
remote sensing  

Article

Monitoring the Characteristics of Ecological Cumulative Effect
Due to Mining Disturbance Utilizing Remote Sensing

Quansheng Li, Junting Guo *, Fei Wang and Ziheng Song

����������
�������

Citation: Li, Q.; Guo, J.; Wang, F.;

Song, Z. Monitoring the

Characteristics of Ecological

Cumulative Effect Due to Mining

Disturbance Utilizing Remote

Sensing. Remote Sens. 2021, 13, 5034.

https://doi.org/10.3390/rs13245034

Academic Editor: Parth Sarathi Roy

Received: 15 November 2021

Accepted: 6 December 2021

Published: 10 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, Beijing 102209, China;
quansheng.li@chnenergy.com.cn (Q.L.); 20047006@chnenergy.com.cn (F.W.); ziheng.song@chnenergy.com.cn (Z.S.)
* Correspondence: junting.guo.a@chnenergy.com.cn

Abstract: This study conducted land cover classification and inversion analysis to estimate land
surface temperature, soil moisture, specific humidity, atmospheric water vapor density, and relative
humidity using remote sensing and multi-source mining data. Using 1990–2020 data from the
Shendong mining area in Inner Mongolia, China, the eco-environmental evolution and the ecological
cumulative effects (ECE) of mining operations were characterized and analyzed at a long-term scale.
The results show that while the eco-environment was generally stable, mining activities affected the
eco-environment at the initial stage (1990–2000) to a certain degree. During the rapid development
stage of coal mining, the eco-environment was severely damaged, and the ECE were significant at
the temporal scale. The absolute value of the change rate of ecological parameters was increasing.
Due to an increased focus on ecological restoration, starting in 2010, the environmental indicators
gradually stabilized and the eco-environment improved considerably, ushering in a period of stability
for coal mining activities. The absolute value of the change rate of ecological parameters became
stable. Analysis of the change in eco-environmental indicators with distance and comparison to the
contrast area showed the ECE characteristics from mining disturbance at the spatial scale. This study
shows that remote sensing technology can be used to characterize the ECE from mining operations
and analyze eco-environmental indicators, providing crucial information in support of ecological
protection and restoration, particularly in coal mining areas.

Keywords: ecological cumulative effect; coal mining area; quantitative remote sensing; ecology and
environment; land surface temperature; soil moisture

1. Introduction

Ecological cumulative effect (ECE) refers to the cumulative impact on the eco-environment
caused by activities from the past to the future. This metric is particularly useful for under-
standing that, while the individual effects of some operations may be small or subtle, the
combined effects could be significant [1]. Characterized by long-term lagging, accumulation,
and interaction [2], the ECE consists of temporal and spatial aspects. The temporal cumulative
effect refers to the accumulation generated when the time interval between two disturbances is
less than that required by environmental restoration. The spatial cumulative effect refers to
the accumulative phenomenon generated when the distance between two disturbances is less
than that required by the attenuation [3].

Understanding the cumulative effects on the environment of policies, industries, and
other economic activities is extremely important when evaluating choices and addressing
the long-term effects caused by various anthropogenic endeavors. One such industry where
the holistic comprehension of environmental effects is crucial is coal mining. Although coal
mining has brought huge economic benefits, it also has resulted in the continuous decline
in the quality of soil, water, vegetation, and atmosphere in the mining area, and has caused
long-term adverse effects on the ecological environment [4–6]. Given its small object and
long-duration features, the eco-environmental change caused by coal mining activities
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shows typical cumulative effect characteristics, which could be reflected by the superposi-
tion of the damage degree at the temporal scale and the attenuation with distance at the
spatial scale. The cumulative effect from coal mining activities has accelerated the degra-
dation of eco-environmental quality. Therefore, analyzing the cumulative effect of coal
mining would be extremely useful for ecological restoration and sustainable development.

The impact of mining and restoration activities in coal mining areas is a continuous
and intense process. Environmental effects vary considerably at the different stages of
mining (i.e., initial stage, intense phase, stable period, reduction phase, and closure stage),
as well as before, during, and after ecological restoration. Generally speaking, there
is a coupling relationship between mining and restoration activities and various eco-
environmental factors. This means that monitoring and evaluating the eco-environment
in coal mining areas require specialized observational techniques involving large-scale,
high-frequency, continuous, long-term, and comprehensive observations and quantitative
analyses. However, traditional approaches, such as field surveys, ground monitoring
stations, and sensor networks are unable to meet these requirements.

