
remote sensing  

Article

Automated Building Detection from Airborne LiDAR and Very
High-Resolution Aerial Imagery with Deep Neural Network

Sani Success Ojogbane 1,* , Shattri Mansor 1, Bahareh Kalantar 2 , Zailani Bin Khuzaimah 3,
Helmi Zulhaidi Mohd Shafri 1 and Naonori Ueda 2

����������
�������

Citation: Ojogbane, S.S.; Mansor, S.;

Kalantar, B.; Khuzaimah, Z.B.; Shafri,

H.Z.M.; Ueda, N. Automated

Building Detection from Airborne

LiDAR and Very High-Resolution

Aerial Imagery with Deep Neural

Network. Remote Sens. 2021, 13, 4803.

https://doi.org/10.3390/rs13234803

Academic Editors: Jesús Balado Frías

and Lucía Díaz-Vilariño

Received: 30 September 2021

Accepted: 20 November 2021

Published: 26 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Civil Engineering, Geospatial Information Science Research Centre (GISRC),
Faculty of Engineering, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia;
shattri@upm.edu.my (S.M.); helmi@upm.edu.my (H.Z.M.S.)

2 RIKEN Center for Advanced Intelligence Project, Goal-Oriented Technology Research Group,
Disaster Resilience Science Team, Tokyo 103-0027, Japan; bahareh.kalantar@riken.jp (B.K.);
naonori.ueda@riken.jp (N.U.)

3 Institute of Plantations Studies, University Putra Malaysia, Seri Kembangan 43400, Malaysia;
zailani@upm.edu.my

* Correspondence: gs47861@student.upm.edu.my; Tel.: +60-1120893842

Abstract: The detection of buildings in the city is essential in several geospatial domains and for
decision-making regarding intelligence for city planning, tax collection, project management, revenue
generation, and smart cities, among other areas. In the past, the classical approach used for building
detection was by using the imagery and it entailed human–computer interaction, which was a
daunting proposition. To tackle this task, a novel network based on an end-to-end deep learning
framework is proposed to detect and classify buildings features. The proposed CNN has three parallel
stream channels: the first is the high-resolution aerial imagery, while the second stream is the digital
surface model (DSM). The third was fixed on extracting deep features using the fusion of channel one
and channel two, respectively. Furthermore, the channel has eight group convolution blocks of 2D
convolution with three max-pooling layers. The proposed model’s efficiency and dependability were
tested on three different categories of complex urban building structures in the study area. Then,
morphological operations were applied to the extracted building footprints to increase the uniformity
of the building boundaries and produce improved building perimeters. Thus, our approach bridges
a significant gap in detecting building objects in diverse environments; the overall accuracy (OA)
and kappa coefficient of the proposed method are greater than 80% and 0.605, respectively. The
findings support the proposed framework and methodologies’ efficacy and effectiveness at extracting
buildings from complex environments.

Keywords: building classification; extraction; convolution neural networks (CNN); LiDAR; high-
resolution aerial imagery

1. Introduction

The numerical growth of the population in urban centers through the migration of
the population from rural to urban areas is a defining feature of today’s society. Humans
continue to move to major cities from rural regions, pushing for accelerated urban growth,
leading to high demand for living space and working space, and increasing the potential
for precise, accurate, and up-to-date 3D city models. The production of such models
is still a challenging task. In this context, generating automatic and accurate building
maps as quickly as possible and with excellent accuracy of results is an increasingly
stringent requirement taken into account by local public authorities and decision-makers.
The results thus obtained have many uses, among which is the need for integrated and
responsible planning of the city following the principles of sustainable development [1–5].
Hence, the condition of urban buildings remains a crucial research topic in computer
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vision and image processing technology [6]. A vast amount of energy is expended on the
specialists’ interpretation and detection of features in photogrammetry imagery. However,
it is inefficient and costly to discriminate buildings from other features and define their
outline manually. As a result, many buildings detection approaches have been documented
throughout the past several centuries [7–9].

Nevertheless, achieving one hundred percent accurate automatic building detection
remains a pipe dream. There have been various explanations for this circumstance. The
complex morphology of urban areas is a challenge to describe the shape of buildings and
infrastructures accurately. In contrast, others have low-density structures, challenging
scenes or uneven terrain, acquisition angles, shadows, and occlusions incidence. Further-
more, buildings and other comparable objects in an urban setting have similar spectral
and spatial physiognomies [10,11]. Thanks to new technologies, different sensors such as
satellite imagery, high-resolution aerial imagery, radar (radio detection and ranging), and
even laser scanning sensors can be an excellent possibility for a solution [12]. Among the
sensors mentioned above, one of the newest technologies that have transformed buildings’
detection and extraction is the airborne light detection and ranging (LiDAR) sensor. This
innovative technology helps to improve urban building detection problems and is also
valuable for informed decisions. LiDAR is widely referred to as laser scanners.

