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Abstract: Recently, deep learning has been widely used in synthetic aperture radar (SAR) aircraft
detection. However, the complex environment of the airport—consider the boarding bridges, for
instance—greatly interferes with aircraft detection. Besides, the detection speed is also an important
indicator in practical applications. To alleviate these problems, we propose a lightweight detection
model (LDM), mainly including a reuse block (RB) and an information correction block (ICB) based
on the Yolov3 framework. The RB module helps the neural network extract rich aircraft features
by aggregating multi-layer information. While the RB module brings more effective information,
there is also redundant and useless information aggregated by the reuse block, which is harmful to
detection precision. Therefore, to accurately extract more aircraft features, we propose an ICB module
combining scattering mechanism characteristics by extracting the gray features and enhancing
spatial information, which helps suppress interference in a complex environment and redundant
information. Finally, we conducted a series of experiments on the SAR aircraft detection dataset
(SAR-ADD). The average precision was 0.6954, which is superior to the precision values achieved by
other methods. In addition, the average detection time of LDM was only 6.38 ms, making it much
faster than other methods.

Keywords: synthetic aperture radar; aircraft detection; scattering information; reuse information;
lightweight detection model

1. Introduction

Synthetic aperture radar (SAR) has all-weather and all-time characteristics, which lays
the foundation for applications of agriculture and forestry monitoring, geological surveying
and mapping, marine traffic supervision, and airport management. In the imaging process,
as shown in Figure 1, SAR first launches a short pulse. After hitting the target, part of
the energy returns and is received. Then, radar stores the historical Doppler phase of
the target echo and generates the synthetic image, which is beneficial to improving the
azimuth resolution. SAR imaging is also affected by sensor type, parameter settings, and
observation direction. The scattering mechanism of SAR [1] can lead to large differences
between images of the same target under different conditions. Therefore, aircraft detection
is a challenging task for SAR images.

Traditional methods [2–9] have made some improvements in SAR image target detec-
tion, but those methods require prior information and lack robustness. Besides, the detec-
tion times of those algorithms also limits the practical application. SAR automatic target
detection [9] generally includes detection, discrimination, and classification. The detection
part mainly uses the constant false alarm rate (CFAR) algorithm [2,3] to extract features
and determine candidate locations, including targets and false alarms. The discrimination
part is mainly used to eliminate redundancy by using target likeness. The classification

Remote Sens. 2021, 13, 5020. https://doi.org/10.3390/rs13245020 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-3844-9618
https://doi.org/10.3390/rs13245020
https://doi.org/10.3390/rs13245020
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13245020
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13245020?type=check_update&version=1


Remote Sens. 2021, 13, 5020 2 of 20

part weighs various target likeness scores and prior information to judge target classifica-
tion. The detection part is the most important and is mainly based on CFAR. The CFAR
algorithm sets the false alarm rate, models the pixels in the sliding window, estimates the
detection threshold, and compares the pixel value with the detection threshold to judge
whether it is the target pixel. It repeats this calculation process until all image pixels are vis-
ited. The basic CFAR detector [7] includes CA-CFAR, GO-CFAR, SO-CFAR, and OS-CFAR.
CA-CFAR uses all pixels in the hollow window and averages to estimate the statistical
parameters of the background clutter, which has better detection performance in the self
region. OS-CFAR arranges the pixels in the window in ascending order, selects the kth
number as noise, and then estimates the background clutter, which is good for detecting
small targets. GO-CFAR can detect targets at the edge of clutter, but cannot distinguish
two closely spaced targets. CFAR is based on background clutter estimation, and it does
not consider the statistical characteristics of the target. GLRT [8] takes the statistical distri-
bution of the target into account. In addition to the CFAR algorithm, wavelet analysis and
empirical mode decomposition [10,11] are also used for SAR aircraft detection. Wavelet
analysis is based on the pyramid decomposition model with many sub-images of different
frequencies. Empirical mode decomposition also generates sub-images and focuses more
on directional information. There is rich target information in the sub-images. However, in
practical applications, the prior information of the target is unknown. Besides, the scatter-
ing characteristics of the clutter background are related to the specific environment. It is
difficult to maintain excellent performance in different detection scenes.

Target

Radar beam irradiation area

Figure 1. Synthetic aperture radar (SAR) imaging.

