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Abstract: Monitoring the phenological development of agricultural plants is of high importance
for farmers to adapt their management strategies and estimate yields. The aim of this study is to
analyze the sensitivity of remote sensing features to phenological development of winter wheat and
winter barley and to test their transferability in two test sites in Northeast Germany and in two years.
Local minima, local maxima and breakpoints of smoothed time series of synthetic aperture radar
(SAR) data of the Sentinel-1 VH (vertical-horizontal) and VV (vertical-vertical) intensities and their
ratio VH/VYV; of the polarimetric features entropy, anisotropy and alpha derived from polarimetric
decomposition; as well as of the vegetation index NDVI (Normalized Difference Vegetation Index)
calculated using optical data of Sentinel-2 are compared with entry dates of phenological stages. The
beginning of stem elongation produces a breakpoint in the time series of most parameters for wheat
and barley. Furthermore, the beginning of heading could be detected by all parameters, whereas
particularly a local minimum of VH and VV backscatter is observed less then 5 days before the entry
date. The medium milk stage can not be detected reliably, whereas the hard dough stage of barley
takes place approximately 6-8 days around a local maximum of VH backscatter in 2018. Harvest is
detected for barley using the fourth breakpoint of most parameters. The study shows that backscatter
and polarimetric parameters as well as the NDVI are sensitive to specific phenological developments.
The transferability of the approach is demonstrated, whereas differences between test sites and years
are mainly caused by meteorological differences.
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1. Introduction

The adaption of agricultural production to climatic changes to ensure global food secu-
rity as well as the simultaneous conservation of the environment in times of increasing land
scarcity is one of the main tasks of agriculture today [1-3]. In this context, the knowledge
about prevailing phenological conditions of agricultural crops is of high importance for
farmers. Monitoring the phenological development of agricultural crops enables farmers
to predict crop yield and react to unfavorable conditions to a certain degree, for example,
irrigation at dry conditions, adapting the harvest date in case of estimated rain or with
site-specific fertilization strategies [4-6]. Additionally, researchers from varying fields are
interested in current and historical data of crop phenology, exemplary as input parameters
for hydrological or climate models [7,8].

The phenological development describes the life cycle of a plant which is initiated and
influenced by environmental changes and is highly influenced by current weather condi-
tions [9]. The BBCH scale (named after its developing institutes Biologische Bundesanstalt,
Bundessortenamt, und CHemische Industrie) is a system to standardize phenologically
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similar growth stages of multiple plant species and is used worldwide by research and
administration [9].

The monitoring of phenological development as well as the detection of specific
phenological stages of agricultural plants using remote sensing data is widely used [10].
Additionally, time-lapse cameras installed close to the surface (PhenoCams) are used to
track phenology at very high temporal resolutions (e.g., at a daily rate) but are mostly
limited to the field scale [11,12]. The great advantage of remote sensing data is their ability
to cover large areas in regularly time steps. Furthermore, images from several sensors
are available free of charge and have been acquired for many years. Data from optical
sensors like Landsat, Sentinel-2 or MODIS and particularly derived vegetation indices like
NDVI (Normalized Difference Vegetation Index) are often and successfully used to monitor
agricultural plants and to detect their phenological development in the past [13-15].

However, a main disadvantage of optical remote sensing data is their dependence on
cloudless conditions. In contrast, synthetic aperture radar (SAR) data is independent of
cloud cover and turned out to be sensitive to crop parameters like biomass, plant height and
leaf area index (LAI) as well. Strong correlations between SAR data and biophysical param-
eters of agricultural crops has been shown by several studies mostly for C-Band [16-21],
but also for other SAR wavelengths like X-Band [22,23] or L-Band [24-26]. In addition,
many studies investigated the sensitivity of time series of backscatter and polarimetric
decomposition parameters to phenological changes like heading or harvest [27-29].