The airborne LiDAR sensor has a tremendous impact on city mapping, high accuracy,
extensive area coverage, fast acquisition, and it provides an efficient and accurate building
footprint because of its high-density point cloud, short data capture period, and good
vertical accuracy, with high-density 3D point clouds for ground object collection [13,14].
The fundamental merit of LiDAR over the photogrammetric technique is its capability to
penetrate depth based on height information [15,16]. In contrast, photogrammetry datasets
generate massive data volumes that may necessitate parallel processing and, as a result, a
putting fortune in computer hardware to quickly and efficiently process, distribute, and
share. As a result of integrating many data sources, the accuracy and reliability of the
extraction outcomes improve [17]. Hence, it leads to refinement and robustness of the
extraction outputs. Thus, in recent times, advanced practices employ fusing data sources
for building extraction from more sensors rather than adopting a single data source [18,19].

Conventionally, machine learning paradigms exploits “shallows” architectures; they
initially alter acquired raw data into a multidimensional feature space and then optimally
approximate linear or even nonlinear associations [20]. Consequently, machine learning is a
suitable tool for the efficiency and robustness of the necessary forms of artificial intelligence
algorithms. The deep learning methods are robust for several real-world fields such as
image classification, detection, extraction, reconstruction, computer vision, and others [17].
It is possible to automatically extract outlines via machine learning approaches by building
a deep neural network. Convolutional neural networks (CNN) are widely used for deep
learning and are specifically suitable for image detection, extraction, and modelling. They
vary from other neural networks in little ways: a visual cortex’s biologic Ral structure
inspires CNNs and contains complex and straightforward cells [21]. These cells help to
activate the sub-regions of a visual field.

These sub-regions are named receptive fields. The neurons in a convolutional layer
link to the layers’ sub-regions before that layer as a substitute for being fully connected
as in other forms of neural networks. The neurons are unresponsive to the areas outside
of these sub-regions in the image. These sub-regions will cross paths. As a result, the
neurons of CNN’s generate spatially associated effects. However, neurons in other forms of
neural networks do not have any standard connections and generate independent results.
The present study is an example of how much precious information can be obtained in a
relatively short time and at a low cost, using a CNN to automatically detect and classify
buildings via the combination of high imaging resolution and a LiDAR dataset.
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2. Related Work

Building detection and extraction have a large body of literature. A portion of the
relevant work is considered in this section. Airborne LiDAR is valuable tool for urban
mapping operations compared to using conventional surveying, terrestrial LiDAR, mobile
mapping, and other approaches. Studies have shown that they are capable of millimeters
of mapping and accuracy. Various methods for building detection from airborne LiDAR
point clouds are present in the literature. Yang et al. [11] presented a building boundary
extraction method to transform point cloud to a grey-scale image, with each pixel’s value
reflecting the height of the corresponding point. The features of the transformed images are
subsequently trained in CNN from the start. However, there is a need for an approach that
requires minimal user intervention for building detection. Maltezos et al. [20] proposed
a CNN-based deep learning algorithm for extracting buildings from orthoimages using
height information gathered from high image matching point clouds. The results from two
test sites indicated promising possibilities for automatic building detection in aspects of
resilience, adaptability, and performance.

Wierzbicki et al. [22] investigated the revised fully convolutional network U-Shape
network (U-Net) for automatic extraction of building contours from high-resolution air-
borne orthoimagery and sparse LiDAR datasets. The end-to-end three-step process had an
overall accuracy (OA) of 89.5% and a completeness of 80.7%.

Lu et al. [23] proposed a building’s edge detection technique from optical imagery
via a richer convolutional features (RCF) network. The method detects building edges
better than the baseline approach. Deep learning is a division of a more significant section
of machine learning approaches, which encompasses algorithms with ranked processing
layers executing nonlinear alterations to symbolize and learn data features successfully. A
deep learning approach, CNNs are mainly used to solve simple computer vision problems,
including image classification, object detection, localization, segmentation, and regenera-
tion and segmentation. Elsayed et al. [24] proposed a deep learning-based classification
algorithm for remote sensing images, specifically for high spatial resolution remote sensing
(HSRRS) images with alterations and multi-scene classes so as to assist in developing
appropriate classification techniques for urban built-up areas by adopting four deep neural
networks. Dong et al. [4] employed a technique for detecting and regularizing the outline
of individual buildings via a feature-based level fusion technique founded on features from
dense image matching point clouds and orthophoto and primary aerial imagery using
particle swarm optimization (PSO) techniques. Lai et al. [25] proposed a building extraction
methodology based on the fusion of the LiDAR point cloud and texture characteristics
from the height map created from the LiDAR point cloud. Wen et al. [26] employed ma-
chine learning-based point cloud classification approaches to allow extensive handcrafted
features to identify each point in the point cloud, which have minimal applicability when
it comes to the input point cloud. CNN’s have recently demonstrated impressive perfor-
mance in a variety of image identification applications. CNN-based approaches have also
been investigated for ground object detection applications in the geospatial realm. The
research report of the CNN is made up of several layers of artificial neuron bunches in that
outputs are joined through convolution procedures. CNN’s applications are not limited to
classification, object detection, generative adversarial network (GAN) [27,28], or even 3D
reconstruction and modelling. A deep CNN was proposed for classification and detection
from the LiDAR dataset. Research shows supplementing the raw LiDAR data with features
coming from a physical understanding of the information. Then, the power of a deep
learning CNN model determines the correct input components appropriate for their classi-
fication problems [20]. The object is connected with CNNs for feature detection in an urban
location, and certain LiDAR derivatives are fused with high-resolution aerial imagery to
perform detection-building features. LiDAR data is combined with high-resolution aerial
imagery for each pixel in this type of fusion scene. This integration is processed with a
CNN filter generating a durable reaction to local input configurations. Airborne LiDAR
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is, at this time, the most in-depth and correct technique for generating digital elevation
models (DEM) [29].