In recent years, remote sensing has been used to monitor and evaluate the eco-
environment in mining areas, given its ability to provide rapid synchronous observations
in large areas [7–11]. The combination of remotely sensed images and ground data can
generate land cover information and physical-chemical parameters of various ecological
elements, which are essential in estimating the ECE of mining activities [12]. Numerous
studies have employed and developed remote sensing techniques to measure ecological
parameters in mining areas. For example, in terms of land cover, Balaniuk et al. [13] used
Sentinel-2 satellite images to conduct nationwide automatic identification and classification
of open-pit mines and tailings dams in Brazil, with an accuracy of more than 95%. A
systematic image analysis method based on geographical objects (GEOBIA) was proposed
by Nascimento et al. [14], and land-use changes of open-pit mines were quantified using
high-resolution satellite images from different sensors, with an accuracy of more than
90%. In terms of ecological parameters, Wu et al. [15] adopted the BFAST algorithm to
detect abrupt changes in vegetation cover from open-pit mining using Landsat time series.
This algorithm can automatically detect the time of initial mining and evaluate the spatial
distribution of vegetation destroyed by mining. Fu et al. [16] monitored NDVI (Normalized
Difference Vegetation Index) in Xilinhot using the rate of change in greenness (RCG) and
coefficient of variation (CV) as indicators. They used correlation analysis and stepwise
regression to analyze the driving factors of vegetation and the impact of mining activities.
Using SPOT 5/6 and WorldView-2 data, Liu et al. [17] analyzed soil moisture (SM) in the
Dariuta Coal Mine through the Scaled SM Monitoring Index (S-SMMI). Cao et al. [18] ana-
lyzed land use, vegetation cover, and land surface temperature (LST) of the Jixi mining area
in Heilongjiang with the Landsat 8 Operational Land Imager (OLI) data and used correla-
tion analysis to explore the influence of land-use types, vegetation cover and coal mining
activities on LST. García Millán et al. [19] detected water distribution change through
multi-temporal analysis of multispectral data and extracted mine-related flood zones using
high-resolution hyperspectral data. Using Hyperion hyperspectral data and Landsat data,
Kayet et al. [20] conducted indirect monitoring of dust in opencast iron ore mines using
eight vegetation indices. When analyzed and compared with field measurements, the
remote sensing estimates were found to be reliable. In terms of cumulative effect [21–24], a
pixel-based Ecosystem Service Value (ESV) time series model was proposed that quantified
the ECE of the Yanzhou Coalfield over the past 30 years. However, to the best of our
knowledge, there has been no study estimating the ECE of coal mining operations and
analyzing its temporal and spatial dimensions using remote sensing.

Using long-term remote sensing and multi-source spatial data from 1990 to 2019,
this study performed land cover classification and change detection and quantitatively
estimated land surface (LST and SM) and atmospheric parameters (specific humidity,
atmospheric water vapor density, and relative humidity). The characteristics of ECE due to
coal mining disturbance were also analyzed temporally and spatially.
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2. Study Area and Datasets
2.1. Study Area

The study area is located in the Ejin Horo Banner, Inner Mongolia Autonomous Region,
and the Shenmu, Shaanxi Province, China (Figure 1).
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Figure 1. Map of the study area.

Ejin Horo Banner is located in the southeastern part of Ordos, Inner Mongolia, China.
The southern part comprises the northern edge of the Mu Us Desert. The area has an
average annual temperature of ~6.9 ◦C, and the terrain is high in the northwest and low in
the southeast. Having a typical temperate continental climate, the region is dry, experiences
little rainfall, and has annual precipitation less than evaporation. The vegetation is mostly
herbaceous and small shrubs. Ejin Horo Banner is rich in mineral resources, the third-
largest coal-producing county in China, and is considered a critical national energy strategic
base [25], with coal reserves of 56 billion tons and an annual output of about 200 million
tons. Shenmu, found in Yulin, Shaanxi, is a transitional zone from grassland, forest, and
hill to steppe and desert. The area has a typical temperate continental climate and has
an annual average temperature of ~8.9 ◦C. Shenmu is located in the southeastern part of
the Mu Us Desert and has proven coal reserves of over 50 billion tons, with stable coal
occurrence and excellent mining conditions [26,27].

The Shendong mining area across the Ejin Horo Banner and Shenmu is one of the most
famous coal fields and mining bases with the largest proven reserves in China. According to
the statistical data of raw coal output in Ordos and Yulin, from 1990 to 2019 [28], the study
area underwent three stages of development based on the intensity of coal mining activities:
initial stage (1990–2000), rapid development stage (2001–2010) and stable operation stage
(2011–2019). Ecological restoration efforts in the mining site have increased considerably
since 2005.
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2.2. Datasets

The Landsat data used in this paper have been processed by cloud removing, radio-
metric calibration, atmospheric correction, mosaicking and clipping. The time range from 1
July to 1 September during 1990–2020 was selected as the time range of the image. Images
with less than 5% cloud cover were utilized. All of the steps were completed on Google
Earth Engine’s remote sensing cloud computing platform. In this study, Landsat images
were used for retrieving the ecological parameters (Figure 2).
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Figure 2. Landsat satellite images in the study area: (a) 1990, (b) 2000, (c)2005, (d) 2010, (e) 2015, (f) 2019.

