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Abstract: The total suspended solid (TSS) concentration (mg/L) is an important parameter of water
quality in coastal waters. It is of great significance to monitor the spatiotemporal distribution and
variation of TSS as well as its influencing factors. In this study, a quantitative retrieval model of
TSS in Jiaozhou Bay (JZB) was established based on Landsat images from 1984 to 2020 (coefficient
of determination (R2) = 0.77, root mean square error (RMSE) = 1.82 mg/L). In this paper, first, the
long-term spatiotemporal variation of TSSs in JZB is revealed and, next, its influencing factors are
further analyzed. The results show that the annual average TSSs in JZB reached their highest level in
1993 and their lowest level in 2016, showing a decreasing trend during the past decades. The TSSs
were high in spring and winter and low in summer and autumn. The spatial distribution of the TSSs
in JZB was similar at different timepoints, i.e., high in the northwest and gradually decreasing to the
southeast. Tidal elevation exerted a significant influence on the daily variation of TSSs, and wind
speed had a significant influence on the seasonal variation of TSSs. The Dagu River’s discharge only
affected the TSSs at the river mouth. Tidal elevation, river discharge, and wind speed were major
influence factors for TSSs’ variation in JZB. The results showed that the empirical model based on
Landsat satellite data could be used to effectively monitor the long-term variation of TSSs in JZB.

Keywords: JZB; total suspended soils; ocean color; Landsat

1. Introduction

Jiaozhou Bay (JZB) (35◦38′–36◦18′N, 120◦04′–120◦23′E) is a semi-enclosed bay on
the south coast of the Shandong Peninsula, China. It is located between the Shinan and
Huangdao regions of Qingdao City, with a trumpet-shaped exit connected to the Yellow Sea
(Figure 1). JZB covers an area of nearly 500 km2, with a narrow entrance, deep channels, low
turbidity, weak tides, and low sea waves. As a natural port, it promotes the development of
the transportation industry of Qingdao [1]. Bounded by the southern end of Tuandao and
the northern end of Xuejiadao, the bay mouth is about 2.5 km wide. JZB is about 27.8 km
wide from east to west and 33.3 km long from north to south. The coastline is about 163 km
long, and the tidal flat area is about 125 km2. However, with the process of urbanization of
Qingdao City, the area and coastline length of JZB are decreasing and the total suspended
solid (TSS) concentration is also changing [2].

As one of the important parameters of coastal and inland water environmental quality,
the study of TSSs is of great significance. On the one hand, TSSs play an important role in
the indication of pollution levels and the accurate estimation of soil erosion; on the other
hand, TSSs reduce the light energy entering the water body, affect the growth of aquatic
plants, and control the primary productivity of phytoplankton [3]. The TSSs in JZB have
always been a concern for scientists and managers. Zhang et al. [4] studied the spatial
distribution and seasonal variation of TSSs in JZB from 1994 to 1998 using field-measured

Remote Sens. 2021, 13, 4796. https://doi.org/10.3390/rs13234796 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-6080-8923
https://orcid.org/0000-0002-9984-366X
https://doi.org/10.3390/rs13234796
https://doi.org/10.3390/rs13234796
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13234796
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13234796?type=check_update&version=2


Remote Sens. 2021, 13, 4796 2 of 16

data, and studied the main influencing factors of TSS. Bi et al. [5] used flow cytometry
and other methods to study the distribution characteristics and influencing factors of
suspended particulates of JZB in summer. Although the traditional field measurement
method can reveal accurate information for a specific location, it is time-consuming and
labor-intensive, and cannot reflect the temporal and spatial distributions of TSSs. Remote
sensing technology, as an alternative, is time-saving, cost-effective, and highly efficient. It
can be used to ascertain the distribution of the TSS concentration on a large scale, and offers
better spatial and temporal resolution than the traditional methods. With these advantages
in mind, previous studies have proposed many remote sensing retrieval methods for TSS
monitoring. The empirical algorithm is simple in form and convenient in application,
and has been proposed and widely used. Yu et al. [6] established an empirical algorithm
retrieval model to study the TSSs in the Yellow Sea based on Moderate Resolution Imaging
Spectroradiometer (MODIS) data, and analyzed the overall distribution characteristics and
seasonal variation of the TSSs. To improve on the accuracy of this approach, some studies
have also used semi-analytical algorithms that combine empirical equations, radiation
transmission models, and bio-optical models. Zhang et al. [7] established a semi-analytical
algorithm for studying the TSSs in the Yellow Sea and East China Sea based on MODIS
satellite data and field-measured data. Hou et al. [8] constructed a semi-analytical model
of the TSSs in JZB based on the data from three different satellites, along with the field-
measured data from 2001 to 2015.