Similarly, to achieve pixel-wise semantic labelling, Sherrah [30] used fully convolu-
tional neural organization (FCN). The convolutional layers have taken the place of the
entirely connected layers, according to the research. The convolution sections were stacked
to retrieve outputs that grew in size as the information sources got bigger. The digital
surface model (DSM) was then coupled to high-resolution imagery for training and deriva-
tion. Wen et al. [31] proposed an automatic building methodology based on a created mask
R-CNN assembly for identifying rotational bounding boxes. Simultaneously, segment
building frameworks from a multi-layered base. It turned anticlockwise, and the region of
interest (ROI) was made straight; feature maps were moved to the multi-branch prediction
network. The pivot anchor with a slanted angle is utilized to relapse the revolution-bound
box of buildings in the region proposed network (RPN) stage. At that moment, recep-
tive field block (RFB) modules are infused into the segmentation division to handgrip
variability on several scales, and different divisions produce the classification marks and
horizontal rectangle coordinate. Zhou et al. [13] developed an approach that engages a
deep neural network to detect and extract residential building objects from airborne LiDAR
data. The method is not dependent on the understanding of pre-defined geometric or
texture structures. Thus, it uses airborne LiDAR data sets with different point densities and
impaired building features. Ghamisi et al. [32] proposed an automatic building extraction
approach via a deep learning-based approach, a fused hyperspectral and LiDAR dataset to
capture and detect spectral and spatial information. Xie et al. [33] created a framework for
automatic building extraction via LiDAR and imagery by the hierarchical regularization
method. It was generated as a Markow random field and unraveled through a graph cut
algorithm. Moreover, Bittner et al. [34] employed an FCN which incorporates the image
and height information from varied data fonts and automatically yields a full resolution
binary building facade. Three parallel networks were combined to deliver comprehensive
information from earlier layers to higher levels to generate accurate building shapes. The
inputs are panchromatic (PAN) and normalized digital surface model (nDSM) images, RGB
(red, green, and blue). All the same, the noise still existed due to occlusion.

Another inherent limitation connected to remotely sensed data is the LiDAR sparsity,
including the complexities of urban objects or data inaccuracy. Finding effective ways for
automatic building detection based on multisource data presents a concern. To overcome
these tasks, Gilani et al. [35] introduced the fusion of LiDAR point clouds and orthoimagery.
The building delineation algorithm detected the building sections and categorized them
into grids. Nahhas et al. [36] proposed a deep learning-based building detection method
that combines LiDAR data with high-resolution aerial imageries. This method further
used DSM or normalized difference vegetation index (NDVI) to generate the mask by
merging numerous low-level elements resulting from high-resolution aerial imagery and
LiDAR data, such as spectral information, DSM, DEM, and nDSM. Then by employing
CNN to extract high-level elements to distinguish the building points, level characteristics
are extracted from the supplied low-level data. Li et al. [37] proposed a deep-learning-
based method for building extraction from point cloud dataset, initially employing model
generation to section the raw preprocessed multispectral LiDAR into several segments,
which are openly fed into a CNN and totally conceal the initial inputs. Thereafter, a graph
geometric moments (GGM) convolution is used to encrypt the local geometric assembly
of points sets. Lastly, the GGM is employed to train and detect building points, and the
test scenes of diversified dimensions can be fed into the model to achieve point-wise
extraction output.

The vital task of employing LiDAR for building extraction through deep learning
remains a research issue. This article introduced a deep learning method for building
extraction via LiDAR data and high-resolution imagery fusion. The task of employing
LiDAR for building extraction through deep learning remains a research issue. This article
introduced a deep learning method for building extraction via LiDAR data and high-
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resolution imagery fusion. The main contributions are listed as follows: (i) We propose a
deep learning-based approach for building extraction from LiDAR data and high-resolution
aerial imagery. (ii) We developed and trained our network from scratch for our peculiar
extraction framework. (iii) Our detected building outline was tested on diversified building
forms found within our study area to test the transferability of the model, and the output
attains the best performance of building extraction.