In recent years, methods based on convolutional neural networks (CNN) have achieved
better performance in optical image target detection. Deep learning target detection meth-
ods can be divided into one-stage methods [12–15] and two-stage methods [16,17]. A two-
stage method generates target candidate regions and then predicts the positions and classes
of possible targets. Differently, the one-stage method uses regression for target detection
and directly predicts category and location. With the help of the candidate region extrac-
tion, the two-stage method has more accurate detection results but spends much more time
making inferences than the one-stage method. Faster R-CNN [16] uses a region proposal
network to generate regions of interest, and then get target classification and bounding box
regression. Yolov3 [14] divides the input into S × S grids, and each grid predicts multiple
bounding boxes. Yolov3 employs a feature pyramid structure and has good detection
performance in multi-scale target detection. SSD [15] searches the best candidate box on
multiple feature maps and directly predicts the classification and position, which fully
integrates the advantages of Faster R-CNN and Yolo. With the vigorous development
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of deep learning, there are many excellent one-stage and two-stage methods for target
detection in optical images.

Due to the excellent detection performance of deep learning with optical images,
researchers apply those methods to SAR images. In [18], Wei et al. employed semi-
supervised learning to alleviate the lack of target-level labeled samples and an attention
module to focus on significant features while suppressing the clutter. Gong et al. [19]
used a sparse autoencoder, CNN, and unsupervised clustering for joint interpretation
of spatial-temporal SAR images. In [20], He et al. used a sparse autoencoder learning
algorithm for aircraft classification. Wang et al. [21] used a salient feature algorithm to
find the possible targets and adopted a CNN method to accurately detect targets from
those candidates. He et al. [22] proposed a parallel network to detect an overall target and
corresponding components, respectively, and take advantage of the maximum probability
and prior information to suppress wrong targets. An et al. [23] optimized a target detection
method with the rotated bounding boxes to locate the targets more accurately compared
with horizontal bounding boxes, including a multi-layer prior generation strategy (to detect
small target), a modified rotated box encoding scheme, and a focal loss method (to balance
positive and negative samples). However, these above methods work using small regions
that are manually selected in SAR images, which directly removes the interference around
the aircraft targets. With much interference, those methods are difficult to apply. Therefore,
a complex background environment is a challenge.

To expand the scope of applications, some methods start to detect aircraft in the ap-
proximate airport region. Luo et al. [24] proposed an efficient bidirection path aggregation
attention network with the equipment of Yolov5s, the involution enhanced path aggre-
gation module to extract important features, and the effective residual shuffle attention
module to overcome the interference information. Zhang et al. [25] proposed a cascaded
three-look network based on Faster R-CNN [16] to detect potential aircraft, and a region
growing algorithm to extract the airfield runway accurately, which is used to filter out
false alarms. Zhao et al. [26] made use of Yolov3 [14] to determine the approximate area
of the airport, and extracted connected components of the airport region via Gaussian
filtering algorithm to suppress wrong aircraft detection results. Guo et al. [27] extracted
the airport area and proposed an algorithm that uses enhancing scattering information
and deep learning. They used the Harris–Laplace detector to extract strong scattering
points, clustered initial aircraft targets for image preprocessing, employed feature pyramid
networks [28], and used a modified attention module to detect aircraft. Zhao et al. [29]
proposed the pyramid attention dilated network mainly consisting of a multibranch dilated
convolution module to enhance the discrete features of aircraft, and a convolution block
attention module (CBAM) [30] to refine redundant information and highlight significant
scattering information. Wang et al. [31] first detected the airport runaway area, and then
proposed the efficient weighted feature fusion and attention network for reducing the inter-
ference and enhancing feature extraction, which is beneficial to accurately and effectively
detecting aircraft.

The above methods have high detection accuracy in relatively simple background
environments, such as runways or squares. However, many aircraft are parked in more
complex environments, such as near the terminal buildings or boarding bridges, which
usually leads to poor detection. In complex scenes, background noise adversely affects
aircraft detection. The detection time is also an important indicator in practical applica-
tions. To rapidly detect aircraft targets in a relatively complex environment, we propose
a lightweight detection model (LDM) which can use the information effectively and effi-
ciently with the help of the reuse block (RB) and information correction block (ICB). Based
on multi-layer information fusion, we propose the RB module, which helps to extract more
aircraft features in a complex environment. Inspired by the characteristics of SAR image
scattering features, especially gray-scale features, we propose the ICB module, which effec-
tively suppresses redundant information and background interference. The contributions
are as follows.
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(1) We propose a lightweight detection model to detect SAR aircraft targets in complex
environments, and the proposed method achieves superior detection performance far
more rapidly than other CNN methods.

(2) We propose an RB module to acquire more aircraft features during feature extraction
by aggregating multi-layer information.

(3) We propose an ICB module to enhance effective aircraft features, and suppress redun-
dant information from the RB module and interference from the complex environment
by enhancing salient points, especially gray-scale features.

2. Materials and Methods
2.1. Overall Detection Framework

To rapidly detect aircraft targets, we require two key solutions. The first must extract
more aircraft features. The second must obtain accurate aircraft features from complex
scenes. Therefore, we propose an RB module to aggregate multi-layer information and an
ICB module to enhance salient points. With the help of RB and ICB modules, a lightweight
and high-speed detection model based on the Yolov3 framework [14] is proposed. We use
Yolov3-tiny as the baseline, which is lightweight with few layers. In the structure, we use
a stack of two RB modules and then an ICB module. As these two RB modules are on
different resolution feature maps, it is beneficial to extract more features. After using the
ICB module, we can extract more effective features and suppress interference.

