF module and used those convolution operations to produce feature maps with the
sizes of 1 × 1, 3 × 3, and 5 × 5.
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3.4. Anchor Design

In the original SSD, the size of the prior anchor of the feature map of layer i is defined as:

Sk = Smin +
Smax − Smin

m− 1
(k− 1), k ∈ [1, m] (12)

The default values of Smin and Smax are 0.2 and 0.9, respectively. From Equation (12),
Sk ∈ {20, 37, 54, 71, 88}. For 300 × 300 input sizes, the prior anchor sizes of SSD are
Sk ∈ {30, 60, 112, 162, 213, 264} and Sk+1 ∈ {60, 111, 162, 213, 264, 315}. The default prior
anchor sizes are mainly suitable for some common detection datasets, such as the VOC
dataset, but not for all the datasets, and this is because of the great variation in target sizes
in different datasets. However, in the SSDD dataset, the small and medium targets account
for a large proportion, and more than 70% of the object size is less than 20% of the original
image size. The default prior anchors do not cover all the scales, thus making the speed
and accuracy of training poorer. To avoid the mismatch between prior anchor sizes and
target sizes, we set Smin and Smax as 0.1 and 0.5, respectively. The growth step, δ, of the
feature maps is as follows:

δ =
bSmax × 100c − bSmin × 100c

m− 1
=

50− 10
4

= 10

Then, according to Sk = Smin × 100 + δ, Sk ∈ {10, 20, 30, 40, 50}. For 300 × 300 input
sizes, the prior anchor sizes are Sk∈ {15, 30, 60, 90, 120, 150} and Sk+1 ∈ {30, 60, 90, 120, 150, 180}.
Table 1 shows that the adjusted prior box sizes will better match the SSDD dataset than the
prior anchor of the original SSD. There are no default prior anchors of the original SSD to
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match those tiny object sizes of less than 1.0% of the scale of the image sizes, which should
influence the training convergence speed and effect.

Table 1. The scale matches of prior anchor area and object area of the SSDD dataset.

Anchor Setting
The Ratio of Object Area to Image Area

<0.004 0.004–0.01 0.01–0.05 ≥0.05

SSDD dataset 3 3 3 3

default prior anchor 8 8 3 3

adjusted prior anchor 3 3 3 3

3.5. Normalization Parameter Setting

Usually, before being sent to the training model of detection, the input image needs to
undergo normalization preprocessing. The normalization parameters, such as mean and
SD, should be set in advance. We randomly sampled a part of images from the training
set and then calculated the mean and SD of each channel. The values of mean and SD are
used as normalization parameters for data normalization preprocessing. Owing to the
randomness of sampling, the values will be slightly different each time, but the differences
have little effect on the final result.

3.6. Mixed Loss Function Design

The loss function in this paper is shown in Equation (13). It is divided into three parts:
position loss, Lloc, confidence loss, Lconf, and center position loss, Lloc_c. Lloc uses smoothL1
to calculate the error of coordinates between the real anchor and the predicted anchor, as in
Equation (14). Lconf uses softmax loss to describe classification accuracy in Equation (16),
which is similar to the SSD.

L(x, c, p, l, g) =
1
N
(Lcon f (x, c, p) + αLloc(x, l, g) + βLloc_c(x, lcx,cy, gcx,cy)) (13)

Lloc(x, l, g) =
N

∑
i∈Pos

∑
m∈{lx,ly,rx,ry}

xk
ijsmoothL1(lm

i − gm
j ) (14)

smoothL1 =

{
0.5x2 i f

∣∣x∣∣< 1
|x|−0.5

(15)

Lcon f (x, c, p) = −
N

∑
i∈Pos

xk
ij p log(ck

i )− ∑
i∈Neg

(1− p) log(c0
i ) (16)

Here, c and p are the target class and the predicted confidence of the target class,
respectively. l and g are the predicted position of the prior anchor and the position of
ground truth, respectively. xk

ij ∈ {0, 1} is an indicator function for class k, which equals 1
when the prior anchor i matches the ground truth j, and equals 0 otherwise. lx and ly, rx
and ry, and cx and cy are the top-left, the bottom-right, and the center coordinates of the
anchor, respectively.