This paper is organized as follows: Section 2 presents the related literature of build-
ing extraction based on LiDAR and high-resolution images. The study area, materials,
and methodology framework of the proposed CNN model architecture are presented in
Section 3 including the implementation of the proposed method. The experimental results
are also presented and discussed in Section 4. Lastly, the paper ends with conclusions in
Section 5.

3. Study Area, Materials, and Methods
3.1. Study Area

The study was carried out over the Universiti Putra Malaysia (UPM) main campus
with its adjoining areas in Serdang, close to the capital city, Kuala Lumpur, and Malaysia’s
administrative capital city, Putrajaya. Geographically, it is on Latitude 3◦21′0” N and
Longitude 101◦15′0” E. Furthermore, large and thick urban scenes are bounded with
a mixture of low and elevated structures, vegetation, and vast water ponds and lakes.
Figure 1 shows the location of three study areas, namely, A1, A2, and A3.

Figure 1. Wide-ranging whereabouts of study area: (a) aerial imageries for study areas A1, A2, and A3 and (b) digital
surface model (DSM) for study areas A1, A2, and A3.

3.2. Data Used

Ground Data Solution Bhd captured LiDAR point cloud data and high-resolution
aerial imageries across UPM and a portion of the Serdang area in 2015. The raw LiDAR
information was acquired using the Riegel scanner on board the EC-120 helicopter, hovering
at an average height above sea level of 600 m above the terrain surface. Using a focal



Remote Sens. 2021, 13, 4803 6 of 16

length of 35 mm, a horizontal and vertical resolution of 72Dpi, and an exposure duration
of 1/2500 s, the Canon EOS5D Mark III camera recorded the high-resolution aerial imagery
(RGB color image) concurrently.

3.3. Methodology Applied

This study proposes a deep learning model to detect building objects from fused, very
high-resolution aerial imagery and DSM derived from LiDAR. The general workflow of
this model is in Figure 2.

Figure 2. General workflow of building extraction displaying various kernels of 2D-convolution
when applying CNN-related techniques.

3.3.1. Overview of CNN

CNN’s are a sort of artificial neural network (ANN) used for image recognition and
extraction. It is typically structured in a series of layers. The architecture allows the network
to grasp several data representation levels, starting with low-level features in the lowest
layers, such as corners and edges, and more acceptable feature information with high-level
semantic information in the top layers. By utilizing a trainable 2-D convolutional filter,
CNN takes advantage of the 2-D geometry of an input dataset (Equation (1)).

yl
j = σ( ∑

k∈− w
2 ×

w
2

wjk × yl−1
k + bl

j) (1)

It connects single neurons at level l with a predefined limited area of fixed W ×W
from the beginning lay l − 1 and then gathers a weighted overall neuron accompanied
by a specified activation function. The large one corresponds to a skew, with weights
jk shared through all neurons for each layer’s different dimensions. Compared to the
typical multilayer perceptron (MLP), the allowed factors are significantly reduced in the
model’s worth, which does not match since its class of neural networks lacks a weight
distribution [34]. Furthermore, weight sharing brings translation equivariance, which is a
form of a likened neural network attribute with yi = 0 = 1, and the bias can be assumed
to go further than the weight. The activation function has the benefit of introducing
nonlinearity into the network. After each convolutional layer CNN, the rectified linear
unit (ReLU) is the highest available activation function. These aid in the conversion of all
negative numbers to zero while positive values are maintained (Equation (2)).

yl
relu = max

(
0.yl

)
(2)
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ReLU in neural networks can induce sparsity in the hidden units and are not affected
by gradient vanishing issues [38].

CNN’s were initially designed for image classification issues, forecasting the suitable
class linked with the input image. Henceforth, fully connected (FC) layers are the top
layers of the network, enabling the combination of the complete image scene’s information.
The last layer is a 1-D array, which comprises several neurons as likely classes, indicating
class assignment as probabilities, frequently done via softmax normalization on distinct
neurons. The classifier establishes the weights and biases that produce an optimal network
classifier; it implies that the weight and biases will reduce the variance between the target
and predicted values. Hence, misclassifications are dealt with by a loss function L(x, t, p).
Moreover, it is regularly applied across entropy loss functions (Equation (3)).