Figure 1. Location of Jiaozhou Bay (the blue line is the boundary of JZB in 1984, the black line
represents the boundary of JZB in 2020; the red dots are the location of the sampling sites).
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Due to the difficulty of obtaining physical parameters for semi-analytical algorithms,
empirical models are most widely used in operational monitoring. Moreover, the small
area of JZB means that the coarse spatial resolutions of Medium Resolution Imaging
Spectrometer (MERIS) or MODIS cannot reflect the subtle variations in the TSS distribution.
In addition, there are few studies focusing on the long-term spatiotemporal variation of
TSSs in JZB or the important influencing factors. Therefore, in this study, a quantitative
retrieval model for studying the TSSs in JZB was established based on field-measured
data and remote sensing data from 1984 to 2020, and the spatiotemporal distribution and
variation of TSSs in JZB were revealed and analyzed. Moreover, tidal, wind, and Dagu
River discharge data were used to quantitatively analyze the main influencing factors of
TSS variation in JZB.

2. Materials and Methods
2.1. In-Situ Data

In this study, a total of 23 sets of field-measured data were obtained from the JZB
Marine Ecosystem Research Station (http://jzw.qdio.cas.cn/ (accessed on 10 January 2021)).
The concentration of TSS was measured following the gravimetric method. The water
samples were first filtered through dried and pre-weighed 0.45 µm membranes. Next,
the membranes were dried at 45 ◦C for 24 h before weighed. The process of drying was
repeated until the difference of successive calculated TSS values was less than 0.01 mg/L.
The data acquisition dates are shown in Table 1, and the location information for the
sampling sites is shown in Figure 1.

Table 1. Information of Sampling sites.

Acquisition Date Sampling Sites Sensor Path/Row

17 November 2015 JZB05 JZB06 TM 120/35
16 February 2011 JZB01 JZB03 JZB04 JZB05 JZB06 JZB07 ETM+ 120/35

11 May 2011 JZB01 JZB03 JZB04 JZB05 JZB06 JZB07 ETM+ 120/35
11 November 2011 JZB01 JZB03 JZB04 JZB05 JZB06 JZB07 ETM+ 120/35

19 August 2013 JZB12 JZB13 ETM+ 120/35

2.2. Acquisition and Preprocessing of Landsat Data

Landsat data were obtained from the Google Earth Engine (GEE) platform, including
Theme Mapper (TM), Enhanced Theme Mapper Plus (ETM+), and Operating Land Imager
(OLI). For quality control, images with cloudiness greater than 10% were excluded. Next,
the Quality Assessment (QA) band algorithm was applied to detect and remove the clouds
and cloud shadows on the remaining Landsat images. Finally, a total of 331 images from
1984 to 2020 were used for the remote sensing retrieval of TSSs in JZB. To reduce the
reflectance differences caused by the three different sensors, the empirical line method [9]
was used. Firstly, the linear relationship between the reflectance of OLI and TM/ETM+
images was established, and then the reflectance of the TM/ETM+ images was adjusted to
the same level as the reflectance of the OLI images.

Because of the loss of data bands in the images acquired from Landsat7 ETM+ after
31 May 2003 [10], the focal mean function was used to fill the gap. The LEDAPS (Landsat
Ecosystem Disturbance Adaptive Processing System) was used to perform atmospheric
correction on Landsat TM and ETM+ images, and LaSRC (Landsat Land Surface Reflectance
Code) was used to perform atmospheric correction on Landsat OLI images.

2.3. Acquisition and Preprocessing of GOCI Data

The Geostationary Ocean Color Imager (GOCI) takes observations eight times a day
between 8:00 and 15:00 Beijing time [11]. To analyze the influence of tides on the TSSs
of JZB, the TSS product of the GOCI was downloaded (http://kosc.kiost.ac.kr/index.nm
(accessed on 12 May 2021)). The projection coordinate system of the GOCI TSS product
was converted, in keeping with that of the Landsat images.

http://jzw.qdio.cas.cn/
http://kosc.kiost.ac.kr/index.nm
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2.4. Other Data

The tidal data for JZB were obtained from the daily tide predictions of the Qingdao
Dagang Station from 1986 to 2017 [12]. Numerical simulation is an important method with
which to study the dynamic environment of the gulf, one that transcends the constraints of
time and space. Since the periodic curve of the ocean tide level is similar to a sine curve,
this study interpolated the predicted tidal data to simulate the tidal elevation at the time
when remote sensing satellite images were captured.