Furthermore, time series of SAR data like those of Sentinel-1 are suitable to monitor
phenological development of agricultural crops. Schlund and Erasmi [30] and Low et al. [31]
used Sentinel-1 time series for VV and VH backscatter as well as interferometric coherence
to detect entry dates of phenological stages. Additionally, Low et al. used alpha, entropy
and several elements derived from a Kennaugh Matrix, whereas Schlund and Erasmi
concentrated on wheat fields of the years 2017, 2018 and 2019, Léw et al. additionally
included sugar beet and canola fields to the analyses but concentrated on the year 2017.
Each study was performed for one test site in Germany. Furthermore, Nasrallah et al. [32]
monitored phenological development of winter wheat in Lebanon using backscatter time
series of Sentinel-1 which are smoothed using a Gaussian filter and compared it to NDVI
time series. Seeding and harvest dates of several agricultural crops could also be detected by
using Sentinel-1 coherence of interferometric SAR data [33]. Furthermore, it was found that
Sentinel-1 and Sentinel-2 data (VH/VV and NDVI) are sensitive to crop growth particularly
for major European winter crops [34]. The combination of Sentinel-1 and Sentinel-2 data
was also used by Mercier et al. [35] to predict phenological stages of wheat and rapeseed
using a classification approach.

Most previous studies focused on single years [31,34] and/or on single test sites [30,32].
Therefore, this study focuses on the transferability of the detection of phenological entry
dates by comparing two test sites and two years. Furthermore, this study includes winter
barley in the analyses, a crop type that was not considered in previous studies. Additionally,
time series of NDVI derived from Sentinel-2 are compared to the results of Sentinel-1
time series to evaluate the strengths and deficiencies of optical and SAR sensors. SAR
parameters are sensitive to structural changes of the plants as well as to moisture changes
and to the variable contribution of vegetation and soil to the signal which leads to changing
scattering mechanisms [16,17]. The NDVI is mainly sensitive to photosynthetic activity
and consequently also detects changes in soil vegetation contributions [15].

The aim of this study is to identify phenological entry dates of winter wheat and
winter barley using smoothed time series of the Sentinel-1 radar backscatter parameters
VH, VV and their ratio VH/VV as well as of the three parameters entropy, anisotropy
and alpha derived from polarimetric decomposition. In addition, the vegetation index
NDVI derived from Sentinel-2 data is included in this study to incorporate vegetation
vitality information. Local minima, local maxima and breakpoints of the time series
are compared with phenological entry dates reported by the German Weather Service
(Deutscher Wetterdienst (DWD)) for two test sites in Northeast Germany. As a result,
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differences between reported phenological entry dates and metrics of the time series are
presented as number of days and discussed in detail.

2. Study Sites

The analyzed wheat and barley fields are located in two study sites in Northeast Ger-
many (Figure 1). Both regions are characterized by glacio-fluvial landforms like extensive,
flat sand regions, hills and sinks.
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Figure 1. Location of the test sites DEMMIN and Blonsdorf in Germany and location of observed wheat and barley fields.
Background: Sentinel-2 images of 29 May 2017 and 7 May 2018 (WGS 1984, UTM Zone 32N).

The test site DEMMIN (Durable Environmental Multidisciplinary Monitoring Infor-
mation Network) is located in the federal state Mecklenburg-West Pomerania and is part
of several monitoring projects like JECAM (Joint Experiment of Crop Assessment and
Monitoring) [36] and TERENO (Terrestrial Environmental Observatories) [37,38]. The
test site Blonsdorf is located approximately 200 km south of DEMMIN in the federal state
Brandenburg in a range of hills called “Flaming Heath”.

The climate in both test sites belongs to the transition zone between continental
and maritime climate with mean annual temperatures of 8.8 °C (DEMMIN) and 9.3 °C
(Blonsdorf). The total annual precipitation is about 600 mm in DEMMIN and 540 mm in
Blonsdorf [39]. The two analyzed years 2017 and 2018 are meteorologically very different
with remarkably lower precipitation sums and higher temperatures in 2018 (Figure 2).

Both test sites are extensively agriculturally used with mainly conventionally managed
fields. Fertilizers and pesticides are commonly used to increase yields, while precision
agriculture is only used in individual cases.
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Figure 2. Meteorological differences between test sites and years and data availability of Sentinel-1 and Sentinel-2 as well as

dates of field observations.

3. Materials and Methods
3.1. Data
3.1.1. Sentinel-1 Data

The two identical Sentinel-1 satellites operated by the European Copernicus Program
of the ESA (European Space Agency) provide synthetic aperture radar (SAR) data with
a high revisit frequency of six days with equal acquisition conditions (equal pass, orbit
and incidence angle). The C-band instrument (5.405 GHz) offers dual polarized SAR data
in VH (vertical-horizontal) and VV (vertical-vertical) polarization. It has a 250 km swath,
a range spacing of 2.33 m and an azimuth spacing of 13.89 m.