In addition, ASTER-GDEM (Advanced Spaceborne Thermal Emission and Reflection
Radiometer–Global Digital Elevation Model) images were used in land cover classification.
FLDAS (Famine Early Warning Systems Network Land Data Assimilation System), Chinese
farmland soil moisture ten-day dataset, and other soil moisture products were used for
estimating soil moisture, while the Atmospheric reanalysis ERA5 dataset was used for
determining the atmospheric parameters.
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3. Methodology

The main methods used in the study are as follows: multi-source remote sensing
data processing, remote sensing classification of land cover in mining areas, inversion of
land surface ecological parameters, reanalysis of atmospheric parameters, and analysis of
impacts on the ecological environment. The corresponding flowchart of the technology
framework is presented in Figure 3.
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3.1. Land Cover Classification

The study area was classified into six land cover types: vegetation, water area, culti-
vated land, bare land, mining land, and artificial land (i.e., urban and construction lands).
Using high spatial resolution historical images, samples for each land cover type were
selected using manual interpretation and were then used for model training and result
verification. The Random Forest (RF) [29] classification algorithm, an integrated learning
algorithm based on multiple decision trees, was adopted to generate land cover classifi-
cation for the mining areas using remote sensing images. Figure 4 presents the schematic
diagram of the RF algorithm.
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3.2. Inversion of Land Surface Ecological Parameters
3.2.1. Inversion of LST

The method proposed by Xu [30] was used in the inversion analysis of the land surface
temperature (LST). After acquiring the vegetation coverage using the pixel dichotomy
method [31–33] and empirically determining the surface emissivity of different ground
objects [34], LST can be obtained using the formula:

TS = T/[1 + (λT/ρ) ln ε] (1)

where T is the temperature value at the sensor, which can be obtained by radiation cali-
bration; λ is the center wavelength of the thermal infrared band of the sensor; ρ = 1.438 ×
10−2 mK; and ε is the emissivity of the surface.

3.2.2. Inversion of SM

The Temperature Vegetation Dryness Index (TVDI) [35] was used for the inversion
of soil volumetric moisture (unit: m3/m3). The Normalized Difference Vegetation Index
(NDVI) is calculated by the formula:

NDVI =
NIR − R
NIR + R

(2)

where NIR represents the reflectivity in the near-infrared waveband, and R represents the
reflectivity in the red-light waveband.
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The TVDI is determined by constructing the feature space of LST (Ts) and NDVI
(Figure 5) and calculated using the following equations:

TVDI =
TS − TSmin

TSmax − TSmin

(3)

TSmin = a1 + b1 ∗ NDVI (4)

TSmax = a2 + b2 ∗ NDVI (5)

where a1, b1, a2, and b2 are the undetermined coefficients of the dry-wet edge, obtained
by fitting the dry-wet edge equations using the least square method [36]. Equation (6) is
obtained by substituting Equations (4) and (5) into Equation (3).

TVDI =
TS − (a1 + b1 ∗ NDVI)

(a2 + b2 ∗ NDVI)− (a1 + b1 ∗ NDVI)
(6)Remote Sens. 2021, 13, 5034 7 of 28 
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After scale conversion, the FLDAS dataset and the Chinese farmland soil moisture
ten-day dataset were used to construct the remote sensing regression model of SM with
the TVDI.

3.3. Atmospheric Parameter Reanalysis

The ERA5 reanalysis data provide temperature, pressure, relative humidity, and
specific humidity values using 37 pressure levels. Note that the geopotential height should
be converted into geometric height using the formula [37]):

h =
Re(ϕ)·H

g(ϕ)/g0·Re(ϕ)− H
(7)

where h is the ellipsoidal height (km), H is the geopotential height (km), ϕ is the latitude,
g0 = 9.80665 ms−2, Re(ϕ) is the radius of curvature of the Earth at latitude ϕ, and g(ϕ)
represents the gravity on the geoid.
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The converted meteorological parameters were then interpolated to obtain the atmo-
spheric relative humidity and the atmospheric specific humidity at the Earth’s surface.
The atmospheric water vapor density ρv can be obtained using the atmospheric equation
of state:

ρv =
e

RvT
(8)

where T is the temperature in Kelvin; Rv is the gas constant of water vapor equal to
461.5 J/kg; and e is the water vapor pressure, calculated from the relative humidity and
temperature provided by ERA5 using the Magnus formula [38].

The water vapor humidity factors (i.e., density, relative humidity, and specific hu-
midity) at the Earth’s surface can then be obtained. Time series analysis for these factors
was conducted for the different production periods, and the change rates in the different
regions were fitted by the least square method.