Lloc_c uses L2 loss to describe the error between the center coordinates of the real
anchor and the predicted anchor, as in Equation (17). Lloc_c and Lloc together constitute the
loss of the position and complement each other. As in Figure 5, the Lloc values of (a), (b),
and (c) are probably the same; hence, the model cannot distinguish between them only by
Lloc loss. However, their Lloc_c values are different, and the predicted anchor of (c) has the
smallest loss by comparison, which is in line with our expectations. The Lloc definition of
the original SSD includes the center coordinates and the width and height of the anchor. In
Figure 5d,e, there are some deviations in the width and height in (d) and some deviations
of the center coordinates in (e) between the real anchor and the predicted anchor. From the
Lloc loss of the original SSD, they are probably the same, but (d) is always considered better
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in most cases. When using the proposed Lloc_c and Lloc definitions, (d) obtains a smaller
loss value than that of (e), which is what we expect.

Lloc_c(x, lcx,cy, gcx,cy) =
N

∑
i∈Pos

(lcx
i − gcx

i )2 + (lcy
i − gcy

i )
2

(17)
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Equation (14) are probably the same. In (d,e), the Lloc values of the original SSD loss, which contains the width loss, height
loss, and center loss, are probably the same.

3.7. Training and Inference

Data augmentation: In order to provide our model with stronger generalization ability
and to reduce the risk of over-fitting, there are preprocesses for the original training dataset
before training, as follows: (1) normalization: this accelerates the convergence speed of
gradient descent, (2) random flip: this flips the image randomly by a certain probability,
(3) random expansion: this expands the image with the maximum expansion ratio of 4 and
the RGB filling value, (4) random crop: this crops the image randomly to a certain size,
and (5) random distortion: this performs random distortion on the image for brightness
within the range [0.875, 1.125], contrast within the range [−0.5, 0.5], and saturation within
the range [−0.5, 0.5].

CNN backbone architecture: We chose ResNet50 pre-trained on ImageNet as the back-
bone network in our experiments. For ensuring fairness in the experiment comparison, we
use original ResNet50 as the backbone network, as in many other detectors. Therefore, in
our model, the feature maps from the backbone network are directly generated from the
original ResNet50 structure.

Optimization: For the SSDD dataset, we set the optimization parameters for 300 × 300
input size. Some training parameters vary for different datasets, such as max_iter and
milestones. The training is completely fine-tuned for 30,000 iterations, with the batch
size being 8. The base learning rate is set to 0.001 and then decreased to 0.0001 after
20,000 iterations. We used the stochastic gradient descent (SGD) method to optimize the
model, with the value of momentum and weight decay being 0.9 and 0.0005, respectively.
All the models were trained and optimized end-to-end. As we can see, these parameters
are set with common values adopted in many existing related research works and have no
bias against the proposed model.

Sampling balance: After anchor matching, the ratio of positive and negative anchors
is imbalanced. The number of negative ones is much greater than that of the positive
ones, which causes the effect of positive samples to become small in back propagation. We
sampled a subset of negative anchors to keep the ratio of positive and negative ones as 1:3
for training, which is similar to that for the original SSD. The specific method is to select the
part of negative anchors with the largest loss, which is three times the number of positive
anchors.

Inference: After being obtained through the detector, the predicted boxes with a
confidence under the threshold (e.g., 0.5) or belonging to the background are first filtered
out. Then, we ranked them in descending order according to their confidence values,
and only chose the top-k (e.g., 400) predicted boxes in the NMS step. Inference speed
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and performance are both our goals. Therefore, we hope that the inference speed of the
proposed model is real-time and more than or at least close to the fastest speed of the
SSD-style models.

4. Experiments

In our experiments, the performance of the proposed model was tested on two remote
sensing object detection benchmarks that have been used in many prior studies: the
SAR SSDD dataset [44] and the NWPUVHR-10 dataset [45]. The SSDD dataset contains
1160 SAR images and 2456 ships, with a 1–15 m resolution, as well as a format processed as
the Pascal VOC 2007 dataset. There are ship targets in large sea areas and coastal areas,
with 2.12 ships per image. NWPUVHR-10 is a 10-class geospatial object detection dataset,
which contains 650 high-resolution remote sensing images manually annotated by experts,
with each image containing at least one target to be recognized. These images were cropped
from Google Earth, with spatial resolutions from 0.5 to 2.0 m, as well as the Vaihingen
dataset, with a 0.08 m spatial resolution. For both the datasets, we selected 70% of the
original images as the training set and 30% as the testing set. To ensure consistency of
comparison, all models in the experiments used uniformly divided training and test sets.