The daily wind data from 1984 to 2017 were obtained from the National Meteorological
Station of China. The main inflow rivers of JZB are 13 rivers including the Dagu, Moshui,
Baisha, Yanghe, and Jiaolai. Dagu River is the largest among these rivers, accounting for
about 50% of total discharge. [13]. Therefore, the monthly average Dagu River discharge
data from the Nancun Hydrological Station [14] were used to analyze the influence of river
discharge on the TSSs in JZB. The Nancun Hydrological Station is located at the lower
reach of the Dagu River Basin and has a long-term discharge record from 1984 to 2013,
which can illustrate the overall characteristics of the river basin’s discharge.

2.5. TSS Algorithm Development

Previous researchers have found that differences in water substances cause differences
in water reflectance and ocean color, and that a multi-band combination model can reduce
this effect [15]. The spectral reflectance ratio of two or more bands can also eliminate
part of the influence caused by the refraction coefficient and backscatter of suspended
sediments [16]. In addition, it can eliminate the product effect of atmospheric influence
and surface noise, and thus emphasize the target information [17]. Therefore, the band
ratio is more suitable for modeling than a single band.

We first conducted a waveband sensitivity analysis and found that the red band
exhibited the highest correlation with the TSSs. Therefore, a combination of the red band
and other bands was used as a remote sensing factor to analyze the correlation with the
TSSs. Table 2 shows the correlations between eight band combinations and the TSSs, and
the band combination with the highest correlation is (G + R)/(G/R) (G is the green band
remote sensing reflectance, and R is the red band remote sensing reflectance). Therefore,
this was used as an independent variable to establish a quantitative retrieval model of
the TSSs.

Table 2. Correlation analysis of band combination and TSS.

Band Combination * Correlation Coefficient (r)

(G + R)/(G/R) 0.82
G + R 0.80

NIR/R 0.79
(G + R)/(B/R) 0.79

(R − B)/(R + B) 0.77
B + R 0.76

B + NIR 0.73
R/G 0.68

* B, G, R, and NIR are blue, green, red, and near-infrared band reflectance, respectively.

A reliable “leave-one-out cross-validation” uncertainty evaluation method was used
to calibrate and verify the model, to minimize the influence of random factors [18]. Using
all the pairs of remote sensing reflectance and TSS for modeling, and a pair of data for
model verification, the coefficient of determination (R2) and root mean square error (RMSE)
were calculated to determine the most accurate TSS retrieval model. The model with the
best performance was as follows:

Y = 0.71 × exp(21.31X), (1)
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where X was (B2 + B3)/(B2/B3) for Landsat 5 and Landsat 7 and (B3 + B4)/(B3/B4) for
Landsat 8, while Y was the TSSs. The B2, B3, and B4 are the reflectance associated with
Landsat channels.

Figure 2 presents the validation of the proposed retrieve model. The model had high
explanatory and predictive capabilities. The R2 was 0.77, the RMSE was 1.82 mg/L, and the
slope of the trend line was 1.07. The scattered points were evenly distributed on both sides
of the trend line, and all the predicted TSSs that fell within the field measurement range.

Figure 2. Relationship between the measured and predicted TSS.

3. Results
3.1. Spatiotemporal Distribution of TSS

The spatiotemporal distribution of TSSs in JZB between 1984 and 2020 was first
revealed from Landsat images using Equation (1). The TSSs of JZB varied in the range of
0–150 mg/L; they were higher in the northwest and gradually decreased to the southeast.
The TSSs in the estuary and nearshore were mostly higher than 30 mg/L, and were below
30 mg/L in the center of the bay.

Figure 3 shows the variation of the annual average TSS retrieved from Landsat data
between 1984 and 2020. The annual average TSSs fluctuated between 1984 and 2020. The
TSSs reached a maximum in 1993 (26.94 mg/L) and dropped to a minimum (10.69 mg/L)
in 2016, showing an overall downward trend, as described by Gao et al. [19].