4. Results and Discussion
4.1. Analysis of the Changes of Eco-Environmental Elements
4.1.1. Analysis of Land Cover Change

The land cover classification results using remote sensing are shown in Figure 6. To
further explore the evolution of the land cover changes in the past 30 years, changes in each
land cover type were calculated for the different time periods. The results are presented
in Figure 7, and the land cover transfer matrix is presented in Table 1. The results show
that the vegetation area remained stable in the first decade, showed rapid growth after
2000, and experienced steady growth since 2015. There were also three stages of change
occurring on the water cover type, i.e., a sharp decline stage (1990–2005), a gentle decline
stage starting (2005–2015), and a gradual growth stage (2015–2019). Mining land was
almost zero in 1990 and increased slowly from 1990 to 2000. Rapid growth in mining lands
occurred since 2000, gradually decelerating in recent years. Cultivated land exhibited a
steady growth trend, while bare land declined continuously over 30 years. Growth in
artificial land was observed from 1990 to 2019, increasing relatively more from 2005 to 2019.
More lands were converted into vegetation land compared to vegetation lands converted
into other cover types, increasing the extent of vegetation land in the study area. Many
vegetation and bare lands were also transformed into mining and artificial lands over the
years, resulting in a considerable increase in mining and artificial land extents.
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Table 1. Land cover transfer matrix (1990–2019) (km2).

Vegetation Water Mining Land Cultivated Land Bare Land Artificial Land Total
Transfer out

vegetation 8811.29 42.52 130.82 886.88 178.79 311.28 1550.28

water 118.54 91.36 5.50 26.37 13.53 19.85 183.79

mining land 0.00 0.00 0.00 0.00 0.00 0.00 0.00

cultivated
land 70.84 2.21 2.22 77.87 1.59 16.24 93.09

bare land 1811.39 14.56 32.32 122.15 39.61 74.57 2054.99

artificial land 5.45 0.15 0.23 2.33 0.12 6.54 8.28

total
transfer in 2006.21 59.44 171.09 1037.74 194.03 421.93

4.1.2. Analysis of the LST Inversion Results

The results of the LST inversion using remote sensing images (mean values from June
to August in summer) are shown in Figure 8, while the mean LST values for summer at
different years are presented in Figure 9. The results show the mean LST value increased
annually from 1990, reaching its peak in 2005 with the value at over 40 ◦C. The LST
decreased rapidly from 2005 to 2010, slightly increased in 2010–2015, and stabilized from
2015 to 2019. In particular, as shown in Figure 8, the LST has a more pronounced increase
at the northeastern section of the central image from 1990 to 2005. This is because many
coal mining areas are located in this region and have increased significantly over the years.
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The LST change rates varied considerably during the 30-year study period. The
increase in LST was accelerating from 1990 to 2005, which was the initial and rapid
development stage of coal mining activities. The increased influence of mining activities
accelerated the upsurge in LST, showing a significant ECE at the temporal scale. This was
because more attention was given to ecological restoration and green mine construction,
and the impacts caused by mining activities were artificially improved. When coal mining
activities became stable after 2010, the LST change rate decelerated, and the impact of
mining activities gradually stabilized.

4.1.3. Analysis of the SM Inversion Results

The inversion results using remote sensing images (mean values from June to August
in summer) are shown in Figure 10, while the mean SM values for summer (June–August)
at different years are presented in Figure 11. As shown in the figures, SM experienced two
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different trends, i.e., a decreasing trend in 1990–2005 and the increasing trend in 2005–2019.
The highest and lowest mean SM values were observed in 2005 and 2019, respectively.
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Figure 11. The mean value of SM in the study area.

The rate of increase in mean SM in 1990–1995 was comparable to its rate of decrease in
1995–2000. Note that the rate of decline in SM decelerated during the rapid development
of coal mining activities (from 2000 to 2005). The reason may be that while there may
have been increased mining activities during this period, people have started to pay
greater attention to ecological restoration, environmental protection, and sustainability.
Since 2005, the SM has gradually increased, particularly in 2015–2019, exhibiting apparent
ecological cumulative effects related to progress in sustainable mining practices and focus
on environmental protection.
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4.1.4. Analysis of Atmospheric Parameters

ERA5 reanalysis data were used to obtain mean values for relative humidity, specific
humidity, and atmospheric water vapor density (June to August). Figures 12–14 show the
spatial distribution of these parameters for 1990, 2005, and 2019. Specific humidity and
atmospheric water vapor density exhibited pronounced spatial variations in each interval.
In terms of spatial distribution, the parameter values were higher in the southern region
than in the north. The three atmospheric parameters were also found to have similar trends
in the time scale, showing a downward trend in 1990–2005 and a rising trend from 2005 to
2019. The three parameters reached their peak in 1990 and their minimum in 2005.
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Figures 15 and 16 show the interannual mean values (from June to August) for
temperature and precipitation from 1990 to 2019. The mean temperature has been relatively
stable for the past 30 years. The lowest temperature was recorded in 2003 at 19.9 ◦C, while
the highest temperature occurred in 1999 and 2010 at 22.5 ◦C. The mean precipitation (June
to August) changed significantly over the past 30 years. It reached its maximum value in
2016 at 65.8 mm and was relatively low in 2005, 2009, and 2010.
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4.2. Monitoring of Key Mining Area—Shangwan Coal Mine

Shangwan coal mine (see Figure 17), located in Wulanmulun Town, Ejin Horo Banner,
Ordos City, China, is one of the ultra-large modern backbone mines of Shenhua Shendong
Coal Group Co., Ltd. [39]. The mine is a subterranean coal mine (pithead industry coal
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mine) with an area of 61.8 km2 and a geological reserve of 1.23 billion tons [40]. It started
its operation in 2000, with an approved production capacity of 14 million tons per year.
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Figure 17. Research area of Shangwan Coal Mine.