The experiments were performed in a hardware environment with Intel i7 CPU and
RTX Titan GPU. CUDA9.0 and cuDNN7.4 were used as the GPU acceleration library. The
programming language used was Python3.7. The deep learning framework paddlepaddle
(≥1.8 version) and paddleDetection toolboxes were selected to build the model. The
original sizes of the image data in the experiment were different, but they were uniformly
resized to 300 × 300 or 512 × 512 before being input to the model.

4.1. Evaluation Metrics

Following common practice, the evaluation metric of the experiments was the mean
average precision (mAP), as in Equations (20)–(21), which was calculated from precision, p,
and recall, r, where p denotes the proportion of positive samples in all the predicted positive
ones, and r denotes the proportion of the samples that are both positive and predicted to
be positive in all the positive samples. K is the number of categories.

p =
TP

TP + FP
, (18)

r =
TP

TP + FN
, (19)

AP =
∫ 1

0
p(r)dr, (20)

mAP =
∑K

i=1 APi

K
. (21)

Here, TP is true positive, FP is false positive, and FN is false negative. In this test, if
the Intersection Over Union (IOU) between the prediction area and ground truth area was
higher than 0.5, it was defined as TP. If the IOU was lower than 0.5, it was defined as FP.
The actual target that was not detected was defined as FN.

4.2. Comparative Experiment
4.2.1. Test on VOC2007 Dataset

To verify the validity and generalization of the model, we used the Pascal VOC2007
dataset to validate the model’s ability to detect on common datasets. Table 2 presents
the experimental results of classical architectures, some recent state-of-the-art detectors,
and our CF-SSD on the VOC2007 test. Under a small input size of 300 × 300, CF-SSD
achieved 80.9% mAP, with a ResNet50 backbone and a fast inference speed. It outperformed
most one-stage detectors shown in Table 2, such as RSSD300, DSSD320, RefineDet320,
BPN320, and RFBNet300. In addition, Table 2 includes some recent two-stage detectors



Remote Sens. 2021, 13, 4781 11 of 19

based on the ResNet101 backbone and 600 × 1000 input size, such as R-FCN, R-FCN
Cascade, and CoupleNet. Our model obtained excellent Map results under the 300 × 300
input size, exceeding most other models in Table 2. Although a few models such as
Cascade R-CNN achieve higher precision than our model, they have larger input size
and run slower. Therefore, CF-SSD achieved almost excellent results of accuracy and
efficiency, simultaneously.

Table 2. Comparison of the results of various algorithms on VOC2007.

Method Backbone Input Size FPS mAP

Faster RCNN [4] VGG16 600 × 1000 7 0.732
Faster RCNN [4] ResNet101 600 × 1000 2.4 0.764

ION [5] VGG16 600 × 1000 1.25 0.765
R-FCN [46] ResNet101 600 × 1000 9 0.805

R-FCN Cascade [2] ResNet101 600 × 1000 7 0.810
CoupleNet [47] ResNet101 600 × 1000 7 0.817

YOLOv2 [7] Darknet19 352 × 352 81 0.737
YOLOv3 [8] ResNet34 320 × 320 − 0.801
SSD300 [9] VGG16 300 × 300 46 0.772

DSSD320 [14] ResNet101 320 × 320 9.5 0.786
RSSD300 [17] VGG16 300 × 300 35 0.785
FSSD300 [21] VGG16 300 × 300 36 0.788

RefineDet320 [19] VGG16 320 × 320 40 0.800
RFBNet300 [22] VGG16 300 × 300 − 0.807
AFP-SSD [48] VGG16 300 × 300 21 0.793
F_SE_SSD [24] VGG16 300 × 300 35 0.804
BPN320 [20] VGG16 320 × 320 32 0.803
CF-SSD300 ResNet50 300 × 300 33 0.809