As shown in Figure 2, our lightweight detection model is composed of two parts.
The detection part is shown in the dashed box, and the remainder is an extraction part. We
label 6 max-pooling layers in Figure 2 as M1, M2, M3, M4, M5, and M6. The max-pooling
layer is beneficial to data dimensionality reduction and detection model robustness. LDM
includes 4 RB modules to employ more information, which replace the convolutional layer
after M1, M2, M3, and M4 in the baseline. The ICB module is placed before M3 and M5 to
accurately enhance aircraft features and suppress background interference. The output size
after each layer is shown in Figure 2, such as 32 × 32 × 256, which, respectively, represent
the height, width, and number of channels.

Conv3×3

D
etecto

r

512×512×16

256×256×32

128×128×64

64×64×128 32×32×256
16×16×512 16×16×1024

16×16×256 16×16×512 16×16×18

32×32×256

32×32×18

Conv1×1

Max-poolingReuse block Information correction block

16×16×128

Upsample 2×Concatenate 

32×32×128 32×32×(128+256)
M1

M2 M3 M4 M5 M6

Figure 2. The framework of the lightweight detection model (LDM).
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2.2. Reuse Block
2.2.1. Motivation

We hope to extract rich and effective aircraft features, but the input information
or gradient information may vanish after passing several layers [32]. Huang et al.’s
method [32] uses all previous layers as input, which helps to alleviate the loss of gradient
information and make more effective use of features. However, dense connection causes
heavy computational cost. For high speed, we propose the RB module with the simplified
dense structure [32] to improve the utilization of aircraft features by aggregating multi-
layer information.

2.2.2. The Structure of the Reuse Block

The full structure of the reuse block is shown in Figure 3. Specifically, we first increase
the feature dimensions by using a 1 × 1 convolutional layer f 1×1×2c

conv , which is the way
to change the number of channels and synthesize the information along the channel
direction. Then, we extract aircraft features with a stack of two 3 × 3 convolutional layers
f 3×3×2c
conv , which reduces the number of calculations required, yet acquires the same effective

receptive field as 5 × 5 convolutional layers. After that, we aggregate features with the
help of concatenation operation to reuse feature maps in the previous three layers. Finally,
we extract features from the concatenated feature maps. The precise equations in the RB
module are as follows:

Out1
rb = f 1×1×2c

conv (Input) (1)

Out2
rb = f 3×3×2c

conv

(
Out1

rb

)
(2)

Out3
rb = f 3×3×2c

conv

(
Out2

rb

)
(3)

Conresult = Concatenate
[
Out1

rb, Out2
rb, Out3

rb

]
(4)

Outputrb = f 3×3×2c
conv (Conresult) (5)

where Input represents the input feature maps. The outputs of the three consecutive
convolutional layers are Out1

rb, Out2
rb, and Out3

rb, respectively. Concatenate is the concate-
nate operation. Conresult is the result of reusing information, and Outputrb is the feature
extracted from the reuse information result.

Input feature

+
Conv 

1×1

Conv 

3×3

Conv 

3×3
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3×3
h

w

2c

h
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w
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w
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𝑶𝒖𝒕𝒓𝒃
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𝟑  𝑪𝒐𝒏𝒓𝒆𝒔𝒖𝒍𝒕 𝑶𝒖𝒕𝒑𝒖𝒕𝒓𝒃 

Figure 3. The framework of the reuse block (RB module).

2.3. Information Correction Block
2.3.1. Motivation

In a complex environment, the background interferes greatly with target detection.
The scattering characteristics are different for aircraft and background. Therefore, we use
the unique characteristics of SAR images to assist the detection model with extracting more
effective aircraft features. As shown in Figure 1, SAR image data include the reflection



Remote Sens. 2021, 13, 5020 6 of 20

intensity of the target (regarding the radar beam) and phase information. In an SAR
image, the point feature is the response to each resolution cell and is the most basic feature.
Extracting aircraft features by salient points is an excellent method; these points are related
to the maximum values of the scattering region and physical scattering centers [33]. This
inspired us to enhance the salient points in the feature maps to assist the neural network
with learning aircraft features.

2.3.2. Salient Point

Salient points are related to the pixel amplitude. In relation to that, we had a simple
idea that enhances the pixels with high amplitudes and suppresses other pixels. For the
calculation process shown in Figure 4, the input example is a 3 × 3 two-dimensional matrix.
Then, it is best to adopt a normalization operation. The next step is using the scaling
function to adjust the weight value and generate a weight matrix. Finally, the product of
the input matrix and the weight matrix is the output result.
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20 220
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20 220
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Matrix_nor
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Figure 4. An example: salient point enhancement calculation process.