L(x, t, p) = −∑
i

tilogp(xi) (3)

The mitigation against slowing down the learning rate (compared to the Euclidean
distance loss function) gives an extra numerically unwavering gradient when paired with
softmax normalization, where x = {x1, . . . , xn} is the set of input in the training dataset,
and t = {t1, . . . , tn} is the equivalent set of target values. The p(xi) signifies the yield
of the neural network for the input xi. It curtails the logistic loss of the softmax outputs
over the total patch. The gradient descent is a conventional approach to reduce the loss
function. Furthermore, it is possible by its capacity to calculate the derivatives of the loss
function with relation to parameter ∂L∂wi and ∂L∂bi; updated using our learning rate λ in
the following way (Equations (4) and (5)):

wi ← wi −
∂L
∂wi

(4)

bi ← bi −
∂L
∂bi

(5)

The derivatives ∂L and ∂L ∂wi ∂bi are computed by the backpropagation algorithm
typically applied in the stochastic gradient descent (SGD) optimization algorithm in in-
significant batches for productivity.

This research aims to present a deep learning technique based on a CNN to catego-
rize images and extract buildings from LiDAR images. Furthermore, the CNN model’s
construction, training, and testing are used to classify images and extraction of building
features. The CNN model’s performance, which is used to classify and extract building
features, was evaluated using the confusion matrix concept. To this end, the language
expresses a sense of balance between expressiveness and performance.

3.3.2. The Proposed Architecture of CNN

The structure of proposed deep learning based method has been inspired deep Siamese
network [39]. Similarly, the proposed architecture for building extraction has double
deep feature extraction streams to investigate the optical and DSM datasets and fusion
them for building classification. The proposed architecture is applied in two main steps:
(1) deep feature extraction by double streams channel and group convolution blocks and
(2) classification. The deep features extraction has been conducted by 8 group convolution
blocks in each stream. The three max-pooling layers are employed for reducing size feature
map after convolution layers. The structure of both streams is similar while differing in the
input. The first stream considers the deep feature extraction task for the optical dataset, and
the second stream investigates the DSM dataset. Then, the extracted deep features from
both streams are fused and are transformed into classification parts. The classification part
has been carried out by a fully connected layer and a softmax layer. The fully connect layer
is employed to represent as well the extracted the deep features by previous convolution
layers. The softmax layer is employed to make a decision on input data.
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Deep Feature Extraction

The deep learning-based methods are the most popular in the field of remote sensing
due to their performance, providing promising results [40,41]. These deep learning-based
methods able to represent the input data in an informative structure as well. The deep
features are obtained by convolution layers in an automatic manner. The convolution
layers extract the deep features by combining the spatial and spectral features from input
data. Due to the different sizes of objects in the scene, many solutions have been proposed
by studies (e.g., multi-scale convolution block or making it deeper) [42]. One suitable
solution for variation of the scale of objects utilizes a dilated convolution block. The dilated
convolution supports the exponential expansion of the receptive field without loss of
resolution [39].

Figure 3 shows the structure of the proposed group convolution block in this study,
in which we employed three dilated convolutions with different rates (1, 2, and 4). For a
convolutional layer in the lth layer, the computation is expressed according to Equation (6).

yl = g
(

wl xl−1
)
+ bl (6)

where x is the neuron input from the previous layer, l − 1, g is the activation function,
w is the weight template, and b is the bias vector of current layer, l. The value (v) at
position (x, y) on the jth feature ith layer for the 3D-Dilated convolution layer is given by
Equation (7).

vxy
i,j = g(bi,j +∑

m

Ri−1

∑
r=0

Si−1

∑
s=0

Wr,s,t
i,j,mv(x+r×d1)(y+s×d2)

i−1,m ) (7)

where b denotes bias, g is the activation function, m is the feature cube connected to the
current feature cube in the (i− 1)th layer, W is the (r, s)th value of the kernel connected to
the mth feature cube in the preceding layer, and R and S are the length, and width of the
convolution kernel size, respectively. The d1 and d2 are also dilated convolution rates in
length and width, respectively.

Figure 3. Proposed CNN model architecture.

Preprocessing

The proposed scheme involves four main sections: preprocessing our input data, data
fusion, feature extraction and classification, and cleanup. The preprocessing stage includes
but is not limited to the registration of ALS LiDAR. After filtering an intensity image, DSM
were combined with RGB high-resolution aerial imagery. The generation of a DSM the
raw point cloud was interpolated via the inverse weighted distance method algorithm of
ArcGIS 10.7. After filtering, the point clouds were filtered to generate an intensity image,
DEM, DSM, and nDSM combined with RGB from the high-resolution aerial imagery. At
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the same time, the DEM was generated from a non-ground point. Meanwhile, nDSM was
derived based on the difference between DEM and DSM at 0.5 m spatial resolution.

Implementation Network

We integrate input data to train the CNN: a LiDAR dataset and high-resolution aerial
imagery, DSM, and the high-resolution aerial imageries. We use three CNN templates
to train them. Weights from other datasets, such as Alexnet, were not applied because
the data was not RGB pre-trained; hence, the network was trained from scratch with
random initialization.