4.2.2. Test on SSDD Dataset

The SSDD dataset is one of the main test datasets. Some data are shown in Figure 6,
which shows small ship targets in large sea areas, blurred ship objects, ship targets in coastal
areas, and ship targets in some complex background similar to themselves. Detection in
these images poses challenges in accurately identifying ship targets.
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Ablation study: We performed a series of ablation experiments on the SSDD dataset to
observe the effect of different components of CF-SSD, as shown in Table 3. We built the
baseline model inspired by the SSD with the pre-trained backbone VGG16. The original
SSD in Table 3 denotes the SSD with the default prior anchors, and the SSD denotes the
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SSD with the revised prior anchors, as in Section 3.4. On adding the CF and adjusting the
anchor setting, the SSD + CF model achieved a significant improvement over the baseline
SSD. Of course, when combining CF, mixed loss, and GAM, the best result was obtained.
In contrast, the contribution of GAM was relatively small. In addition, we replaced GAM
with the Squeeze-and-Excitation (SE) [39] block and the Spatial Attention (SA) [40] block to
observe the effects of the two blocks. The SE block is a channel attention mechanism for
acquiring channel weights, and the SA block is a spatial attention mechanism from CBAM
for acquiring pixel weights. The last two rows of Table 3 illustrate that neither of them
could effectively improve the model based on CF and mixed loss.

Table 3. Results of different components of CF-SSD on the SSDD dataset.

Component mAP

Original SSD 0.8822
SSD 0.8871

SSD + CF 0.8994
SSD + CF + Mixed loss 0.9011

SSD + GAM + CF + Mixed loss 0.9030
SSD + SE + CF + Mixed loss 0.9003
SSD + SA + CF + Mixed loss 0.9002

Reducing convolution computation test: In Section 3.3, we presented a few structures,
such as those shown in Figure 4b,c, to replace the conv3× 3 operations in order to effectively
decrease the computational cost. In fact, several other structures were also tested in our
experiments to verify their effects and efficiency, as shown in Figure 7. Figure 7c–e shows
two branches with convolution operations and concatenates them as outputs so as to extract
more meaningful features by multi-way paths. However, through some experiments, we
found that there was little difference in their final accuracy results and inference speeds.
Figure 7c–e does not show any advantages over Figure 7a,b. Therefore, there is no need
to list the comparison results here. It is worth mentioning that compared to the simple
scheme shown in Figure 4a, the structures shown in Figure 7 were all obviously superior in
inference efficiency.
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Comparative experiment: Table 4 presents the experimental results of recent excellent
detectors and our CF-SSD on the SSDD dataset, with small input sizes such as 300 × 300 or
384 × 384. The models include some improved detectors based on SSD, such as RetinaNet,
anchor-free detectors such as FCOS, and some other famous models. For comparative
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fairness, these models only use two backbones: ResNet50 or VGG16. Although the ex-
perimental results fluctuate slightly, CF-SSD achieved a better mAP result and inference
precision than most other detectors. In our experiments, YOLO and FCOS detectors also
achieved excellent mAP values. The fourth column of Table 4 shows the inference speeds
of CF-SSD and the other detectors. CF-SSD with the ResNet50 backbone also did well to
obtain a higher FPS, indicating that it is fully satisfactory for many real-time applications.
The CF-SSD was not the fastest detector, but considering the inference accuracy and infer-
ence efficiency simultaneously, it achieved excellent tradeoffs. Particularly, compared to
the variants of the SSD, CF-SSD was superior.

Table 4. Comparison of the results of various algorithms on the SSDD dataset.