Figure 3. Variation of the annual average TSS in JZB from 1984 to 2020.
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To analyze the variation in the TSS spatial distribution in JZB over the past 37 years,
331 scenes of images from 1984 to 2020 were divided into five periods, according to the
period average method adopted by Li et al. [20]: (a) 1984–1995, (b) 1996–2001, (c) 2002–2008,
(d) 2009–2015, and (e) 2016–2020.

These five periods were divided equally by the number of images to the greatest
extent, but the time intervals were not equal. Using the average synthesis method, the
average TSS map for each period and the total average TSS map for the five periods
were calculated (Figure 4a–f). As shown in Figure 4a–e, the low TSS concentration range
(<10 mg/L) expanded gradually in its spatial distribution, while the high TSS concentration
range (>30 mg/L) in the north gradually decreased from period a to period e. Based on
the image of each period, the overall distribution pattern of high TSSs near-shore and low
TSSs far-shore was maintained. In general, the overall TSSs in JZB showed a downward
trend; the highest value appeared in period a (16.53 mg/L) and the lowest value appeared
in period e (11.03 mg/L), which was consistent with the spatial distribution trend.

Figure 4. Variation of the average TSS in each period (a–e) is the average TSS for period (a) to period
(e); (f) is the average TSS for five periods.

The spring (March, April, and May), summer (June, July, and August), autumn
(September, October, and November), and winter (December, January, and February)
average TSSs from 1984 to 2020 are shown in Figure 5. In general, the TSSs in JZB were
relatively low, with obvious spatial and seasonal variations. The TSSs were high in spring
and winter, and low in summer and autumn, reaching a maximum in spring (17.62 mg/L)
and a minimum in summer (12.92 mg/L). From a spatial point of view, the distribution
trend of the average TSSs in the four seasons was similar. The TSSs in the northwest of JZB
were higher than in the southeast, and gradually decreased from the coast to the sea. The
variation trend of the monthly average TSSs was consistent with the seasonal average TSSs.
The monthly average TSSs first increased from January to May, then dropped to August,
before rising to December. The highest TSSs appeared in May (23.32 mg/L) and the lowest
appeared in August (9.71 mg/L).
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Figure 5. Variations of the average TSS in each season (a–d) are average TSS in spring, summer,
autumn, and winter, respectively).

3.2. Comparison of Landsat and GOCI

In this study, the influence of tides on the TSSs was analyzed with the TSS product of
the GOCI. To evaluate the consistency between the TSS data from two different sensors,
the TSSs retrieved from Landsat between 2011 and 2020 were compared with the GOCI
TSS product for the corresponding dates. As shown in Figure 6, the slope of the trend line
was 0.91, the R2 was 0.71, and the RMSE was 1.15 mg/L. Therefore, the TSS data from
the GOCI and Landsat showed a good consistency, which afforded us the possibility of
analyzing the influence of the tide on TSSs using high time-resolution GOCI TSS data.

Figure 6. Comparison between TSS data from GOCI and Landsat.
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4. Discussion
4.1. Uncertainties

Due to the relatively low temporal resolution of Landsat and the limited number of
field-measured data used in this study, there were differences between the acquisition time
of field-measured data and of satellite data, which inevitably introduced uncertainties into
the retrieval model as shown in verification in Figure 2. In addition, lack of in situ data
collected close to the coast in JZB, the retrieval model was developed based on a limited
TSS variation range upwards to 13 mg/L, but a fraction of TSS values spread well above
30 mg/L. This limited range of field measured data would also introduce uncertainties.
Owing to the cloudy summer weather in JZB, there were fewer Landsat images available
in summer compared to in other seasons. As a result, the temporal and spatial distribution
characteristics revealed by the retrieval model may be somewhat different from the actual
situation. Besides this, the northern coast of JZB was greatly affected by the high reflectance
of sediments from shallow waters; therefore, the high TSSs in this area revealed by the
retrieval model might be inconsistent with reality.

However, taking relatively high spatial resolution and a dataset of over 40 years into
consideration, Landsat data were still suitable for monitoring the spatiotemporal variation
of the TSSs in JZB. In addition, the spatiotemporal distribution and influencing factors of
TSSs in JZB in this paper were consistent with the results of Zhang et al. [4], who used
field-measured data. Therefore, the research results based on Landsat data could still reflect
the subtle spatiotemporal variations of TSSs in JZB over the past 37 years.