In this study, Sentinel-1 data from the ascending orbit 146 with a mean local incidence
angle of ~38° (DEMMIN) and ~34° (Blonsdorf) is used because of a limited comparability
of Sentinel-1 images from different orbits and pass directions [16]. In total, 100 Sentinel-1
images from both years 2017 and 2018, each from the beginning of March until the end of
July, and from both test sites DEMMIN and Blonsdorf are used in this study to create time
series of backscatter and polarimetric parameters (Table 1 and Figure 2).

Table 1. Available Sentinel-1 and Sentinel-2 data and analyzed fields per test site and per year.
Values in parentheses indicate Sentinel-2 data suitable for the majority of fields.

Test Site Year Sentinel-1 Sentinel-2 ~ Wheat Fields Barley Fields
2017 26 9 (8) 59 15

DEMMIN 2018 24 22 (18) 51 22

Blonsdorf 2017 26 7 (6) 39 18

2018 24 35 (29) 46 33
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3.1.2. Sentinel-2 Data

Sentinel-2A and Sentinel-2B are two identical satellites operated by ESA. They provide
multispectral images with a high spatial resolution up to 10 m and a high temporal
resolution of two to three days. In this study, 73 Sentinel-2 images are used (Figure 2). The
majority of them were acquired in 2018 (57 images). Because of partial cloud coverage,
some images are not covering all analyzed fields (Table 1). The red and the near infrared
band of the Sentinel-2 sensors are used to calculate time series of the vegetation index
NDVI (Equation (1)).

NDVI = IR T Red @)

3.1.3. Field Data

In total, time series of 195 winter wheat and 88 winter barley fields are analyzed
in both years and both test sites (Table 1 and Figure 1). Thirteen of these fields were
regularly visited during the vegetation periods of 2017 and 2018, and these serve as
reference fields to validate phenological data reported by the German Weather Service
(DWD). Field boundaries and crop types for each year were extracted from the IACS
(integrated administration and control system) data bases of Mecklenburg-West Pomerania
and Brandenburg [40]. Field sizes range between 20 ha and 234 ha with an average field
size of 50 ha.

3.1.4. Meteorological and Phenological Data

Phenological entry dates are reported immediately or annually by volunteer observers
at numerous phenological observation stations in Germany operated by the German
Weather Service (DWD) [41]. In this study, observations of the phenological stations closest
to the fields of the test sites are used. The plausibility of the reported entry dates was
verified using own phenological observations. In total, observations from four phenological
stations for each test site were used for the analyses. These were for DEMMIN the stations
Titzpatz (ID 12508) and Dargun (ID 12615) with data from both annual and immediate
reporters. The stations of the immediate reporter of Dommitzsch (ID: 13005) as well as
the annual reporters of the stations Wiesenburg (ID: 5546), Schonewalde (ID: 12306) and
Selbitz (ID: 13102) were used for the Blonsdorf test site (Figure 1).

The phenological observations of DWD report the entry dates of five different pheno-
logical development stages for winter wheat and winter barley, which are directly related to
the BBCH system [9] (Table 2 and Figure 3). One main difference between the descriptions
of the phenological stations is the DWD specification of how many plants of a field should
already show a specific development stage. In contrast, BBCH stages refer to individual
plants and do not make any statements about the percentage of a field that should undergo
a specific phenological stage.

Meteorological data are provided by DWD for the Blonsdorf test site by the stations
Naundorf bei Seyda (ID: 03445, precipitation) and Langenlipsdorf (ID: 02856, air temper-
ature) [39]. For the DEMMIN test site, the climate station Heydenhof of the TERENO
meteorological network provided precipitation and air temperature data [42]. The climate
stations provide daily precipitation sums as well as daily air temperatures and were used
to investigate phenological differences between the two observed years 2017 and 2018
(Figure 2).
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Table 2. Phenological stages reported by DWD and their related BBCH stage.