4.2.1. Land Cover Classification of the Shangwan Coal Mine

The land cover classification results for the Shangwan coal mining area at different
years are shown in Figure 18, and the tabulated results for each cover type are summarized
in Table 2. In 1990, almost no mining land and artificial land was found in the Shangwan
coal mining area; the main cover types were vegetation and bare lands. In 2005, the main
cover types were still vegetation and bare land. Patches of cultivated land and mining
land were observed, but there was still no artificial land. In 2019, most of the land had
vegetation cover type; bare land decreased, while mining land and artificial land increased
significantly. In the past 30 years, changes in the land cover types in the mining area have
been pronounced. The primary land cover type was vegetation. Bare land and water had
decreased considerably, while mining land and artificial land have increased year by year.
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Table 2. Statistics of various types of land coverage in different years in Shangwan coal mining area.

Coal Mine Year Class Vegetation Water Mining
Area

Cultivated
Land Bare Land Artificial Land

Shangwan
coal mine

1990
area (km2) 15.45 0.20 0.00 0.00 4.43 0.00

Percentage
% 77.00 1.00 0.00 0.00 22.00 0.00

2005
area (km2) 18.52 0.08 0.04 0.06 1.38 0.00

Percentage
% 92.20 0.40 0.20 0.30 6.90 0.00

2019
area (km2) 17.70 0.02 1.41 0.08 0.24 0.63

Percentage
% 88.14 0.10 7.02 0.40 1.20 3.14

In Figure 19, the vegetation area in the Shangwan coal mining area showed an accel-
erated growth trend from 1990 to 2005. The effects of mining activities on the vegetation
were minimal at this time, given that it was still the initial and early stages of development
for mining activities. During the period of rapid development of coal mining activities
(from 2005 to 2010), vegetation showed pronounced ECE, which gradually increased due
to its cumulative effects year by year.
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There was a slow decline in vegetation from 2010 to 2019. Compared with the previous
period, vegetation in the Shangwan coal mine had increased overall, while water and bare
lands had downward trends. In 2000, lands classified as water were more extensive than
usual, possibly due to the heavy precipitation occurring in that year. The expansion of
artificial lands accelerated in 2010–2015; coal mining processing plants (screening fields)
and other artificial lands were built in the eastern part of the study area, given increased



Remote Sens. 2021, 13, 5034 16 of 28

mining activities in the region. Cultivated lands had increased rapidly in 1990–2000 and
fluctuated in the following decades. These changes are closely related to changes in human
activities.

4.2.2. Analysis of LST and SM

The LST inversion results for the Shangwan coal mining area are shown in Figure 20,
and the mean LST summer values (June to August) at different years are presented in
Figure 21. The LST exhibited an overall upward trend in 1990–2005, reaching its peak in
2005 before declining in subsequent years. As shown in Figures 11 and 21, the change
trend in LST for the Shangwan coal mining area is comparable to that of the entire study
area. The LST in the mining area gradually surged in 1990–2000 because the impact from
mining on the surrounding environmental factors was weak at the initial stage of coal
mining operations. From 2000 to 2010, the LST initially increased and then declined.
To a certain extent, these changes were influenced by the cumulative effects of mining
activities, showing particular ECE characteristics. The LST in the mining area increased
gradually in 2010–2019, given the plateauing of coal mining activities, and the impact on
the LST diminished.
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Figure 23. SM had an overall fluctuating trend, with the lowest value occurring in 2005
and the highest in 2019. SM was steady from 1990 to 2000. From 2000 to 2005, it dropped
rapidly; this was caused mainly by long-term mining activities. From 2005 to 2020, SM was
in an upward trajectory, surging particularly in 2015–2019. The pronounced SM changes in
the Shangwan coal mining area are related, not only to the climate elements, but also to the
ecological restoration measures being implemented at that time.

Remote Sens. 2021, 13, 5034 16 of 28 
 

 

gradually in 2010–2019, given the plateauing of coal mining activities, and the impact on 
the LST diminished. 

 

(a)     (b)      (c) 

Figure 20. LST inversion results of the Shangwan coal mining area (°C): (a) 1990, (b) 2005, (c) 2019. 

 
Figure 21. The mean LST value in the Shangwan coal mining area. 

The SM inversion results of the Shangwan coal mining area are shown in Figure 22, 
and the mean SM values for summer (June to August) at different years are presented in 
Figure 23. SM had an overall fluctuating trend, with the lowest value occurring in 2005 
and the highest in 2019. SM was steady from 1990 to 2000. From 2000 to 2005, it dropped 
rapidly; this was caused mainly by long-term mining activities. From 2005 to 2020, SM 
was in an upward trajectory, surging particularly in 2015–2019. The pronounced SM 
changes in the Shangwan coal mining area are related, not only to the climate elements, 
but also to the ecological restoration measures being implemented at that time. 