Method Input Size Backbone FPS mAP

SSD [9] 300 × 300 VGG16 49 0.887
SSD+FPN 300 × 300 ResNet50 40 0.896
FSSD [21] 300 × 300 VGG16 38 0.894

RetinaNet384+FPN [18] 384 × 384 ResNet50 24 0.878
RetinaNet480+FPN [18] 480 × 480 ResNet50 19 0.896

Faster RCNN [4] 320 × 320 ResNet50 5 0.888
FCOS+FPN [10] 384 × 384 ResNet50 16 0.901

CF-SSD 300 × 300 ResNet50 35 0.903

Visualization evaluation: Figure 8 shows the visual detection results of some different
detection methods with SSD, SSD+FPN, RetinaNet480, and CF-SSD. It can be seen from
the diagram that (a, b) small target in large sea area, (c, d) complex background near the
shore, and (e, f) blurred ship target are common samples, which are also difficult points in
SAR ship detection. The high noise signals and blurred pixels of SAR images made small
target detection more difficult. Near-shore targets are often close to the shore; hence, their
detection could easily be disturbed by a complex background. The figure shows that SSD
performed poorly in the detection of small targets and near-shore targets, SSD+FPN missed
some blurred ship targets, and RetinaNet did not do well enough on small target detection
and made some false detection. RetinaNet showed some advantages in some difficult
targets, as shown in Figure 8d, and the SSD inferred faster than the others. Considering all
the aspects, CF-SSD had a better comprehensive performance.
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4.2.3. Test on NWPUVHR-10 Dataset

We also conducted experiments on the NWPUVHR-10 dataset to verify the validity
and generalization of CF-SSD. The NWPUVHR-10 dataset contains 10 classes of objects:
airplane, ship, ST, BD, TC, BC, GFT, harbor, bridge, and vehicle. The dataset contains many
small and medium targets, and shows different scales of objectives. There are similarities
between some background units and targets in texture or shape. The most optimization
parameters of the experiments for NWPUVHR-10 were in the SSDD dataset. Particularly,
the base learning rate was 0.001 for the first 200 epochs, with 300 warmup steps and decays
to 0.0001 for the latter 50 epochs.

Comparative experiment: Table 5 presents the experimental results of some recent state-
of-the-art detectors and our CF-SSD on the NWPUVHR-10 dataset, with big input sizes
such as 512 × 512 or 600 × 1000. Most results are cited from published literature, while the
others are our experimental results. The compared models included Faster RCNN, R-FCN,
Multi-scale CNN, RetinaNet, and YOLOv3. CF-SSD achieved 90.6% mAP, superior to any
detector listed in Table 5, and with a fast inference speed.

Table 5. Comparison of the results of various algorithms on NWPUVHR-10.

Method Input Size Backbone Inference Time (s) mAP

R-P-Faster RCNN [49] 512 × 512 VGG16 0.155 0.765
SSD512 [9] 512 × 512 VGG16 0.061 0.784

Deformable R-FCN [50] 512 × 512 ResNet101 0.201 0.791
Faster RCNN [4] 600 × 1000 VGG16 0.16 0.809

Deformable Faster
RCNN [51] 600 × 1000 VGG16 − 0.844

RetinaNet512 [18] 512 × 512 ResNet101 0.17 0.882
RDAS512 [52] 512 × 512 VGG16 0.057 0.895

Multi-scale CNN [53] 512 × 512 VGG16 0.11 0.896
YOLOv3 [8] 512 × 512 Darknet53 0.047 0.896
FMSSD [54] 512 × 512 VGG16 − 0.904
CF-SSD512 512 × 512 ResNet50 0.084 0.906
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Visualization evaluation: We conducted a qualitative comparison of CF-SSD, SSD+FPN,
and SSD with input size 512 × 512 on the ship objects of NWPUVHR-10 dataset. Figure 9
shows some examples of their detection outputs. In Figure 9a–c, it is clear that in the back-
ground of the empty ocean, SSD512 and SSD+FPN missed some offshore small ship targets.
SSD+FPN sometimes may even miss some not-so-small targets, as shown in Figure 9a,
which reflects its instability. Moreover, Figure 9d–f show that with SSD512, it is easy to
miss those docked ships due to interference from nearside background units. In contrast,
CF-SSD512 may have detected these targets more easily than the others. We think that
because different weights for multi-scale features are lacking, some important detailed
features are not covered by semantics from deeper layers in FPN fusing. Furthermore, the
more detailed information cross-layers in CF also help us to tackle small or fuzzy objects.
These factors may make CF-SSD512 more effective and comprehensive, with a stronger
interference resistance and higher accuracy.
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ship, (b) offshore ship, (c) offshore ship, (d) inshore and docked ship, (e) inshore and docked ship,
(f) docked ship.
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4.3. Error Analysis and Discussion