As shown in Figure 5a, we used a real SAR image, which has a lot of obvious back-
ground interference, to further explore the effectiveness of the method. We still enhanced
the pixels with high amplitudes and suppressed other pixels, and the result is shown in
Figure 5b. We can observe that the interference was significantly reduced, and we retained
the main structure of the aircraft target.

(a) (b)

Figure 5. Enhanced salient points in a real SAR image. The left is a real SAR image and the right is
the result after enhancing salient points. (a) Image example. (b) Salient points.
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In Figure 6a, we show a simulated image of a SAR aircraft target, and its corresponding
pseudo-color image is shown in Figure 6b. The pseudo-color image is based on the pixel
amplitude for color mapping. The simulated image has no background interference,
but there is interference from sidelobe energy leakage. We enhanced the salient points and
suppressed other pixels. The result is shown in Figure 6c, and its corresponding pseudo-
color image is shown in Figure 6d. This method can effectively suppress interference while
retaining the main characteristics of the aircraft target.

(a) Origin Image (b) Pseudo-color of original image

(c) Salient Image (d) Pseudo-color of salient image

Figure 6. Enhancing salient points in a simulated SAR image. (a) A simulated image with a
clean background and (b) its corresponding pseudo-color image. (c) The result after salient point
enhancement and (d) the corresponding pseudo-color image.

2.3.3. The Structure of the Information Correction Block

According to the idea of enhancing the salient points in an SAR image, we designed
an ICB module to enhance the salient points in feature maps. Combining squeeze-and-
excitation networks [34], CBAM [30], and efficient channel attention [35], our ICB module
firstly pursues a global information descriptor (GID) directly by employing the sigmoid
function without pooling layers. The values of GID obtained by the sigmoid function are
between 0 and 1. The ICB module regards the elements whose values in the GID are no less
than 0.5 as salient points and the other elements as interference. To strengthen salient points
and suppress others, the ICB module uses a salient global information descriptor (SGID).
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Figure 7. The framework of the information correction block (ICB module).

As shown in Figure 7, we first extract features by using a cascade of 3 × 3 convolutional
layers f 3×3×c

conv . Second, we introduce GID with the support of sigmoid function σ to directly
generate the weights of elements. Third, we employ a scale function to generate SGID
for increasing the weights of salient points and decreasing the weights of redundant
information. Then, we use SGID to enhance the scattering information by adjusting element
values of input feature maps with element-wise operation. Last, the batch normalization
(BN) and shortcut operation are employed. The precise equations are as follows:

Out1
icb = f 3×3×c

conv

(
f 3×3×c
conv (Input)

)
(6)

SGIDresult = Scale
(

σ
(

Out1
icb

))
(7)

Outputicb = BN(SGIDresult × Input) + Input (8)

where Input is the input feature maps, Out1
icb is the result after a cascade of convolutional

layers, and Scale is the scaling function. SGIDresult is the salient global information de-
scriptor and Outputicb is the output of the shortcut operation between enhanced feature
maps and input feature maps.

The scale function is calculated as follows.

y = Scale(x) = 4x2. (9)

x is the element value in GID. From this function, y is equal to 1 when x is 0.5, which means
that those element values in input feature maps are unchanged. Similarly, y is greater than
1 when x is greater than 0.5, which means those element values will be enlarged to amplify
those salient points. If x is lower than 0.5, we use the weight less than 1 to decrease those
element values to suppress redundant information and background interference.

2.4. Detection Section

As shown in Figure 2, we use two-scale feature maps for prediction, and each scale
layer uses 3 bounding boxes prior. We use k-means to calculate 6 bounding box priors and
the results are (39 × 40), (76 × 69), (75 × 99), (109 × 102), (140 × 137), and (184 × 174).
Each prediction box will include 4 bounding box offsets, 1 objectness prediction, and
1 class prediction. The detection uses logistic regression to predict the objectness score
and employs an independent logistic classifier for class prediction. The calculation of a
bounding box offset [14] is shown in Figure 8. The detection section predicts 4 coordinates
for each bounding box, x, y, w, and h. The size of the prior box is ph by pw, and the size
of the predicted box is bh by bw. The center of the predicted box is (bx, by). (cx, cy) is the
number of cells from the left top corner. The precise calculation is as follows.

bx = σ(x) + cx (10)

by = σ(y) + cy (11)

bw = pw × ew (12)

bh = ph × eh (13)
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σ(x)

σ(y)

cx

cy
ph

pw

bh

bw

Figure 8. The red box is the a priori bounding box, and the blue box is a predicted box.

