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Abstract: The shift in IF (instantaneous frequency) series and the corresponding relaxation time
have the potential to characterize sediment properties. However, these attributes derived from
SBP (sub-bottom profiler) data are seldom used for offshore site investigations because of the
unsoundness in attribute calculation. To overcome this problem, a new reliable method combining
VMD (variational mode decomposition) and WVD (Wigner–Ville distribution), as well as relaxation
time, is presented. Since the number of modes in classical VMD should be provided in advance, a
modified VMD algorithm, MVMD (modified variational mode decomposition), is proposed here,
where the distribution of the frequency domain of modes is taken into account to automatically
determine the number of modes. Through the relaxation time model, the IF data of a series of pings
calculated through MVMD-WVD are transformed into a relaxation time map. A robust estimation
algorithm is applied to the relaxation time map to reduce the effects of interferences and obtain
robust relaxation times. The final relaxation time data are used to determine the sediment types. Real
data from SBP experiments, as well as borehole sampling and geotechnical analysis results, verified
the good performance of the proposed method.

Keywords: sub-bottom profiler; sediment classification; instantaneous frequency; VMD; robust
estimation; Chirp

1. Introduction

SBPs are designed to image the underwater sub-bottom sediments for mineral resource
exploration, marine scientific research, and so on [1–3]. In one ping measurement, the
SBP transducer transmits acoustic waves and then receives reflected echoes. The recorded
sequential echoes reflect the structural information of the measured sediment layers, and
the reflection strength and IF of SBP data may aid in the lithology identification of sub-
bottom layers [1–7]. Remote sediment classification based on SBP data enables the sub-
bottom to be mapped more quantitatively, thus improving the degree of confidence of
geological predictions, and this in turn has the potential to decrease the reliance on costly
seabed sampling. However, the existing use of SBP is still mostly limited to the delineation
of stratigraphic structures, although the remote acoustic classification of the physical
properties (reflection coefficient, attenuation coefficient, etc.) of shallow sediments is of
paramount interest to the geotechnical and geological communities in the field of mining
and exploration for placer deposits and other marine mineral resources [4–9]. For example,
SBP sediment classification based on the data acquired by De Beers Marine helped its
offshore mining and exploration programs for diamondiferous placer deposits, situated on
the continental shelf off the west coast of South Africa [9].

Sediment classes are still difficult to obtain because of unsoundness in acoustic at-
tribute estimation [9]. To deal with this problem and improve the classification potential of
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SBP data, there are many researchers who have made efforts in this field using different
methods [10]. These methods can be divided into three categories: reflection coefficient-
based methods, attenuation property-based methods, and machine learning methods.

Mohamed [11] proposed an algorithm that estimates the reflection coefficients of
layers on the basis of signal energy reflected from various interfaces to achieve sediment
classification. They derived the multilayer acoustic energy equations and estimated the
reflection coefficient of every sediment interface. Plets et al. [12,13] also used the reflection
coefficient to analyze the properties of sub-bottom sediments, which is rather simple
and practical. They calculated the reflection coefficient as the ratio of the amplitude of
the reflected wave and the amplitude of the incident wave. However, in sub-bottom
applications, attempts to obtain reflection coefficients are still limited. The analysis window
size in Mohamed’s method can result in unsoundness, while Plets’s method can be invalid
if no multiple exists.

Because of the higher frequencies used, as in the case of sub-bottom imaging, attenua-
tion significantly alters the reflection response. Thus, the attenuation parameters are also
rather important for SBP sediment classification, and attenuation property-based methods
have been developed [9,14–18].

In the early days, the spectral ratio method [14–16] was directly used for the ap-
plication to acoustic reflection data, and Q (quality factor) can be obtained and used to
classify sediments. A simple spectral ratio method is noise-sensitive; thus, Pinson et al. [15]
proposed a method to obtain a robust Q by fitting the spectral ratio curve through iterative
regression using the reweighted robust least-squares method. This method has achieved
great success and is a good tool to analyze the properties of sub-bottom sediments. How-
ever, it is a difficult task to choose an appropriate window size for calculating the spectral
ratio. Moreover, when thin reflectors exist in the analysis window, the calculated Q will be
unreliable. In IF-based methods obtaining the attenuation attributes, Panda et al. [17] built
an attenuation-based classification model that relates the relaxation time of sediment to the
shift in IF of the acoustic signal, which can make up for the limitations of Q based methods.
Stevenson et al. [9] built a relationship between t* (a causal attenuation operator) and
the shift in IF within a complex, thinly interbedded sedimentary sequence. The IF-based
methods all used Hilbert transform to extract IF series from Chirp SBP data, which can
be easily polluted by noise. Robb et al. [18] proposed a WVD method to obtain IF series
and used the relaxation time model to classify sediments, achieving better performance
than traditional Hilbert transform-based methods. However, the WVD method always
suffers from cross-term interference [19–21], which can result in incorrect IF. In conclusion,
although attenuation property-based methods have been developed for many years, they
still suffer from unsoundness in terms of key parameter estimation.