Training and Testing Process

The dataset A2 was split randomly into two divisions: the first was used for the
training process, which is 70% of the dataset, while the remaining 30% was used to test
and validate the CNN model. Other two datasets, A1 and A3, were used to evaluate the
transferability of the proposed framework. For the training process to be effective, the input
parameters from the dataset, i.e., the CNN layers, and the training options must be defined.
Training involves defining the optimizer, the number of iterations, and mini-batch size
and defining the CNN layers. Therefore, after setting the above parameters, the training
and testing process began. The model learned effective characteristics focusing on the
increase in model accuracy and decreased model loss with time, categorizing the images
and identifying building classes. The CNN model’s performance computation depended
on the hyper-parameters: convolutional filters, dropout, and other layers. The CNN model
was trained. Therefore, the model’s performance calculation effectively examines images,
requiring more time for larger datasets. The CNN model was analyzed using the deep
learning network analyzer application.

Quantitative Evaluation

The most popular indicator in classification is a confusion matrix. The horizontal axis
is the expected label, and the vertical axis is the true label, as indicated in Table 1. The
number that has been successfully classified is the diagonal element. Another criterion
for classification is OA, which is used to assess the proportion of cases that are correctly
classified [1]. As a result, the OA may be expressed as

OA =
1
N

n

∑
i=1

Cii (8)

where i = 1, 2, . . . , n, and Cii is the number of correctly classified groups in i; n is the
number of classes, and N is the overall sample size. To confirm reliability and measure
classification precision, the kappa coeffcient was computed from the confusion matrix. As
presented in Equations (9)–(11), it takes into account not only OA but also differences in
the number of samples in each group.

k =
po − pe

1− pe
(9)

po =
1
N

n

∑
i=1

Cii (10)

pe =
1

N2

n

∑
i=1

(Ci+ × Ci+) (11)
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Table 1. The confusion matrix using the proposed method for Area1.

Classes Non-Building Building Total User Accuracy Commission Error

(a) Area1 (DSM)

Non-Building 96.45% 18.24% 79.19% 94.92% 5.08%
Building 3.55% 81.76% 20.81% 86.70% 13.30%

Total 100.00% 100.00% 100.00%
Producer’s Accuracy 96.45% 81.76% OA Kappa Coefficient

Omission Error 3.55% 18.24% 93.20% 0.798

(b) Area1 (Optical)

Non-Building 92.80% 31.05% 79.17% 91.35% 8.65%
Building 7.20% 68.95% 20.83 73.06% 26.94%

Total 100% 100% 100%
Producer’s Accuracy 92.80% 68.95% OA Kappa Coefficient

Omission Error 7.20% 31.05% 87.53% 0.630

(c) Area1 (Fusion)

Non-Building 96.45% 18.24% 79.19% 94.92% 5.08%
Building 3.55% 81.76% 20.81% 86.70% 13.30%

Total 100% 100% 100%
Producer’s Accuracy 96.45% 81.76 % OA Kappa Coefficient

Omission Error 3.55% 18.24% 93.20% 0.787

The precision is a metric for determining the accuracy of each class, and it depicts
the number classified into group i by the model but that truly fit into the true class I
(i = 1, 2, . . . , n). It could be evaluated using the confusion matrix, and we can get the
precision for each group for the i− th classification as follows:

Pi =
Cii

C + i
(12)

4. Results and Discussion
4.1. Experimental Scenes and LiDAR Point Clouds

The building extraction studies reported in this article, involving the combination of
LiDAR and very high-resolution area imagery data sources, were employed to know the
performance of our proposed approach for binary building mask creation. The proposed
building extraction model was evaluated on three datasets (i.e., Area1, Area2, and Area3)
selected from (LiDAR and very high-resolution aerial imagery). The three different scenes
are from subset areas. Area 1 is a fully residential neighborhood comprising detached
small and medium houses with plenty of trees, while Area 2, on the other hand, consists of
high-rise residential and business area buildings. In addition, Area 3 is a complex, dense
urban development area with large building forms and roof patterns with fewer vegetation.

4.2. CNN Building Extraction Results

After training the network, three images of various subset areas (Area1, Area2, and
Area3) were introduced as input for the network model to detect buildings from other
features in the images. The pixels in the dataset are considered in two labels, explicitly
building and non-building; since our interest was specifically on building objects, we took
an interest in their classification and detection, as presented in Figure 4.
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Figure 4. Classification outputs from three datasets. Optical, DSM, and fusion.

Table 1 shows the accuracy results in test area A1, where many small buildings and
tall vegetation exist. We performed aerial assessment (percent) for each feature ground
truth data, namely, the DSM, optical, and fusion to evaluate our model. From Table 1a, the
OA was found to be 93.20%, while our kappa coefficient was found to be 0.798 for the DSM.
For Table 1b, which is the optical, our OA was 87.53% with a kappa coefficient of 0.630, and
lastly, for Table 1c, our OA was 93.20% and kappa was 0.787. Hence, we can conclude that
the fusion of LiDAR and high-resolution aerial imagery and DSM only provided better
performance than the optical alone.