3. Results
3.1. Experimental Details
3.1.1. Evaluation Metrics

To evaluate the performance of the proposed method, we employed several widely
used metrics [27], including precision (P), recall (R), average precision (AP), F1, and infer-
ence time (t). Some definitions follow. True positives (TP) are correctly detected aircraft
targets. False positives (FP) are the detected "aircraft" which are not actually aircraft. True
negatives (TN) are the targets correctly detected as not aircraft. False negatives (FN) are
aircraft which were not detected. The intersection over union (IoU) represents the ratio of
the intersection area to the overall area of the two boxes, which is used to judge whether a
target was predicted correctly and suppress the redundant predicted box in non-maximum
suppression (NMS). The calculations of evaluation metrics are as follows.

Precision represents the ratio of the correctly detected aircraft to the total number of
aircraft detected.

P =
TP

TP + FP
(14)

Recall represents the ratio of the correctly detected aircraft targets to the ground truth.

R =
TP

TP + FN
(15)

Average precision represents the area of the precision–recall curve, which is computed
from the recall and the corresponding precision when the IoU threshold is to 0.5 between
the ground truth and the predicted box.

AP =
∫ 1

0
PdR (16)

The F1 score is calculated by the harmonic mean of precision and recall, which evalu-
ates the detection performance by considering precision and recall at the same time.

F1 =
2 × P × R

P + R
(17)

Inference time represents the time taken to detect per image, including detection
and NMS.
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3.1.2. Parameter Settings

The training parameter settings were as follows. The learning rate was set to 0.001 and
momentum was set to 0.9. The threshold of NMS was set to 0.6. For testing parameters,
the NMS threshold and the confidence threshold were set to 0.3 and 0.1, respectively.
This work was conducted on the PyTorch framework on the 18.04 Ubuntu system with a
GeForce RTX 2080Ti GPU.

3.1.3. Dataset for SAR Aircraft Detection

Due to the lack of the public dataset for SAR aircraft detection, we used 138 original
images (500 × 500 in size) that include 425 aircraft from GF-3 SAR images to construct
a SAR aircraft detection dataset (SAR-ADD). Those images are C-band spotlight images
with single HH polarization. The image resolutions are about 1.0 m. The other imaging
and processing parameters were introduced in [36]. One sample image in SAR-ADD is
shown in Figure 9a. These images were divided into 108 images for training and 30 images
for testing except for the k-fold experiment. We used several augmentation methods to
expand the training images. The testing dataset was not augmented.

(a) (b)

Figure 9. Dataset example. The green boxes represent the ground truth. (a) SAR-ADD. (b) SSDD.

3.1.4. Dataset for SAR Ship Detection

To verify the detection performance on other SAR targets, we also employed the SAR
ship detection dataset (SSDD) [37], which includes 1160 images, which we divided into
928 images for training and 232 images for testing. One sample image in SSDD is shown in
Figure 9b.

3.2. Comparison with Other Methods on SAR-ADD

Due to limited images, we performed a k-fold experiment to test the detection perfor-
mance with LDM, Yolov3, and other deep learning methods based on mmdetection [38].
Due to the small dataset, we trained Faster R-CNN [16], Retinanet [39], and Cascade
R-CNN [17] with the backbone of ResNet18 [40]. We divided 138 images into 5 parts—
27 images, 27 images, 27 images, 27 images, and 30 images. These 5 parts were used
as the testing dataset in turn, and the rest were used as the training dataset with data
augmentation. The experimental results are shown in Table 1.

As shown in Table 1, the average AP of LDM was 3.12%, 5.76%, 2.98%, and 3.5% higher
than those of Faster R-CNN, Cascade R-CNN, RetinaNet, and Yolov3. This is because
LDM employs more information by reusing feature maps, enhances scattering information,
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and suppresses background interference by amplifying the salient points, which helps
LDM extract more accurate features for SAR aircraft detection in complex scenes.

Table 1. K-fold experiments on SAR-ADD.

k-Fold
1 2 3 4 5 Average

AP t/ms AP t/ms AP t/ms AP t/ms AP t/ms AP t/ms

Faster R-CNN [16] 0.592 34.7 0.59 34.7 0.659 34.1 0.679 35.6 0.801 33.4 0.6642 34.5
Cascade R-CNN [17] 0.561 45.7 0.602 45.6 0.655 43.1 0.635 45.1 0.736 42.6 0.6378 44.42

SSD [15] 0.637 40.3 0.711 40.2 0.688 38.8 0.706 37.9 0.775 38.3 0.7034 39.1
RetinaNet [39] 0.596 33.1 0.665 33.2 0.644 33.2 0.671 35.6 0.752 32.4 0.6656 33.5

Yolov3 [14] 0.592 13.8 0.637 13.9 0.719 13.7 0.641 13.2 0.713 14.1 0.6604 13.74
LDM 0.618 6.4 0.669 6.6 0.718 6.4 0.675 6.2 0.797 6.3 0.6954 6.38

Second, LDM was 5.96×, 5.12×, 4.4×, 4.25×, and 1.15× faster than Cascade R-CNN,
SSD, Faster R-CNN, RetinaNet, and Yolov3 in terms of the average detection time, respec-
tively. That is because LDM is based on Yolov3-tiny, which has fewer computational costs.
Although the AP of LDM was 0.8% lower than that of SSD, its detection speed was much
higher than that of SSD. In general, it is worth sacrificing a little accuracy in exchange for
faster detection speed.