 

(a) (b) (c) 

Figure 22. SM inversion results of the Shangwan coal mining area (m3/m3): (a) 1990, (b) 2005, (c) 2019. Figure 22. SM inversion results of the Shangwan coal mining area (m3/m3): (a) 1990, (b) 2005, (c) 2019.

Remote Sens. 2021, 13, 5034 17 of 28 
 

 

 
Figure 23. The mean value of SM in the Shangwan coal mining area. 

4.3. Characteristics of Ecological Cumulative Effect of Mining Disturbance 
4.3.1. Features on the Time-Scale 

The spatial distribution of change rates in LST and SM are shown in Figures 24 and 
25. The LST increased from 1990 to 2005, with the most pronounced surge occurring in 
2000–2005. The LST in more than half of the study area decreased significantly in 2005–
2010, especially in the eastern region. The LST increased from 2010 to 2019, comparable 
with the change in 1990–2000. A decrease in LST was observed in a small number of areas. 

 

(a) (b) (c) 

Figure 23. The mean value of SM in the Shangwan coal mining area.

4.3. Characteristics of Ecological Cumulative Effect of Mining Disturbance
4.3.1. Features on the Time-Scale

The spatial distribution of change rates in LST and SM are shown in Figures 24 and 25.
The LST increased from 1990 to 2005, with the most pronounced surge occurring in
2000–2005. The LST in more than half of the study area decreased significantly in 2005–2010,
especially in the eastern region. The LST increased from 2010 to 2019, comparable with the
change in 1990–2000. A decrease in LST was observed in a small number of areas.
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Figure 24. Change rate of LST in the study area: (a) 1990–1995, (b) 1995–2000, (c) 2000–2005, (d) 2005–2010, (e) 2010–2015,
(f) 2015–2019.

For 1990–2005, the SM in the study area decreased overall. SM mainly increased in
1990–1995 and then declined in the following decade. From 2005 to 2010, the SM increased
considerably in the eastern part of the study area and slightly increased in other areas.
From 2010 to 2015, the SM was comparable to the 2005–2010 levels, with the main difference
being that in the east-central area, the SM decreased slightly. From 2015 to 2019, the SM of
the entire study area had drastically changed.

Figures 26–28 show the change rates in atmospheric specific humidity, atmospheric
relative humidity, and atmospheric water vapor density. The atmospheric specific humidity
increased from 1990 to 2000. However, the increase rate showed a decreasing trend from the
northwest to the southeast, reflecting the variations in physical geography. The atmospheric
specific humidity had a downward trend for 2000–2010, and the decrease rate near the
mining area was significantly higher than that in other regions. From 2010 to 2020, the
atmospheric specific humidity again surged, with a large increase rate and a significant
ecological cumulative effect. The spatial and temporal distribution patterns of water
vapor density and relative humidity change rate were consistent with that of atmospheric
specific humidity.
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The mean LST and SM change rates (in absolute value) at each time period are sum-
marized in Figure 29. In the first four intervals (1990–1995, 1995–2000, 2000–2005, and 
2005–2010), the mean LST change rate (in absolute value) showed an upward trend, indi-
cating that the LST increase was accelerating. In 1990–2000, mining operations were still 
in the initial stage of development, and the succeeding decade (2000–2010) was the period 
for rapid development. During these years, with the gradual strengthening of mining ac-
tivities, the influence of ecological factors also expanded, as indicated by the accelerated 
changes in LST. For 2010–2019, the values were in a downward trajectory, indicating a 
deceleration in LST change rates. At this period (2010–2019), coal mining activities were 
at the stage of steady development. Vigorous implementation of environmental protec-
tion and ecological restoration measures has gradually stabilized the ecological elements, 
as manifested by the decelerating changes in LST. 
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Figure 28. Change rate of atmospheric water vapor density in the study area: (a) 1990–2000, (b)2000–2010, (c)2010–2019.

The mean LST and SM change rates (in absolute value) at each time period are
summarized in Figure 29. In the first four intervals (1990–1995, 1995–2000, 2000–2005,
and 2005–2010), the mean LST change rate (in absolute value) showed an upward trend,
indicating that the LST increase was accelerating. In 1990–2000, mining operations were still
in the initial stage of development, and the succeeding decade (2000–2010) was the period
for rapid development. During these years, with the gradual strengthening of mining
activities, the influence of ecological factors also expanded, as indicated by the accelerated
changes in LST. For 2010–2019, the values were in a downward trajectory, indicating a
deceleration in LST change rates. At this period (2010–2019), coal mining activities were at
the stage of steady development. Vigorous implementation of environmental protection
and ecological restoration measures has gradually stabilized the ecological elements, as
manifested by the decelerating changes in LST.