4.2. Dominant Drivers of TSS

According to the results (Section 3), the TSSs of JZB are generally low, and there are
obvious spatiotemporal variations. The annual average TSSs in JZB showed a downward
trend as a whole due to reduced tidal currents with the process of land reclamation over
the past decades [19]. The horizontal advection of TSSs associated with the horizontal
gradient of the TSSs originally led net suspended sediment movement between JZB and
the neighboring sea to be seaward. TSSs transport from the tidal flats were reduced with
the tidal flats being reclaimed, and subsequently reversed direction after 1986 [19]. Land
reclamation weakened tidal currents and the horizontal gradient of TSS [19], probably
resulting in a decrease in the TSSs in JZB.

Many studies have shown that factors such as the tide, river discharge, and wind
are the main influences on the variation of TSSs [21–23]. To better understand the rea-
sons for the TSS variation, field-measured data and remote sensing data were applied to
quantitatively and qualitatively analyze the effects of different factors on the TSSs.

The tides of JZB are semi-diurnal, and the tidal current spreads along the inner channel
of the bay to reach the top of the bay. The velocity of flood tidal current is greater than that
of ebb tidal current [24]. The velocity at the mouth of the bay is greater than that within
the bay, which makes it easy for a small amount of sediment from outside of the bay to
move into the bay. However, it is not conducive to the spread of material from within the
bay to outside of the bay, especially not in the northern bay. Therefore, the TSSs gradually
decrease from the top to the mouth of the bay. Because the shore water is shallow, the
sea-bottom sediments are susceptible to waves and are suspended in the sea, so the TSSs in
the shore water are relatively high [4].

Possible hydrodynamic or meteorological influencing factors of water-surface TSSs
include the tidal current magnitude, tidal current direction, river discharge, wind speed,
and wind direction. To qualitatively illustrate these different control factors, we selected
pairs of images in which only one variable significantly varied (See Table 3). The sole
influence of tidal current magnitude on TSSs—under similar conditions of tidal current
direction, river discharge, and wind speed and direction—is shown in Figure 7a,b. The
influences of tidal current direction (Figure 7d,e), river discharge (Figure 7g,h), wind speed
(Figure 7j,k), and wind direction (Figure 7m,n) are also illustrated on TSS concentration
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maps. We used a section line from the northwest to the southeast of JZB to extract the TSSs
along the line, in order to show the spatial variation of TSSs in JZB.

Table 3. Hydrodynamic and meteorological parameters of representative TSS maps shown in Figures 7 and 8.

Figure Date Sensors
Tidal Current
Magnitude/
Direction

Wind
Speed
(m/s)

Wind
Direction (◦)

Dagu River
Discharge

(m3/s)
TSS (mg/L) Dominant

Condition

Figure 7a,c 29 July 2014 OLI Spring tide/ebb 2.9 180 4915.90 9.69 Spring tide
Figure 7b,c 8 July 2015 ETM+ Neap tide/ebb 2.2 180 4915.90 6.89 Neap tide

Figure 7d,f 21 April 2013 OLI Moderate
tide/flood 3.6 22.5 729.75 7.92 Flood tide

Figure 7e,f 25 May 2009 TM Moderate
tide/ebb 2.7 22.5 1167.94 12.10 Ebb tide

Figure 7g,i 19 August 2013 ETM+ Moderate
tide/flood 2.3 337.5 18,983.77 12.19 High river

discharge

Figure 7h,i 5 January 2012 ETM+ Moderate
tide/flood 1.8 337.5 45.37 7.90 Low river

discharge

Figure 7j,l 11 February
2014 OLI Neap tide/flood 6.9 315 192.23 10.16 High wind

speed

Figure 7k,l 18 November
2014 OLI Neap tide/flood 1.8 315 192.23 3.43 Low wind

speed

Figure 7m,o 7 July 2013 OLI Moderate
tide/flood 3.2 0 1066.42 11.01 Northern wind