Similarly, Table 2 presents test area A2, DSM (Table 2a) which has an OA of 91.06%
and a kappa coefficient of 0.753, while optical (Table 2b) has an OA of 83.54% and kappa
coefficient 0.606, and lastly, fusion (Table 2c) has an OA of 94.29% with a kappa coefficient
of 0.859. We can deduce that fused output performed better than the DSM and optical.

Table 1 shows the accuracy results in test area A3. From Table 3a (DSM), we can
deduce that the OA was 87.91%. In comparison, the kappa coefficient was 0.748, and
optical (Table 3b) was 80.85% for OA. The kappa coefficient was 0.608, and in addition,
in Table 3c (Fusion), the value was 91.87% for OA while the kappa was 0.834. This is an
indication that our combination of LiDAR and high-resolution imagery is better for feature
extraction than using only the DSM alone or the optical only.

The overall accuracies of the three study areas are: A1, 93.21% for DSM, 87.54% for
optical image, and 93.21% for the fusion. Kappa coefficients of 0.798, 0.630, and 0.798,
respectively, for study area A1. Moreover, for A2, the DSM was 91.07%, optical was 87.54%,
and 93.21% for the fusion with kappa coefficients of 0.798, 0.630, and 0.798 respectively. In
addition, for station A3, the value is 87.92% for DSM, 80.85% for optical, and 91.87% for the
fusion. In totality, the fusion of the DSM and optical image provides the highest accuracy in
detecting and extracting small buildings in location A1. The evaluation is summarized in
Table 4. here, the OA and the kappa coefficient were used, and a comparison between their
various performances is presented. The optical image generated output underperformed
with the lowest accuracy compared to other parameters in all the study areas.
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Table 2. The confusion matrix using the proposed method for Area2.

Classes Non-Building Building Total User Accuracy Commission Error

(a) Area2 (DSM)

Non-Building 97.76% 2.61% 79.25% 90.80% 9.20%
Building 2.24% 72.39% 20.75% 92.06% 7.94%

Total 100% 100% 100%
Producer’s
Accuracy 97.76% 72.39% OA Kappa Coefficient

Omission Error 2.24% 27.61% 91.06% 0.753

(b) Area2 (Optical)

Non-Building 84.56% 19.29% 67.33% 92.44% 7.56%
Building 15.44% 80.71% 32.67% 65.20% 34.80%

Total 100% 100% 100%
Producer’s
Accuracy 84.56% 80.71% OA Kappa Coefficient

Omission Error 15.44% 19.29% 83.5407% 0.606

(c) Area2 (Fusion)

Non-Building 93.72% 4.10% 70.07% 98.46% 1.54%
Building 6.28% 95.90% 29.93% 84.56% 15.44%

Total 100% 100% 100%
Producer’s
Accuracy 93.72% 95.90% OA Kappa Coefficient

Omission Error 6.28% 4.10% 94.29% 0.859

Table 3. The confusion matrix using the proposed method for Area3.

Classes Non-Building Building Total User Accuracy Commission Error

(a) Area3 (DSM)

Non-Building 85.30% 7.43% 57.24% 95.32% 4.68%
Building 14.70% 92.57% 42.76% 78.00% 22.00%

Total 100% 100% 100%
Producer’s Accuracy 85.30% 92.57% OA Kappa Coefficient

Omission Error 14.70% 7.43% 87.91% 0.748

(b) Area3 (Optical)

Non-Building 83.73% 23.00% 57.77% 82.97% 17.03%
Building 16.27% 77.00% 42.23% 77.95% 22.05%

Total 100% 100% 100%
Producer’s Accuracy 83.73% 77.00% OA Kappa Coefficient

Omission Error 16.27% 23.00% 80.85% 0.608

(c) Area3 (Fusion)

Non-Building 92.51% 8.98% 56.79% 93.24% 6.76%
Building 7.49% 91.02% 43.21% 90.07% 9.93%

Total 100% 100% 100%
Producer’s Accuracy 92.51% 91.02% OA Kappa Coefficient

Omission Error 7.49% 8.98% 91.8715% 0.834

The results are better by fusion in area A2, which happens to be a highly complex area
with a value of 94.30% and a kappa coefficient of 0.859, which is better than the optical
image or DSM alone. Area A1 precedes this with a value of 93.21% with a kappa coefficient
of 0.798, which shows a slight equivalent output with the DSM. This implies that at subset
A1, there was not much difference in the results between the DSM and the fused output
due to the nature of the buildings found, some of which are occluded and equally detached
or of moderate height. The same scenario occurs in areas with mixed building forms, e.g.,
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A3, where the OA is 91.87% and kappa coefficient is 0.834, although the fusion took the
lead in the detection and classification.