Machine learning and feature engineering methods have also been applied in marine
geophysics. They can find the potential relative relationships between observed data and
physical properties. Yegireddi et al. [22] proposed a sediment classification method based
on SBP image texture features. However, the relationships between texture features and
sediment properties are not clear. Because there are differences in the resolution of different
instruments, even in the same sub-bottom, the image characteristics measured by different
instruments are different. Furthermore, the classified results are based on patches; thus,
the resolution of these results is relatively low. Kim et al. [23] introduced the SI (similarity
index) for the classification of the seafloor on SBP data. They assumed that different
sediments can produce different features in terms of the waveform in the adjacent received
signals, and SI can be used to measure the similarity between these adjacent received
signals. However, the SI can only be used to classify the seafloor and is not suitable for
sub-bottom sediment classification. In addition, the methods based on machine learning
and feature engineering can only give qualitative results but not quantitative analysis
processes, while they need drilling data to build sample sets.

In order to perform quantitative analysis and sediment classification without drilling
data, and to overcome the defects of unsound acoustic attribute estimation of traditional
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methods, we propose an IF series estimation method based on MVMD-WVD and apply it
to the relaxation time model. Then, a relaxation time map can be obtained and processed
by the robust estimation method to obtain reliable relaxation times, which can finally be
used for sediment classification. The remainder of this paper is organized as follows: in
Section 2, the method is described. The experimental details are presented in Section 3. A
discussion is presented in Section 4. Lastly, our conclusions are given in Section 5. The
flow chart of the proposed method is shown in Figure 1. The main symbols of the variables
used in this paper are shown in Table 1.

Figure 1. Flowchart of the proposed method.

Table 1. Main symbols of variables used in the proposed method.

Symbols Descriptions

pres, V, ρ, Rconst
The excess pressure, the adiabatic acoustic speed, the excess density, a constant characterizing the

relaxation process
ξ The displacement at a surface

kwave, α, Vp, ω Wave number, attenuation coefficient, phase velocity, frequency
τrelax, φsize The relax time, the average particle size

fshift The slope of line fitting of an IF series in a given interval
uk, Ak, φk The k-th mode in VMD, the amplitude of the mode, the corresponding phase

h, λ, K Signal to be decomposed, Lagrangian multiplier, the number of modes
ωk,σk The mean frequency (the center frequency) and its corresponding standard deviation of k-th mode
Gi, Gk Two normal distribution functions

xt, zt, x̂(t) A signal, the corresponding analytical signal, the result after Hilbert transform of x(t)
fIF The instantaneous frequency series

Wz(t, Ω) The WVD of an analytical signal z(t) at time t and frequency Ω in WVD

L, B, Xτ, ∆ The observation vector, the coefficient matrix, the parameter vector, the error term of
observation function

pnum, a, b Ping number, the slope, the intercept of a fitted line based on relaxation time map
τrelax (pnum) The relaxation time τrelax in pnum-th

wi, vi, σ0
The weight function and the residual of i-th observation value in robust estimation, the

root-mean-square error
P, k0, k1 Equivalent weight matrix, two constants of weight function in robust estimation

2. Methods
2.1. Relaxation Time Model

In this paper, the relaxation time model [17] was used to study the classification of
sediments rather than using a lookup curve figure, because the relationship between the
relaxation times and sediments has been directly presented in the literature.
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Fully saturated marine sediments exhibit relaxation phenomena. The relaxation time
is a measure of the finite time needed to change the density by the application of sudden
pressure. The equation of state for a relaxation time model is given by

pres = V2ρ + Rconst
.
ρ, (1)

where pres is the excess pressure, ρ is the excess density, V is the adiabatic acoustic speed,
and Rconst is a constant characterizing the relaxation process. Combining the equation of
state with the equation of continuity and the momentum equation, the equation of motion
becomes

..
ξ = V2

(
∂2ξ

∂x2 + τrelax
∂2

.
ξ

∂x2

)
, (2)

where τrelax is the relaxation time, and x is the direction of motion. ξ is the displacement.
The solution to Equation (2) is a damped plane harmonic wave given by

ξ(x, t) = ξ0e−αxej(ωt−kwavex), (3)

where α is the attenuation coefficient, kwave is the wave number, and ω is the frequency. ξ0
is an arbitrary constant. Substitution of Equation (3) into Equation (2) yields

kwave
2 − α2 =

ω2

V2(1 + ω2τrelax
2)