Although the proposed CF-SSD improved the detection accuracy, it still caused some
errors and missing cases. Figure 10 shows some failed detection samples. As shown in
the first and second columns of Figure 10, some objects with high noise and complex
background were missed. This noise was inherent in SAR itself. In the radar echo signals,
the gray values of adjacent pixels would fluctuate randomly within a certain range for their
coherence. The noise may make some background units similar to the targets, making the
detection even harder. The CF-SSD needs to strengthen its capacity to tackle this problem.
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As in the third column of Figure 10, some small or blurry objects were missed. The
problems are difficult to solve perfectly owing to the limited resolution of input features.
One straightforward and possibly effective approach is to employ larger feature maps
with more information to perform detection, as in some recent research. For example, we
may add a feature map with 75 × 75 size into SSD300 to improve the capability of small
object detection, whereas the largest feature size of the original SSD300 is only 38 × 38.
However, this method will significantly increase computational complexity, training cost,
and inference cost. In addition, the experimental comparisons were also unfair under
different sizes of input features for different algorithms. Therefore, in this paper, we only
used the same feature sizes consistent with the original SSD and many other one-stage
models. In general, the focus of these difficult cases is still on how to extract more effective
features of the limited-resolution inputs and on how to define a more appropriate loss
function, which we plan to examine in our future work.

5. Conclusions

Ship detection of SAR images is a challenging task due to fuzzy images, sparse objects,
and strong noise interference. In this paper, we presented a novel single-shot one-stage
detector, the CF-SSD, for SAR ship detection, which tries to utilize GAM, CF, and mixed
loss to achieve better performance. To consider the importance of different feature maps
derived from the backbone, which is convenient for subsequent layer fusing, the GAM
integrating cross-layer channel attention was proposed. To further improve the fusion
effect, we proposed the CF module by fusing the combination and crossover layers to
ensure that each feature map has more target information. To more accurately locate
the prediction anchor, we proposed the mixed loss instead of the original SSD loss to
describe the prediction deviation more comprehensively. The experimental results show
that compared with other models, our model achieved better tradeoffs between detection
performance and inference speed. In addition, although the three modules are used in the
SSD framework in the paper, they can also be embedded in other detection frameworks
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and can be used individually. The CF module expresses a new way of integrating feature
maps. The GAM indicates a modification of the SE module from a global perspective.
Mixed loss acts as a supplement to the original SSD loss.

In our future work, our model will include the following aspects for further research
and improvement: (1) a special module for anchor refinement, such as the region proposal
network (RPN) [4], which can roughly correct the position of the anchor, (2) a better loss
function that considers hard examples of mining, and (3) a model structure that can extract
more effective features of blurred and tiny objects from SAR images.
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Abbreviations
The following abbreviations are used in this manuscript:
CF-SSD Combinational Fusion Shot Multi-box Detector
GAM Global Attention Module
CF Combinational Fusion
SAR Synthetic Aperture Radar
FCOS Fully Convolutional One-Stage Object Detection
YOLO You Only Look Once
SSD Single-Shot Multi-Box Detector
CNN Convolutional Neural Network
FPN Feature Pyramid Network
R-CNN Regions with CNN Features
DSSD Deconvolutional Single-Shot Detector
RSSD Rainbow Single-Shot Detector
FSSD Feature Fusion Single-Shot Multi-box Detector
FMSSD Feature-Merged Single-Shot Detector
FCN Fully Convolution Network
ION Inside-Outside Net
PANet Path Aggregation Network
BPN Bidirectional Pyramid Network
BiFPN Bidirectional Feature Pyramid Network
EFPN Extended Feature Pyramid Network
CBAM Convolutional Block Attention Module
SE Squeeze and Excitation
RPN Region Proposal Network
FPS Frames Per Second
ReLU Rectified Linear Unit
BN Batch Normalization
IOU Intersection Over Union
TP True Positive
FP False Positive

https://pan.baidu.com/share/init?surl=E8ixqK5AVfXc98UgQmpqaw
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FN False Negative
NMS Non-Maximum Suppression
SGD Stochastic Gradient Descent
GPU Graphics Processing Unit
RPN Region Proposal Network
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