Figure 7n,o 24 April 2014 OLI Moderate
tide/flood 3.5 135 729.75 11.88 Southeastern

wind

The TSSs near the shore during the spring tide were 2–10 times greater than those
during the neap tide (Figure 7a–c). This is because the driving force of the spring tide
was much greater than that of the neap tide, and the resuspension effect of the nearshore
sediment was intense. Due to the decrease in the water level during the ebb tide, the
high reflectance of the sediment in the coastal waters led to the high concentration of TSSs
in the coastal waters (Figure 7e). The influx of clear water outside the bay during the
flood tide resulted in a slight decrease in the TSSs in the bay (Figure 7d,f). The high river
discharge caused 2–3 times more TSSs in the estuary than the low river discharge (Figure 7i).
Compared to a slow wind speed (1.8 m/s on 18 November 2014), a fast wind speed (6.9 m/s
of 2 November 2014) resulted in strong sea waves and increased TSSs, especially in shallow
coastal waters (Figure 7j–l). The TSS concentration was also influenced by the monsoon
climatic characteristics. As shown in Figure 7m,n, a southeastern wind caused more
sediments to resuspend in the shallow coastal waters than a northern wind (Figure 7o), but
in terms of the average TSSs, the difference between the two was not obvious. Therefore,
the wind speed was a meteorological factor that affected the distribution of TSSs in JZB
more than the wind direction.
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Figure 7. Spatial distribution of TSSs under the control of a sole influence factor and variation of TSSs along the section
line: tidal current magnitude (a–c); tidal current direction (d–f); river discharge (g–i); wind speed (j–l); wind direction
(m–o) (The black line is the section line).
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Figure 8. The relationship between Landsat-retrieved TSSs and tidal elevation.

4.2.1. Tide

To further analyze the influence of the tide on the TSSs, we analyzed the relationship
between Landsat-retrieved TSSs and tidal elevation (Figure 8). Generally speaking, tidal
elevation explained approximately 25% of the overall variance of the TSSs, but there was
little difference between flood and ebb tide (data no shown). Next, this result was further
validated by analyzing the relationship between the variation of the average GOCI TSS data
in JZB and the tidal elevation in a day. Taking 23 August 2012, 28 May 2014, 3 November
2014, and 19 May 2016 as examples (Figure 9), it can be seen that the TSSs were negatively
correlated with the tidal elevation in a day. The higher the tidal elevation, the smaller the
TSS. The TSS usually reached a minimum at high tide, owing to clear seawater in the open
sea pouring into the bay. In comparison, the TSS reached its maximum at the ebb tide, on
account of the intense resuspension of sediment in shallow water.

Figure 9. Relationship between variation of GOCI TSS and tidal elevation during 8:00–15:00 a day (the blue line is the
variation of TSS, and the red line is the variation of tidal elevation; (a) is 23 August 2012; (b) is 28 May 2014; (c) is 3
November 2014; (d) is 19 May 2016.
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We analyzed the relationship between the rangeability of TSS concentration and the
rangeability of tidal elevation in one day. In order to reduce the uncertainties caused
by the small number of images, it was necessary to ensure that there were at least four
available and integrated GOCI TSS images of JZB in one day, including high-tide or low-tide
moments. As a result, only 72 days of GOCI TSS data were selected from all the available
data. Next, the average GOCI TSS data were analyzed with corresponding tidal elevations.
Figure 10 illustrates that there was a positive correlation between the rangeability of TSS
concentration and tidal elevation within one day (R2 = 0.48). Therefore, the rangeability of
tidal elevation in JZB affected the rangeability of the TSSs to a large extent.

Figure 10. Relationship between rangeability of variation in TSS concentration and rangeability of
variation in tidal elevation in one day.

4.2.2. River Discharge

The influx of the river also creates more sediment [25]. A pixel-by-pixel correlation
analysis between the monthly average TSSs and the monthly average discharge of Dagu
River is shown in Figure 11. The correlation coefficient in the northwestern part of JZB
was relatively high, and was low in the central bay. As the main water source of JZB, the
impact of Dagu River discharge on the TSSs weakened quickly toward the central bay. In
addition, there were several high-value areas, which are marked as A, B, C, D, and E in
Figure 11. The high-value areas A and C were located at the mouth of the Moshui River and
Yanghe River, respectively. The high correlation coefficient between the TSSs and the river
discharge was due to the impact of the sediment injected by the two rivers. The high-value
area B was close to the shore aquaculture area, and aquaculture activity might have caused
resuspension and thus a high TSS concentration. The high-value areas D and E were near
several logistics companies and Qingdao Bonded Port Logistics Park, respectively. They
were influenced by human factors such as cargo ship passage. In addition, the area D
was also affected by some aquaculture areas. However, the correlation coefficients near
the Dagu River estuary and near-shore area were low. The shallow water near shore may
explain these phenomena if the high reflectance of sediments led to continuously high TSSs
in spite of obvious seasonal variation of river discharge. Further analysis revealed that the
monthly river discharge could only explain 25% of the TSS variation (R2 = 0.25), indicating
that when the river discharge was low, other factors controlled the TSS distribution and
variation near this area.
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Figure 11. Pixel-by-pixel correlation analysis between the monthly average TSSs and Dagu River
discharge. The color bar indicates the value of Pearson’s correlation coefficient (r). A, B, C, D, and E
are five high-value areas.