, (4)

and

2αkwave =
ω3τrelax

V2(1 + ω2τrelax
2)

. (5)

By solving for the wave number and the attenuation coefficient, we obtain

α =
ω2τrelaxVp

2V2(1 + ω2τrelax
2)

, (6)

and
kwave =

ω

Vp
, (7)

where Vp, the phase velocity, is given by

Vp =

√
2V

ωτrelax

[
(1 + ω2τrelax

2)(
√

1 + ω2τrelax
2 − 1)

]1/2
. (8)

For low frequency,

Vp ≈ V(1 +
3ω2τrelax

2

8
+ . . .). (9)

Neglecting the second- and higher-order terms, we obtain

α ≈ ω2τrelax
2V

. (10)

The attenuation coefficient (unit: dB/m/kHz) and its associated property of sedi-
ments were studied by conducting a large number of geo-acoustic and geotechnical analysis
experiments. The average particle sizes and attenuation coefficient parameters of differ-
ent sediments were obtained, and the attenuation–average particle size scatter map was
drawn [17]. According to the distribution characteristic of these scattered points in the map,
Panda [17] concluded that the relationship between attenuation coefficient and average
particle size can be transformed into the relationship between the relaxation time and
average particle size, which can better characterize the sediment geo-acoustic properties.
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Accordingly, Equation (10) was used to convert the attenuation coefficient α into a relax-
ation time τrelax, and the relationship model of relaxation time–mean particle size can be
established as

τrelax = 0.0848(φsize − 0.415)e−0.0437(φsize−0.415)2
, (11)

where φsize is the average particle size.
Since acoustic attenuation in sediment can be characterized by the frequency selection

characteristic of attenuating mediums, the frequency spectrum after attenuation will move
to the low-frequency domain. Thus, acoustic attenuation can be described by measuring
the shift of the center frequency of the pulse. The local mean of an IF series can be used to
replace the central frequency; hence, the relationship between the IF series and relaxation
time can be directly established to characterize the sediment properties. By measuring
the IF series of sound waves penetrating different types of sediments while measuring
the corresponding relaxation times, a model of the relaxation time and IF shift can be
established as follows:

τrelax = 0.00672 fshi f t, (12)

where fshift is the slope of line fitting of an IF series in a given interval, i.e., the IF shift.

2.2. MVMD-WVD

Although the traditional WVD method can be employed to get IF series, it may suffer
from serious cross-term effects [19–21]. The VMD algorithm is a newly developed time–
frequency tool for signal decomposition and is qualified for solving the cross-term of WVD.
However, choosing the number of modes appropriately is not the task of VMD. Thus, we
propose a modified VMD method called the MVMD method to automatically determine the
number of modes and then combine MVMD with WVD to achieve reliable IF calculation.

2.2.1. Variational Mode Decomposition

VMD can decompose a real-valued input multimodal signal h into several intrinsic
mode functions (named modes in VMD), uk, that have narrow bands while reproducing the
input [24,25]. Modes are AM/FM (amplitude-modulated/frequency-modulated) signals,
written as

uk(t) = Ak(t) cos(φk(t)), (13)

where Ak(t) is the amplitude, and φk(t) is the phase.
The key problem is how to assess the bandwidth of a mode. In VMD, a variational

framework is built to deal with the bandwidth assessment problem:

min
{uk},{ωk}

{
∑
k

∥∥∥∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥2

2

}
s.t.

K
∑
k

uk = h ,
(14)

where {uk}: = {u1, . . . , uK} is the mode, and {ωk}: = {ω1, . . . , ωK} is the corresponding
center frequency. K is the number of modes, and h is the original input signal. The
reconstruction constraint can be addressed by making use of both a quadratic penalty term
and a Lagrangian multiplier, λ, in order to render the problem unconstrained. Then, the
final optimization for VMD is to minimize the following:

L({uk}, {ωk}, λ) := α∑
k

∥∥∥∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥2

2

+

∥∥∥∥h(t)−∑
k

uk(t)
∥∥∥∥2

2
+

〈
λ(t), h(t)−∑

k
uk(t)

〉
.

(15)

The solution to the minimization problem above can be obtained using a sequence of
iterative suboptimizations called the alternate direction method of multipliers.
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2.2.2. Modified Variational Mode Decomposition

The traditional VMD method has the same drawback as methods such as k-means,
where the number of modes K should be provided before decomposition. A relatively large
K can result in over-decomposition which may bring in virtual terms, while a relatively
small K may result in under-decomposition, and some modes may have multiple compo-
nents. To deal with this problem, a modified variation mode decomposition method taking
the characteristics of modes in the frequency domain is proposed in this paper.