Table 4. The summary of the evaluation of the method using the OA and Kappa coefficient.

Datasets/Study
Area

A1 A2 A3

OA Kappa OA Kappa OA Kappa

DSM 93.21% 0.798 91.07% 0.753 87.92% 0.748
Optical 87.54% 0.630 83.54% 0.606 80.85% 0.608
Fusion 93.21% 0.798 94.30% 0.859 91.87% 0.834

The summary of results in the test areas A1, A2, and A3 in Figure 5 relates the different
classification (building, cars, trees and vegetations, and road and bare land) and detection
results from the proposed model. It can be seen that the image of the optical was used to
detect buildings of various forms. However, the accuracy was just low compared to the
DSM. The output from the DSM provided us with relatively higher accuracy compared to
the optical. However, as demonstrated in Figure 5, the optical image fails to capture the
voids between buildings and the geometry of the buildings in densely built-up areas. Note
that by using the DSM to detect and classify objects, the accuracy was better. Hence, to
further improve our result, we fused the LiDAR DSM and high-resolution aerial imagery
to produce our fused image. The performance of this was very profound, and it was able
to detect complex building objects found within the test area.

Figure 5. Classification outputs of building extraction displaying other detected features from end-to-end CNN approach.
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In addition, a morphological dilation filter was used to correct the extracted buildings,
compensating for the effects of shadow on building boundaries. The accuracy of the
building per area is shown in Table 5. The difference between the accuracies of A1 and
A3 in terms of their variation stood at 93.09% with a kappa coefficient = 0.788 for A1 in
contrast to 92.16% with a kappa coefficient = 0.840 for A3. From this evaluation, we can
infer that morphological operation does not always produce a refined result. Although it
worked for A1, it did not work for A3. Moreover, the algorithm was able to detect and
classify other features; however, because our focus is major on building features, the other
features were eliminated. The end-to-end algorithm stood a chance of being used in the
classification of other features and not just sand, ground, bare ground, and even mobile
cars.

Table 5. The result of applying morphology to the proposed CNN technique.

Study Area Fusion Result Using Morphology Discussion

A1 OA = 93.09%
Kappa Coefficient = 0.78

A morphological dilation filter was used to
correct the extracted buildings, compensating for
the effects of shadow on building boundaries.
Before applying morphological operation at area
A1, the OA and the kappa coefficient were
93.22% and 0.798, respectively. After applying
the OA, and kappa coefficient rose to 93.09% and
0.788. It implies the operation is effective for
area A1.

A3 OA = 92.16%
Kappa Coefficient = 0.840

The same operation was performed on area A3.
The OA and kappa coefficient value was 92.16%,
0.840, and after this operation on A3, the new OA
and kappa coefficient became 91.87%, 0.834. at
the same time, the performance was poor for A3.
Hence morphological operation cannot provide
total refinement of all forms of building objects.

5. Conclusions

CNN’s have achieved remarkable solutions for various fields, including geospatial
studies, and there is growing interest in LiDAR. However, deep learning has been the
preferred method for a range of challenging tasks, including image classification and ob-
ject detection and modelling. In this study, the end-to-end framework founded on deep
learning is proposed for urban building detection and classification. A multi-dimensional
convolution layer structure is used in the proposed scheme. Moreover, the proposed ap-
proach uses the advantages of fusion of LiDAR and high-resolution aerial imagery spectral
RGB and deep feature differencing. We evaluated the result for urban buildings extraction
for three different building forms and structures in difficult metropolitan locations of Ser-
dang, in Selangor State, Malaysia. The results reveal that relying solely on high-resolution
aerial imagery classification leads to low classification accuracy.

On the other hand, the application of DSM tends to increase the detection rate because
it can correctly distinguish between buildings and ground characteristics. Low-level
structures such as tree branches may be difficult to spot. This challenging issue can be
solved by employing LiDAR and DSM integration, which uses spectral and height features
to achieve high accuracy for small building categorization. There were some noticeable
irregularities in some sections in the resulting building mask, due to occlusion, shadow by
vegetation, or taller buildings, which makes building extracting in urban areas difficult.
Lastly, our approach is fast, reliable, and productive for mapping buildings in the urban
area for proper planning and mitigation against hazards, wildfires, and other related
issues. The fusion of LiDAR with other ancillary datasets provides a rapid solution to
urban remote sensing problems. This work demonstrated CNN’s capacity to effectively
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categorize building features using very-high-resolution aerial imageries and the LiDAR
dataset, compared to adopting a single source of imageries, and indicated that dataset
fusion is plausible. There is a need to evaluate the sensitivity of deep learning methods on
mega multifaceted building structures such as the stadiums and high-rise buildings which
will be the subject of future research work.
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