Figure 10 visualizes the fifth sub-experiment results of Table 1 with two SAR images
for aircraft detection. LDM detected 18 aircraft and two false alarms on two SAR images,
which is much better than how RetinaNet and Yolov3 performed. Faster RCNN had
only one false alarm and detected 15 aircraft. Cascade RCNN had a similar detection
performance. SSD detected 15 aircraft with no false alarms. However, LDM detected more
aircraft and spent much less time on dealing with inference. These visualization results
demonstrate that the proposed model achieves competitive detection performance.
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Figure 10. The detection results reported in Table 1. The red boxes represent the detection results
and the green boxes represent the ground truth. We count the evaluation results in blue boxes. TP
means accurately detected targets and FA means false alarms. (a) Faster R-CNN [16]. (b) Cascade
R-CNN [17]. (c) SSD [15]. (d) RetinaNet [39]. (e) Yolov3 [14]. (f) LDM.
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3.3. Additional Evaluation on SSDD

To explore the detection performance of LDM for other targets, we conducted an
additional experiment on SSDD, and the results are shown in Table 2. The AP of Faster
R-CNN and Cascade R-CNN were 0.944 and 0.938, 4% and 3.4% higher than LDM, respec-
tively. As shown in Figure 9b, the main structure of the ship and background is simple.
Therefore, the region proposal network plays a key role in selecting accurate locations.
However, the price is the huge time cost. Besides, the ICB module provides little in the way
of improvement by enhancing salient points because the size of the SAR ship is small and
the sea background is relatively simple.

Table 2. Additional evaluation on SSDD.

Methods P R AP F1 t/ms

Faster R-CNN [16] 0.78 0.957 0.944 0.859 51.1
Cascade R-CNN [17] 0.856 0.947 0.938 0.899 59

SSD [15] 0.875 0.944 0.914 0.908 28.5
RetinaNet [39] 0.558 0.946 0.922 0.701 48.2

Yolov3 [14] 0.752 0.899 0.858 0.819 11.5
LDM 0.822 0.925 0.904 0.87 5.2

Compared with one-stage methods, including SSD, RetinaNet, and Yolov3, LDM
achieved competitive detection performance and spent less time with the help of the RB
modules and the ICB modules. Compared to Yolov3 in particular, LDM was much better.
Therefore, this experiment proved that LDM can be used not only for SAR aircraft detection,
but also for SAR ship detection.

3.4. Ablation Experiment

We performed an ablation experiment on SAR-ADD to explore the effectiveness of the
proposed modules. Tiny represents the detection results on the baseline. +RB represents
the detection results after using the RB module, which replaces the convolutional layer after
M1, M2, M3, and M4 in the baseline. +ICB represents the detection results after adding it
before M3 and M5 in the baseline. LDM is the lightweight detection model we proposed.
The results are shown in Table 3.

Table 3. Effectiveness of the proposed modules.

Methods P R AP F1 t/ms

baseline 0.711 0.798 0.732 0.752 3.3
+RB 0.734 0.825 0.762 0.777 5.8
+ICB 0.723 0.825 0.773 0.77 4
LDM 0.819 0.833 0.797 0.826 6.3

First, when using the RB module, the AP and recall were 3.0% and 2.7% higher
than the baseline, respectively. This is because the RB module employs more effective
information and improves the utilization of aircraft features. However, the precision
showed a little improvement over the baseline because the RB modules also reuse some
redundant information.

Second, after employing the ICB module, LDM achieved higher scores in evaluation
metrics, except for inference time, than the baseline. This is because the ICB module
enhances scattering information and suppresses background interference by amplifying
salient points, which enhances the capacity to figure out the aircraft in complex scenes.

Third, the AP of LDM was 6.5%, 3.5%, and 2.4% higher than the baseline, the baseline
with RB modules, and the baseline with ICB modules. This is because the RB module
acquires more information by reusing feature maps, and then the ICB module enhances the
scattering information by amplifying the salient points. With the reasonable combination
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of the RB modules and the ICB modules, LDM extracts more effective aircraft features. This
experiment proves that the proposed modules are effective.