Since each mode has a narrow band, the decomposed k-th mode uk is mostly compact
around a center angular frequency ωk, and different modes are away from each other in
the frequency domain to avoid the overlap between two different modes. If K is too large, a
serious spectral overlap may occur between two different modes. According to this concept,
an appropriate K can be determined through assessing the degree of the spectral overlap.

First, let us focus on solving ωk. The bandwidth is estimated through the Gaussian
smoothness of the demodulated signal, i.e., the squared norm of the gradient, as shown
below [24].

ωn+1
k = argmin

ωk

{∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2

2

}
. (16)

In the Fourier domain, the above equation can be rewritten as

ωn+1
k = argmin

ωk

{∫ ∞

0
(ω−ωk)

2|ûk(ω)|2dω

}
. (17)

In fact, Equation (17) is similar to the minimum error sum of squares algorithm. ω

is the observation value, and ωk
n+1 is the estimation value, while |ûk(ω)|2 is the weight.

ωk
n+1 can be obtained using

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω
. (18)

The corresponding standard deviation can be obtained as

σn+1
k =

√√√√∫ ∞
0 (ω−ωk)

2|ûk(ω)|2dω∫ ∞
0 |ûk(ω)|2dω

, (19)

where σk
n+1 is the standard deviation corresponding to ωk

n+1 after the n + 1 iteration.
When the iteration is ended, the final mean and standard deviation can be obtained
and noted as ωk and σk. Since the minimum error sum of squares-based optimization
algorithms assume that the error and observation values follow normal distributions,
ω − ωk obeys the normal distribution with the expectation as 0 and the standard deviation
as σk. Under this distribution, the area ratio in the interval [ωk − λσk, ωk + λσk] is
99.73% (when λ = 3). Figure 2a describes the situation of the spectral overlap. Modes ui
and uk have their corresponding Gaussian distribution functions Gi(x) and Gk(x) and are
shown in Figure 2a as Gaussian function-like curves. If the ratio of the overlap area to the
area of two distribution functions is about 0.27% (calculated through 1–99.73%), then the
overlap occurs.
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Figure 2. Illustration of the spectral overlap and the relaxation time map. (a) The spectral overlap.
(b) The relaxation time map and its line fitting.

Then, the determination criterion of the number of modes K can be concluded as
follows:

Step 1: Set initial K as 2, and set the max number of modes Kmax;
Step 2: Calculating VMD based on the input signal h when the number of modes is K.

Then, set k = K.
As for ∀ui (i 6= k), if Gi(ωk + λσk) > Gk(ωk + λσk) or Gi(ωk − λσk) > Gk(ωk − λσk),

then the final number of modes is determined as K = K − 1.
If Gi(ωk + λσk) ≤ Gk(ωk + λσk) and Gi(ωk − λσk) ≤ Gk(ωk − λσk), then K = K + 1.

If K is equal to Kmax, the final number of modes is K = K – 1; else, return to Step 2.
Here, λ is usually set to 3. Gi and Gk are normal distribution functions.

Gi(x) = 1√
2πσi

exp
(
− (x−ωi)

2

2σi
2

)
,

Gk(x) = 1√
2πσk

exp
(
− (x−ωk)

2

2σk
2

)
.

(20)

Figure 2a shows an illustration of the above steps. The green curve represents Gk, and
the red curve represents Gi. The black point (ωk + λσk, Gi (ωk + λσk)) is above the blue
point (ωk + λσk, Gk (ωk + λσk)), which satisfies the formula Gi(ωk + λσk) > Gk(ωk + λσk).
That is, the two curves have a large overlapping area. Therefore, we can judge from
Figure 2a that, in this case, a mode aliasing state occurs, and the final number of modes
should be determined as K = K − 1.

The above describes the method to determine the number of modes. The final modes
can be obtained using VMD by setting the number of modes as K.

2.3. Calculating IF Using WVD

Firstly, we show the definition of IF. As for a given signal x(t), its corresponding
analytical signal z(t) is as follows [26,27]:

z(t) = x(t) + jx̂(t) = Amp(t)ejϕ(t), (21)

where Amp(t) is the instantaneous amplitude, and ϕ(t) is the instantaneous phase. j here
stands for imaginary unit. x̂(t) is the imaginary part and can be obtained using Hilbert
transformation.

x̂(t) = x(t) ∗ 1
πt

=
1
π

∫ +∞

−∞

x(τ)
t− τ

dτ, (22)

where IF fIF is defined as

f IF(t) =
1

2π

d
dt
[ϕ(t)]. (23)
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In practice, the following formula is often used to calculate IF [9]:

f IF(t) =
(

1
2π

)
x(t) dx̂(t)

dt − x̂(t) dx(t)
dt

x2(t) + x̂2(t)
. (24)

Although Equation (24) is always used to obtain IF series, it is a noise-sensitive method.
Robb et al. [18] showed that WVD can achieve better performance to get IF series and to be
employed in sediment classification. Since the WVD method may generate cross-terms, we
can combine MVMD with WVD to suppress the influence of cross-terms. The processing
steps are shown below.