The change rate in mean SM (in absolute value) showed an upward trend in 1990–1995.
From 1995 to 2010, the change rate of mean SM (in absolute value) decreased, indicating
that it had weakened during this period. In 2015–2019, the slope showed an upward trend,
indicating an accelerated change in mean SM.

Time accumulation is the cumulative phenomenon that occurs on the time scale when
the time interval between two disturbances is less than the time required for environmental
restoration. The external manifestation is an increase in the rate of change on the time scale.
Therefore, the accelerated changes in LST and SM values show the ecological cumulative
effect of mining disturbance on the time scale.



Remote Sens. 2021, 13, 5034 21 of 28
Remote Sens. 2021, 13, 5034 21 of 28 
 

 

 
Figure 29. The absolute value of the change rate of mean LST and SM in the study area. 

The change rate in mean SM (in absolute value) showed an upward trend in 1990–
1995. From 1995 to 2010, the change rate of mean SM (in absolute value) decreased, indi-
cating that it had weakened during this period. In 2015–2019, the slope showed an upward 
trend, indicating an accelerated change in mean SM. 

Time accumulation is the cumulative phenomenon that occurs on the time scale 
when the time interval between two disturbances is less than the time required for envi-
ronmental restoration. The external manifestation is an increase in the rate of change on 
the time scale. Therefore, the accelerated changes in LST and SM values show the ecolog-
ical cumulative effect of mining disturbance on the time scale. 

4.3.2. Features on Spatial Scale 
As shown in Figure 30, seven buffer zones were set up, with the Shangwan Coal Mine 

as center and a 300 m interval between two adjacent buffers. The mean LST and SM values 
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Figure 29. The absolute value of the change rate of mean LST and SM in the study area.

4.3.2. Features on Spatial Scale

As shown in Figure 30, seven buffer zones were set up, with the Shangwan Coal Mine
as center and a 300 m interval between two adjacent buffers. The mean LST and SM values
for each buffer zone in 2019 were then calculated, and the summary of results is presented
in Figure 31.
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Figure 31. The relationship between the mean value of LST, SM, and the distance from the mine. 

The first buffer zone (>300 m) had the highest mean LST and the lowest average SM 
values. The mean LST gradually declines as the distance increases, while the mean SM 
exhibits a gradual upward trend. Spatial accumulation refers to the accumulative phe-
nomenon generated on the spatial scale when the spatial proximity between adjacent dis-
turbance factors is less than the distance required to remove each disturbance. Externally, 
the influence of disturbance on the spatial scale attenuates with the distance. Therefore, 
the variations in LST and SM with regard to distance show pronounced ECE characteris-
tics on the spatial scale. Based on the temporal and spatial cumulative effect characteristics 
(Wang et al., 2010), the source of the cumulative effect may be attributed to mining dis-
turbance by way of mining subsidence and the land-use change. 

To better analyze the environmental evolution characteristics, we chose an area un-
affected by human activities to compare with the Shangwan coal mining area. The contrast 
area is rectangular, located two kilometers from the western boundary of the Shangwan 
coal mining area, and is similarly sized as the study site. The high-resolution image of the 
contrast area is shown in Figure 32. 

 
Figure 32. The contrast study area. 

Figure 31. The relationship between the mean value of LST, SM, and the distance from the mine.

The first buffer zone (>300 m) had the highest mean LST and the lowest average
SM values. The mean LST gradually declines as the distance increases, while the mean
SM exhibits a gradual upward trend. Spatial accumulation refers to the accumulative
phenomenon generated on the spatial scale when the spatial proximity between adja-
cent disturbance factors is less than the distance required to remove each disturbance.
Externally, the influence of disturbance on the spatial scale attenuates with the distance.
Therefore, the variations in LST and SM with regard to distance show pronounced ECE
characteristics on the spatial scale. Based on the temporal and spatial cumulative effect
characteristics (Wang et al., 2010), the source of the cumulative effect may be attributed to
mining disturbance by way of mining subsidence and the land-use change.

To better analyze the environmental evolution characteristics, we chose an area unaf-
fected by human activities to compare with the Shangwan coal mining area. The contrast
area is rectangular, located two kilometers from the western boundary of the Shangwan
coal mining area, and is similarly sized as the study site. The high-resolution image of the
contrast area is shown in Figure 32.
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The land cover results of the contrast area at different years are shown in Figure 33,
and the area statistics are summarized in Table 3. There was almost no mining or artificial
land in the contrast area in 1990, and the main coverage types were vegetation (79%) and
bare land (18%). In 2005, vegetation cover (90%) was still the primary coverage type,
while barren land decreased to 8%. In 2019, vegetation (53%) decreased considerably,
while bare land disappeared. Along with vegetation, cultivated land (47%) became a
major land cover type, and new artificial lands (1%) were established. Results from the
cover classification analysis reveal that the land cover in the contrast area has significantly
changed; in particular, large portions of vegetation and bare lands were converted into
cultivated land.
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ited a growing trend in the first 20 years but has since trended downwards in the last 
decade. Vegetation in the contrast area decreased further and faster than in the mining 
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Figure 33. Results of land cover classification in the contrast area: (a) 1990, (b) 2005, (c) 2019.