As shown in Figure 11, Yolov3-tiny provided poor detection results because there
were many false alarms. After using the RB module, we observed that the model detected
more aircraft targets. This is because the RB module extracts rich features from multiple
layers of information. After using the ICB module, there was little improvement for the
weak feature extraction ability of Yolov3-tiny. However, with the effective and efficient
combination of RB modules and ICB modules, LDM showed an excellent ability to detect
aircraft with three missing targets and two false alarms.
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Figure 11. The detection results reported in Table 3. The red boxes represent the detection results
and the green boxes represent the ground truth. We count the evaluation results in blue boxes. TP
means accurately predicted targets and FA means false alarms. (a) tiny. (b) +RB. (c) +ICB. (d) LDM.

3.5. RB Module vs. Dense Structure

The fourth experiment was performed to explore the performance of the RB module
compared to a dense structure (Dens) base model on DenseNet [32], which was conducted
by replacing the RB module with dense structure.

As shown in Table 4, the dense structure model was more effective than the baseline
in terms of AP and F1. Compared with the RB module, the AP of the Dens module was
2.4% lower. When testing the full model, the Dens module was 1.5% worse than the RB
module in terms of AP and 0.7% in terms of F1. This is because the Dens module uses
more redundant information. In detection time, LDM based on the RB module saved 12.7%
of detection time compared to LDM based on the Dens module. This is because a dense
structure increases the complexity of the module and greatly increases the detection time.
In conclusion, the RB module provides much better detection performance than a dense
structure.

Table 4. The RB module vs. dense structure.

Methods P R AP F1 t/ms

tiny 0.711 0.798 0.732 0.752 3.3
+Dens [32] 0.796 0.789 0.738 0.793 6.4

+RB 0.734 0.825 0.762 0.777 5.8
LDM(+Dens) 0.823 0.816 0.782 0.819 7.1

LDM 0.819 0.833 0.797 0.826 6.3
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As shown in Figure 12, Dens module detected 14 aircraft and had three false alarms.
RB module detected 18 aircraft and five false alarms. For the full model, Dens provided
worse detection performance, with seven missing targets and four false alarms. From the
detection results, RB module provided better detection performance by reasonably reusing
the aircraft features and optimizing structure. Besides, the RB module required less
detection time than Dens module.
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Figure 12. The detection results reported in Table 4. The red boxes represent the detection results and
the green boxes represent the ground truth. We count the evaluation results in blue boxes. TP means
accurately predicted targets and FA means false alarms. (a) +Dens [32]. (b) +RB. (c) +LDM(+Dens).
(d) LDM.

3.6. ICB Module vs. Attention Methods

This experiment was used to explore the performance of the ICB module when
compared with attention methods for SAR-ADD, including SE [34], CBAM [30], and
ECA [35], which was conducted by replacing the ICB module with other attention methods.

As shown in Table 5, there were some improvements after using attention methods
rather than the RB modules in terms of AP. SE, ECA, and CBAM each included an en-
hancement module from the channel direction, which helped the detection model with
feature fusion along the channel. Besides, CBAM used spatial attention to enhance aircraft
features. Some information is lost when these attention methods use max-pooling layers
and average pooling layers to integrate the feature maps into one channel. The ICB module
directly enhances salient points based on scattering characteristics, which is beneficial to
suppressing background interference. This structure also makes full use of the scattering
characteristics, especially gray-scale features. These results indicate that the ICB module
assists the detection model more effectively than attention methods.

Table 5. The ICB module vs. attention methods.

Methods P R AP F1 t/ms

+SE [34] 0.74 0.825 0.778 0.78 6.1
+CBAM [30] 0.71 0.816 0.778 0.759 7
+ECA [35] 0.8 0.807 0.763 0.803 6

LDM 0.819 0.833 0.797 0.826 6.3
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As shown in Figure 13, when using the SE module, the detection model had five false
alarms and seven missing targets. The detection results show little difference between
ECA and SE due to their similar structures. With the additional help of spatial attention,
CBAM showed better feature extraction with three false alarms and four missing targets.
These detection results demonstrate that channel integration and spatial enhancement
have positive impacts on feature extraction. Comparatively, LDM has better detection
results. Since the ICB module enhances salient points, it is better at feature extraction and
suppression of background interference.
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Figure 13. The detection results reported in Table 5. The red boxes represent the detection results and
the green boxes represent the ground truth. We count the evaluation results in blue boxes. TP means
accurately predicted targets and FA means false alarms. (a) +SE [34]. (b) +CBAM [30]. (c) +ECA [35].
(d) LDM.