(1). MVMD is used to decompose the original signal h(t). Mode ui(t) is obtained (i = 1, 2,
3, ..., K).

(2). The analytical signal of ui(t) is obtained as z(t) using Equation (21). The WVD of z(t)
is Wz(t, Ω) [18].

Wz(t, Ω) =
∫

r(t, τ)e−2π jΩτdτ,
r(t, τ) = z(t− τ

2 )∗z(t +
τ
2 ).

(25)

Then, the IF of ui(t) is as follows [19]:

f i
IF(t) =

∫
ΩWz(t, Ω)dΩ∫
Wz(t, Ω)dΩ

. (26)

(3). The final IF series can be obtained as

f IF(t) =
1
K

K

∑
i=1

f i
IF(t). (27)

Then, we apply 3 × 3 mean filtering to the IF series, and this IF series is still named fIF.

2.4. The Robust Estimation of Relaxation Time

The trend line which depicts a least-squares linear fit for the selected sediment interval
can be obtained on the basis of fIF, and the slope of the trend line is the estimated shift of
IF, i.e., fshift. The selected interval corresponds to the vertical spatial distribution range of
the sediment. Then, through Equation (12), relaxation times can be obtained. In order to
obtain more reliable results, relaxation time is calculated by combining multi-ping data.
Taking the analysis ping as the center, 50 pings on the left and right sides of this ping are
selected. Thus, a total of 101 pings are selected. By separately applying the line fitting to
the IF series of consecutive 101 pings, a set of relaxation times can be obtained, constituting
a relaxation time map as shown in Figure 2b.

Although the relaxation time map is obtained as described above, the locations of
sediment interfaces cannot be precisely determined, which may result in errors in the
estimation of relaxation time. Moreover, noise can degrade the performance of the trend
line fitting. Thus, outliers can be introduced into the relaxation time map. To suppress
these outliers and obtain robust relaxation times, we remove outliers with negative values.
We also assume that the relaxation time of sediment is changing slowly and linearly along
the sailing direction, and a robust estimation method (selecting weight iteration robust
least-squares regression [28]) is applied to the relaxation time map. This line fitting is
shown in Figure 2b, where the red line is the trend line of the relaxation time map, and the
blue asterisks represent the relaxation times of each ping.

The equidistant sampling method is first applied to SBP data to make the distance
between adjacent pings equal [29]. The robust estimation of the relaxation time map starts
from the following equation:

L = BXτ + ∆, (28)

L = τrelax(pnum), B =
[

pnum 1
]
, Xτ =

[
a
b

]
. (29)
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Here, pnum is the ping number, τrelax(pnum) is the relaxation time τrelax in the pnum-th
ping, and a and b are the slope and intercept of the fitted line of the relaxation time map. 4
is the error term. The corresponding error equation can be expressed as

Vτ = BX̂τ − l, (30)

where l = L − BXτ
0; Xτ

0 is the approximate value of Xτ . A selecting weight iteration robust
least-squares regression is used to obtain a and b [28], as described below.

(1). Let the initial values of weights be 1, i.e., pi = p2 = . . . = pm = 1,
(2). The first estimation value of parameter Xτ and the residual is

X̂τ
(1) = (BT PB)

−1
BT Pl, Vτ

(1) = BX̂τ
(1) − l. (31)

(3). P(1) can be obtained by constructing the equivalent weight using pi = piwi.

X̂τ
(2) = (BT P(1)B)

−1
BT P(1)l, Vτ

(2) = BXτ
(2) − l, (32)

where

wi =


1,

∣∣vi/σ0
∣∣< k0

k0
|vi/σ0|

[
k1−|vi/σ0|

k1−k0

]2

0,
∣∣vi/σ0

∣∣≥ k1

, k0 ≤ |vi/σ0| < k1. (33)

vi is the residual and is the i-th element in Vτ , σ0 is the root-mean-square error, and k0
and k1 are constants. Usually, k0 is set between 1 and 2.5, and k1 is set between 3 and
8. Here, k0 is set to 1 and k1 is set to 3.

(4). The following iterative calculation is similar to the above until the last two solutions
meet the limit of the difference requirement.

Through the above robust estimation method, we can obtain a better relaxation time
at each ping. Moreover, the y-axis of the robust fitted line shows the final relaxation time.