4.2.3. Wind

JZB is influenced by a temperate monsoon climate. With a southeastern wind dominat-
ing, JZB is windy in spring and winter, and the annual average wind speed is 5.4 m/s [26].
Strong winds cause more waves, and thus cause more sediment to resuspend [27]. The
monthly and seasonal average wind speeds in JZB were calculated and compared with
the monthly and seasonal average TSSs retrieved from the Landsat data (Figure 12). Wind
speed showed obvious seasonality throughout the year. It increased first and reached
a maximum value in April (4.78 m/s), then decreased and reached a minimum value
(3.68 m/s) in August, and then increased until the end of the year. There was a significant
positive correlation between the TSSs and wind speed, and the correlation coefficients for
the monthly and seasonal trends were 0.59 and 0.82, respectively.

To further explore the relationship between wind speed and TSSs, the correlation
between the daily average TSSs and wind speed in the springs of 1984–2017 was analyzed
(R2 = 0.20, n = 75). The hysteresis effect of wind speed on TSSs was also considered (R2 < 0.1,
n = 75). Unfortunately, no satisfactory results were obtained.

In summary, tidal elevation, river discharge, and wind speed were major influence
factors for TSSs’ variation in JZB. The construction of the Jiaozhou Bay bridge had a further
impact on the variation of the TSSs as it influenced the hydrodynamic environment in the
sea area surrounding the bridge [24,28]. However, the overall current field in Jiaozhou Bay
changed little, and the scope of influence was limited within 1.5 km to the north and south
of the bridge site [29,30]. Other uncontrollable factors, such as sediment resuspension
caused by shipping and the high reflectance of the bottom at the river estuary, might also
have played their parts in the variation of TSSs.
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Figure 12. Comparison of monthly and seasonal average wind speed and TSSs: (a) is monthly result and (b) is seasonal result).

5. Conclusions

In this study, based on the field-measured TSSs and Landsat images of JZB between
1984 and 2020, a “leave-one-out cross-validation” method was used to establish a quan-
titative retrieval model of the JZB TSSs. Next, the temporal and spatial distribution
characteristics of the JZB TSSs were analyzed, along with the main influencing factors.

This paper verifies the ability of the remote sensing algorithm to monitor TSS vari-
ations in JZB. The TSS retrieval model proposed in this paper demonstrated a satisfying
performance, with R2 = 0.77 and RMSE = 1.82 mg/L. The annual average TSSs in JZB
showed a downward trend as a whole, reaching their highest value in 1993 and their lowest
value in 2016. Affected by the strong winds in JZB in spring and winter, the TSSs varied
significantly with the seasons. The TSS concentration was high in spring and winter and
low in summer and autumn. Correspondingly, the monthly average TSSs peaked in May
and the lowest values appeared in August. The spatial distribution of the TSSs in JZB
was similar at different timepoints, with high values appearing in the northwest of JZB
and gradually decreasing to the southwest. The TSSs during the spring tide were higher
than those during the neap tide, and the TSSs during the flood tide were higher than those
during the ebb tide. High TSSs occurred when the tidal elevation was low, and the range
of variation of the tidal elevation within a day played an important part in the range of
variation of TSSs. The discharge of the Dagu River only affected the estuary and near-shore
area; increased discharge brought in more sediment, although the high reflectance of the
bottom caused the results to be insignificant at the river estuary. Both the wind direction
and speed affected the distribution of TSSs in JZB. The wind speed had a significant effect
on the seasonal variation of TSSs in JZB.

Our results showed that this empirical model based on Landsat satellite data could
effectively monitor the long-term variation of TSSs in JZB. This not only provides new ideas
for subsequent research but also provides a scientific basis for water quality monitoring and
the rational management of JZB. In the future, the latest generation of ocean color sensors
(Sentinel-2/MSI and Sentinel-3/OLCI) might provide better spatiotemporal resolutions for
TSS observations in JZB.
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