3.7. Visualization

These visualizations give an intuitive impression of the detection results of each
module. As shown in Figure 14, we visualized the detail detection probabilities with
fine configurations in different modules. Then, we applied the color map according to
probability values, and lay it on the detection image. As shown in Figure 14b, the RB
module obviously increases the confidence in red boxes. For two missing targets in
Figure 14a, there is some improvement in the weak aircraft features in red boxes. However,
one instance was still missed (in the green circle) because reusing features does not generate
new information. As shown in Figure 14c, the ICB module accurately increases detection
confidence by amplifying salient points. The probability of false positives is reduced
by decreasing those element values to suppress background interference. As shown in
Figure 14d, LDM still missed one instance due to a lack of aircraft features. However,
it successfully removed the false alarm because the reasonable combination of the RB
modules and ICB modules suppresses redundant information and background interference.
From these visualizations, we can observe that the RB module has an excellent ability to
reuse information, and the ICB module effectively enhances aircraft features and suppresses
background interference, both of which strongly demonstrate the effectiveness of the
proposed modules.
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Figure 14. Visualization of grid probabilities. We label the accurately predicted targets, missing
targets, and false alarms with red boxes, green circles, and yellow ellipses, respectively. (a) tiny.
(b) +RB. (c) +ICB. (d) LDM.

4. Discussion

In a complex environment, background noise causes great interference. There are
many SAR image target detection methods based on attention mechanisms to enhance
aircraft features, which mainly employ an attention module, such as CBAM, before the
detection part. Although an attention mechanism can enhance aircraft features, given the
characteristics of SAR images, there are still some options for improvement. Therefore, we
aimed to combine the scattering characteristics of SAR images, especially the gray-scale
features, to extract effective aircraft features in the early feature extraction part, which is
beneficial by simplifying the detection model and reducing the detection time cost.

We proposed an RB module for information reuse by aggregating multi-layer informa-
tion. An ICB module is used to enhance scattering information and suppress background
interference by enhancing salient points. We also conducted experiments to verify the
effectiveness of the proposed modules, and the detection results are shown in Table 3.
After using RB modules or ICB modules, the detection results were better, as expected.
Indeed, the detection model extracts effective aircraft features. In comparison with other
methods based on CNN, the detection results are shown in Table 1. LDM has better de-
tection results than most methods, though it is slightly worse than SSD in terms of AP.
SAR image echo data are two-dimensional complex numbers, but the amplitude features,
especially gray-scale features, are very important after converting the data to a SAR real
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image. Therefore, the ICB module enhances salient points, which is beneficial for extracting
aircraft features and suppressing background interference.

The ICB module can effectively enhance the scattering characteristics and suppress
background interference, but it can be further improved. We use a quadratic function to
generate SGID. This is a simple and effective method. The scale function can be replaced
by other template operators, which may generate more accurate weight maps. Besides,
we took some inspiration from [41], which demonstrates a deep learning approach and
a model based approach (using scattering centers) for classification, and also provides
various fusion techniques. In [41], Theagarajan et al. use segmentation and local maxima to
extract the scattering centers. Due to its simple and practical operation, it is a worthwhile
attempt to use this algorithm in deep learning. For a combination of a method in [41] and
the ICB module, a feasible structure is shown in Figure 15. Scattering center extraction
employs segmentation and local maxima to seek more potential scattering centers of targets.
Then, it notes the scattering center position and enhances the pixels in the neighborhood
based on the distance.
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w
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w
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weight map

Figure 15. The improved structure for the ICB module.

SAR echo data are complex numbers, so there is a mapping relationship from each
complex number to the real image. It is not bad to employ this mapping relationship in the
scaling function. In the future, we hope to propose much more effective scale functions
according to the characteristics of SAR images. Besides, while the SAR image echo data
are complex numbers, most of the existing deep learning methods are designed based on
real data. Therefore, it might be an excellent idea to propose detection methods based on
complex numbers.

5. Conclusions

In the article, we proposed LDM, which uses RB modules and ICB modules for
SAR aircraft detection in complex scenes. The RB module reuses the feature maps of the
previous three layers to improve information utilization. The ICB module enhances the
scattering information by amplifying the salient points and suppresses the redundant
information, which is beneficial to the accuracy of features extracted from the RB module
and suppresses the interference in the complex environment. In comparison to other CNNs,
the AP of LDM is 0.6954, which is just a little lower than that of SSD, 0.7034. Besides, LDM
is much faster than other CNNs, thanks to the lightweight model structure. These facts
strongly demonstrate that LDM has excellent performance in aircraft detection. When
compared with attention methods, the ICB module has much better evaluation results and
approximately the same detection speed. We also conducted a series of experiments on
SSDD. LDM achieved competitive detection results. The background environment of the
ship target was relatively simple, and the ship size was small. For the lightweight model
structure, LDM spent much less detection time in SAR ship detection. Our research is
based on real images, but the SAR echo data are complex data. To further the real-time
detection of aircraft targets, it would be better to propose a feature network that takes as
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input complex data, which should then benefit by using the scattering characteristics of
SAR images.
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