2.5. Sediment Classification

The average relaxation times of various sediments are shown in Table 2 [17]. By com-
paring the result τrelax with the values in Table 2, we can classify the sediment categories.
However, it should be noted that the naming methods of the sediment types in Table 2
are different from the commonly used naming method. The nomenclature method in
Table 2 is derived from the Udden–Wentworth equal-scale granulation classification stan-
dard, where the sediment can be divided into four categories of clay, silt, sand, and gravel;
altogether, there are 15 subcategories according to the particle size [30]. Commonly used
sediment categories are named according to the relative proportion of different particle
size components [31] (Figure 3 shows the Folk naming result). As the proportion of sedi-
ment compositions is difficult to be calculated using the classification methods based on
either spectral ratio or instantaneous attributes, only results such as those in Table 2 can
be obtained. Therefore, according to the Fokker method and the Udden–Wentworth ratio
grading classification standard, the sediment category is simplified into sand, silt, and clay.
In addition, considering that mud is also a common category in actual measurement, it
also needs to be added as a category. According to the results of the Fokker method, mud
is a mixture of clay and silt, and its relaxation time should be between that of clay and silt,
varying from 0.02 µs to 0.03 µs.

Since the range of the silt category relaxation time is large, while the relaxation times of
other categories are small, we can adjust the relaxation time ranges during the simplification
of categories to prevent other sediments from being mistakenly classified into silt. The
adjusted relaxation time ranges are shown in Table 3, where 0.095 is calculated through
(0.13 + 0.06)/2 and 0.045 is calculated through (0.03 + 0.06)/2.
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Table 2. Average relaxation time for different sediment types.

Sediment Type Relaxation Time (µs)

Medium sand 0.15
Fine sand 0.17
Coarse silt 0.13

Medium silt 0.06
Fine silt 0.03

Clay 0.02

Figure 3. Illustration of the sediment nomenclature.

Table 3. Relaxation time range for different sediment types after adjustment.

Sediment Type Relaxation Time Range (µs)

Sand τrelax ≥ 0.095
Silt 0.045 ≤ τrelax < 0.095

Mud 0.020 < τrelax < 0.045
Clay τrelax ≤ 0.02

3. Experiment and Results

To verify the effectiveness of the proposed method, real data experiments were per-
formed. Experimental areas were located in Caofeidian Port area of Tangshan Port in China.
The water depth was 5–11 m. Edgetech 3200X-STAR SBP was used for this measurement.
The Chirp wave frequency range was set to 0.5–8.0 KHz, and the sampling interval was
0.08 ms. The transmitting power was 2000 W; the speed was about 4–5 knots. The borehole
sampling and geotechnical analysis results showed that the sediment in this area is mainly
composed of mud, silt, silty clay, and silty sand.

3.1. Case 1

Firstly, the Hilbert transform method was applied to obtain the instantaneous ampli-
tude data. Then, according to the amplitude distribution histogram, the amplitude data
were converted into 0–255 to form an SBP image [2], as shown in Figure 4a. From the SBP
image, we could locate the positions of the layer reflections. In this case, mud was the first
layer, and the borehole sampling did not show the sediment types of deeper layers. The
mud layer was located below the 200th sampling point. We also found that, except for
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the strong reflections, there are some scattering waves in the SBP image, which may have
made the classification less robust.

Figure 4. The measurement data. (a) The SBP image. (b) The raw data of one ping.

MVMD was first applied to data of one ping. After calculating the mean and standard
of each mode, the distribution characteristic of modes in the frequency domain was ana-
lyzed, and the spectral overlap between two modes was assessed. The final number of
modes in one ping was determined as three. Figure 5a shows the situation of the spectral
overlap of decomposed modes. It can be noted that, through the proposed MVMD method,
the mode uk was mostly compact around a center angular frequency ωk, and different
modes were away from each other in the frequency domain. Figure 5b–d show the results
of different modes.

Figure 5. Illustration of the MVMD result. (a) The spectral ratio of the decomposed modes of one ping. (b) The first mode
after decomposition. (c) The second mode after decomposition. (d) The third mode after decomposition.

WVD shows the time–frequency distribution of the input signal. At every sampling
time, a set of frequencies can be obtained. Thus, WVD has high time and frequency
resolution. The WVD of one mode is shown in Figure 6a.
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Figure 6. Illustration of WVD, IF series, and the relaxation time map. (a) The WVD result of one mode. (b) The IF series data
of one ping. (c) The IF shift data of 101 pings. (d) The relaxation time map and the robust line fitting based on relaxation
time map.

To obtain the IF series of one mode, the first moment of its corresponding WVD
along the y-axis was calculated. Combining IF series derived from different WVD maps of
different modes, a final IF series could be obtained, as shown in Figure 6b.