Table 3. Statistics of various types of land coverage in the contrast area.

Coal Mine Year Class Vegetation Water Mining
Area Cultivated Land Bare Land Artificial Land

Shangwan
coal mine

1990
area (km2) 15.92 0.48 0.00 0.00 3.68 0.00

percentage
% 79.28 2.39 0.00 0.00 18.33 0.00

2005
area (km2) 17.98 0.52 0.00 0.00 1.58 0.00

percentage
% 89.54 2.59 0.00 0.00 7.87 0.00

2019
area (km2) 10.55 0.01 0.00 9.38 0.00 0.14

percentage
% 52.54 0.05 0.00 46.71 0.00 0.70

Figure 34 shows the various land cover changes in the Shangwan coal mining area
and the contrast area for the last 30 years. The vegetation cover in these two areas exhibited
a growing trend in the first 20 years but has since trended downwards in the last decade.
Vegetation in the contrast area decreased further and faster than in the mining area. The
change trends for water, bare land, and cultivated lands in the two areas are comparable,
but cultivated lands have expanded more rapidly in the contrast area in the past five years.
Both mining and artificial lands had increased in the mining zones.

The LST inversion results for the contrast area are shown in Figure 35. The overall
LST increased from 1990 until its peak in 2005 and then declined. The SM values initially
decreased, reached the lowest value in 2005, and then increased to the highest point in 2019.
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Figure 35. Inversion results of LST in the contrast area (°C): (a) 1990, (b) 2005, (c) 2019. 

Figure 36 shows the LST box plot for the Shangwan coal mining area and the contrast 
area. Comparing Figures 20 and 35, the LST in the two regions showed a gradually in-
creasing trend from 1990 to 2005. However, due to the emergence of mining land and 
artificial land in the Shangwan coal mining area in 2019, the coal mine processing plant 
and its surroundings yielded high LST values, while in other land cover types, the LST 
values were considerably lower. In the contrast area, the LST decreased overall. As shown 
in Figure 36, the Shangwan coal mining area had more concentrated LST values and a 
higher mean LST than the contrast area. 
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Figure 35. Inversion results of LST in the contrast area (◦C): (a) 1990, (b) 2005, (c) 2019.

Figure 36 shows the LST box plot for the Shangwan coal mining area and the contrast
area. Comparing Figures 20 and 35, the LST in the two regions showed a gradually
increasing trend from 1990 to 2005. However, due to the emergence of mining land and
artificial land in the Shangwan coal mining area in 2019, the coal mine processing plant
and its surroundings yielded high LST values, while in other land cover types, the LST
values were considerably lower. In the contrast area, the LST decreased overall. As shown
in Figure 36, the Shangwan coal mining area had more concentrated LST values and a
higher mean LST than the contrast area.

The SM inversion results for the contrast area are shown in Figure 37. The SM box
plot between the Shangwan coal mining area and the contrast area is shown in Figure 38.
Comparing Figures 22 and 37, the two regions had similar SM change trends, decreasing
initially and then increasing. As shown in Figure 38, the distribution of the SM value for
the two regions is relatively consistent and concentrated. However, the mining area has
lower mean SM than the contrast area, which indicates that mining activities affect SM and
that the impact is highly concentrated.
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5. Conclusions

Land cover classification and change analysis were carried out to retrieve land surface
temperature, soil moisture, specific humidity, relative humidity, and atmospheric water
vapor density using remote sensing and multi-source spatial data. The eco-environment
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change and the characteristics of ecological cumulative effect from coal mining operations
were analyzed on a long-time scale. The Shangwan Coal mine was used as example in the
comparative analysis between the mining zone and the contrast area. The main highlights
of the study are as follows:

(1) In the initial stage of coal mining activities (1990–2000), the eco-environment was
generally stable, but mining activities had impacted the eco-environment to a cer-
tain degree.

(2) During the rapid development stage of coal mining operations, the eco-environment
was damaged severely, showing significant ECE, including temporal and spatial
cumulative effects. The change rates for the eco-environmental parameters accelerated
and showed pronounced ecological cumulative effects at the temporal scale. In 2010,
coal mining activities entered a period of relative stability, and ecological restoration
started to receive greater attention. The eco-environmental parameters gradually
recovered, and the eco-environment generally improved. Results from the land
surface temperature and soil moisture analyses and the spatial comparison with the
contrast area show ECE characteristics due to mining disturbance at the spatial scale.

Future studies can comprehensively utilize remote sensing, ground investigation,
and statistical data to conduct quantitative and high-frequency observations for more
parameters at long-term scales in mining areas. The results would help support under-
standing the mechanisms and characteristics of the ecological cumulative effects caused by
mining operations.
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