The IF curve obtained using the proposed method was smooth although small fluctu-
ation could still be observed in Figure 6b. The fluctuation of the IF series may have been
caused by the scatters and the existence of small reflectors. The line fitting was applied to
the IF series in the selected range (200th–300th sampling point in this case). The slope of the
fitted line was fshift. After calculating the fshift of 101 pings of the data around the location
of the drill hole, a plot could be obtained (Figure 6c). The relaxation times were obtained
using Equation (12). Some relaxation times with negative values were removed. The final
relaxation time map is shown in Figure 6d. We extracted an IF series corresponding to the
negative relaxation time and found that the inaccurate locations of reflectors could have
led to these negative values. After eliminating these outliers, we then applied the robust
estimate to the relaxation time map. Some anomalies could be suppressed after robust
estimation, and a robust result could be achieved.

Geotechnical analysis was applied to the drill hole sample. The analysis result shows
that the sediment here was mud and was behaving plastically. A large amount of debris
and a small amount of silt mass were also observed in this drill hole sample. The relaxation
time here was between 0.021 µs and 0.026 µs. Compared with the results in Table 3, we
can conclude that the sediment type was mostly mud, consistent with the geotechnical
analysis result.

3.2. Case 2

The original data were transformed into a grayscale image, as shown in Figure 7a.
Figure 7b shows the data of one ping. From the SBP image, we found that there were many
scattering waves below the seafloor. Because of the high attenuation of the acoustic energy
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in this area, the emitted acoustic wave could not reach deep reflectors. Some reflections
with the depth of 20 m were similar to the seafloor, which were multiples caused by the
secondary reflections from the sea surface to the seafloor. MVMD was applied first, and
the original data were decomposed into several separate modes. The spectral overlap of
these modes is shown in Figure 8a. WVD was then applied. By applying the first moment
calculation to the WVD along the y-axis, the IF series could be obtained. The final IF series
was achieved by combining the IF series of every mode, as shown in Figure 8b. After
calculating the relaxation times of 101 pings of the data around the location of the drill
hole, a relaxation time map was obtained, as shown in Figure 8d. We then applied the
robust estimate to the relaxation time map and the relaxation time was around 0.10 µs.
The estimated relaxation time fluctuated greatly, which could have been caused by the
non-determinacy introduced by the scattering waves.

Figure 7. The measurement data. (a) The SBP image. (b) The raw data of one ping.

Figure 8. Illustration of VMD, IF series, and the relaxation time map. (a) The spectral overlap situation after VMD. (b) The
IF series data of one ping. (c) The IF shift data of 101 pings. (d) The robust line fitting based on a relaxation time map.
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The geotechnical analysis of the drill hole sample shows that the sediment here was
silty sand. The relaxation time estimated here was close to the relaxation time of middle
sand and coarse silt in Table 2. Referring to the relaxation time results after our category
simplification in Table 3, the sediment was defined as sand. Thus, the sediment type
determined using the proposed method was consistent with that provided by the drill hole.
Accordingly, the effectiveness of the proposed method was verified.

3.3. Case 3

The original data were transformed into a grayscale image, as shown in Figure 9a.
From the SBP image, we found two layers. The first layer was located between the 230th
and 260th sampling points. The second layer was located below the 260th sampling point.
It was also observed in the SBP image that there were many scattering waves below the
seafloor. The scattering waves and the thin thickness of the first layer increased the difficulty
in estimating the relaxation time, as scattering waves may introduce outliers, while thin
thickness means that fewer observations can be used in relaxation time estimation. MVMD
was applied first. Figure 10a shows that the number of modes was determined as four,
and the original data were decomposed into four separate modes. The WVD of each mode
was calculated after MVMD. Then, by applying the first moment calculation to the WVD
along y-axis, the IF series of each mode could be obtained. The final IF was achieved
by combining the IF series of every mode, as shown in Figure 10b. After calculating the
relaxation times of 101 pings of the data around the location of the drill hole, a relaxation
time map was achieved. We then applied the robust estimate to the relaxation time map, as
shown in Figure 11b,d.

Figure 9. The measurement data. (a) The SBP image. (b) The raw data of one ping.

Figure 10. Illustration of VMD and the IF series. (a) The spectral overlap situation after VMD. (b) The IF series data of
one ping.
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Figure 11. Illustration of the IF series and the relaxation time map. (a) The IF shift data of 101 pings of the first layer. (b) The
robust line fitting based on a relaxation time map of the first layer. (c) The IF shift data of 101 pings of the second layer.
(d) The robust line fitting based on a relaxation time map of the second layer.

From the relaxation time map in Figure 11, we found that the relaxation time of the
first layer was between 0.032 µs and 0.040 µs, and the relaxation time of the second layer
was between 0.018 µs and 0.020 µs. The sediment type of the first layer was mud, and
the sediment type of the second layer was clay. The geotechnical analysis of the drill hole
sample showed that the sediment here was mud and mucky silty clay. Thus, the sediment
type determined by the proposed method was basically consistent with that provided
by the drill hole. However, it is worth noting that, from the relaxation time maps, the
distribution ranges of relaxation time discrete points under silt and silty clay are relatively
close. Therefore, although the distinction between the two types of sediments was achieved,
the difference between these two sediments in terms of relaxation time is small.

4. Discussions
4.1. The Effectiveness of MVMD

To verify the ability and effectiveness of the proposed method in the determination of
the number of modes K and the decomposition of signals, a simulated signal was generated,
as shown in Figure 12a. The simulated signal y can be expressed as

y = cos(4πt) + 2 cos(20πt) + 4 cos(120πt) + n, (34)

where n is the noise. This signal was composed of three cosine signals (with frequency
2 Hz, 10 Hz, and 60 Hz, respectively). Using the proposed MVMD method, K was first
determined as 3. VMD was then applied to the simulated signal, and the modes after
decomposition were as shown in Figure 12c–e. In this case, the spectral ratio is shown in
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Figure 12b. It is very clear that the three modes had center frequencies of 2 Hz, 10 Hz, and
60 Hz, respectively, and the decomposed signals were very close to the original sub-signals.

Figure 12. Illustration of the MVMD. (a) The original data. (b) The spectral ratio of the decomposed modes. (c) The first
mode. (d) The second mode. (e) The third mode.

4.2. Robust Line Fitting

After calculating a set of relaxation times for 101 pings, a line fitting based on the
robust estimation theory was applied to the relaxation time map. Here, we compared the
difference between line fitting results with or without robust estimation. The relaxation
time map is shown in Figure 13, and the black line shows the line fitting using the least-
squares method, while the red line shows the line fitting using the robust line fitting
algorithm. This sediment type was mud, with a relaxation time between 0.020 µs and
0.045 µs. The estimated relaxation time using the black line was relatively high (between
0.048 µs and 0.049 µs), which may have been caused by the outliers with high relaxation
times, while the used robust method obtained a more credible result (between 0.032 µs and
0.040 µs).
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Figure 13. Illustration of the robust line fitting. The black line is the classical line fitting, while the
red line is the robust line fitting.

4.3. Comparison with Traditional Methods

The typically used IF calculation method is based on Equation (24). The calculated
IF series of one ping is shown in Figure 14a based on the real data in case 1. There were
several outliers in the IF series. Although the robust line fitting of the relaxation time
map showed that the relaxation time was near 0.08 µs, which is close to the relaxation
time of mud. As shown in Figure 14b, too many outliers were removed before generating
the relaxation time map, which led to the few points in the fitting. Thus, the result was
not reliable.

Figure 14. Illustration of the IF series using traditional method and the relaxation time map. (a) The IF series. (b) The robust
line fitting based on the relaxation time map.

In the work of Robb et al. [18], they tested the performance of WVD using a set of
real experiments and concluded that WVD is suitable for the relaxation time estimation
of correlated Chirp SBP signals. Here, we also directly applied the WVD to the real data
in case 1. The obtained IF series is shown in Figure 15a, and the relaxation time map
and the fitted line are shown in Figure 15b. The estimated relaxation time was about
0.1 µs, while the relaxation time in this sediment type (mud) is about 0.02–0.03 µs. Thus,
the estimated result was far away from the ground truth. This situation may have been
caused by cross-terms. Cross-terms are generated by the WVD when the input signal is
multi-component and can lead to inaccurate IF values.
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Figure 15. Illustration of the IF series using WVD and the relaxation time map. (a) The IF series. (b) The robust line fitting
based on the relaxation time map.

5. Conclusions

In this paper, we presented the MVMD-WVD method for reliable IF calculation and
used the relaxation time model to obtain relaxation time maps. To suppress the influence of
outliers, a robust least-squares algorithm was employed to estimate robust relaxation times
from the relaxation time map. Final sediment classification could be achieved through the
relaxation time look-up table. In conclusion, the sediment classification method presented
in this paper provides a new reliable way to explore the relationship between the latent
sediment characteristics and the IF series. Furthermore, our experiments show that the
proposed method is an effective way of classifying sub-bottom sediments.

However, further improvements in IF calculation can still be achieved, since VMD
is not specifically designed for sonar signal processing. Moreover, the proposed method
is still away from practical application in complex sediment environments, and further
research may be needed for a finer classification of the sub-bottom. In future work, we will
combine more prior characteristics in SBP sonar signals with MVMD to effectively obtain a
more reliable IF series.
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