DWD BBCH Name Description
15 31 Beginning of Stem Elongation About half of the plants grow clearly in length and the first
stem node above the ground is perceptible.
18 51 Beginning of Heading At about half of the stems, the first spikelets are visible and
emerge laterally from the sheats.
19 75 Medium Milk The grain content is Imlk.y. The first grains reached their
final size
and are still green.
2 87 Hard Dough First grains in about half of the ears have changed their
color from
green to yellow and can be easily removed from from
the panicle.
The grain content is solid.
24 99 Harvest The field is harvested.
3.2. Methods

3.2.1. Data Processing

Sentinel-1 images were downloaded as SLC data (single look complex) in IW mode
(interferometric wide swath mode). Before calibration, all images were split and the
appropriate orbit file was applied using the Sentinel Application Platform (SNAP) [43].
To extract the backscatter coefficients of VV and VH, the data were calibrated to ¢° and
debursted. Afterwards, all images were multi-looked and smoothed using the “Refined
Lee” speckle filter with a window size of 7 x 7.

To perform the polarimetric decomposition, Sentinel-1 images were calibrated to
a complex output and debursted. The polarimetric speckle filter “Refined Lee” with
a window size of 5 x 5 was applied to enhance image quality [44]. The H-alpha dual
polarimetric decomposition algorithm with a window size of 5 x 5 was used to extract
entropy, anisotropy and alpha [45,46]. Entropy is a measure of the randomness of the
scattering process, anisotropy indicates the presence of a second scattering mechanism
and alpha describes the dominant scattering mechanism [47]. Resulting alpha values
were subtracted from 90° to get the appropriate value range. It has to be considered that
polarimetric decomposition parameters derived from dual-polarimetric data differ from
those derived from quad-polarimetric data [17,46].

Range-Doppler Terrain Correction using the digital elevation model of SRTM (Shuttle
Radar Topography Mission) and a coregistration using uniformly spaced ground control
points (GCP) was applied to all images as a last processing step. The spatial resolution of
the processed images is 10 m x 10 m for both backscatter and polarimetric decomposition
parameters. Backscatter values were converted to the Decibel (dB) unit to get a logarithmic
scale, and the ratio of VH and VV backscatter was calculated afterwards by subtracting
VH from VV backscatter.

Sentinel-2 data were atmospherically corrected using the SICOR algorithm [48] and
georeferenced using the AROSICS algorithm [49]. The NDVI was calculated according
to Equation (1) for all cloud-free pixels. Clouds were identified using the cloud mask
provided by the SICOR algorithm. Additionally, extreme NDVI values, namely, values
lower or higher than the extremes of the lower and upper whiskers of the boxplot diagram
of the field, are removed before the calculation of the mean value per field.

The resulting backscatter parameters VH, VV and VH/VV as well as the polarimetric
decomposition parameters entropy, anisotropy and alpha and the NDVI values were
averaged for every agricultural field, whereas the outer 20 m of each field were excluded
to avoid influences by the surrounding area.
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BBCH 31 BBCH 51 BBCH 75 BBCH 87
Beginning of Stem Beginning of Medium Milk Hard Dough
Elongation

Heading

B) Barley /

Figure 3. Photos of wheat (A) and barley (B) during analyzed phenological stages. Photos of the
harvest stage (BBCH 99) show two exemplary fields after harvest, there are no differences between
wheat and barley fields regarding field conditions after harvest.

3.2.2. Time Series Analysis

The time series of the extracted backscatter and polarimetric decomposition param-
eters as well as of the NDVI values were smoothed using the LOESS algorithm (locally
estimated scatterplot smoothing) [50]. This method fits a polynomial regression for each
value and its neighborhood, whereas the size of the neighborhood defines the smooth-
ness of the fitting and is defined by the span value. The higher the span value, the more
filtering of the data takes place. In this study, a one-degree polynomial regression was
used. To preserve the general course of the time series, several span values were tested and
visually evaluated. Finally, the span value was set to 0.3 for backscatter and the polarimetric
decomposition parameters and to 0.4 for NDVI values. The higher span value of NDVI
results from irregularly distributed values over time with partly large data gaps. In case
only very few NDVI values were available, a smoothing was not possible and the original
values were used instead. This concerns both test sites in the year 2017, when only very
few Sentinel-2 images were available (Figure 2).

After smoothing the time series, local minima, local maxima and breakpoints of the
fitted curve were calculated. Breakpoints were defined using the breakpoints function of
the R-package strucchange [51]. The algorithm is based on Bai and Perron (2003) [52] and
Zeileis et al. (2003) [53]. The main idea is to search for changing regression coefficients
between segments of at least three observations by minimizing a triangular matrix of
residual sum of squares (RSS) for each segment.

The dates of the detected local extrema and breakpoints were finally compared to the
phenological entry dates by calculating their mean absolute differences in days (Figure 4).
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Figure 4. Flowchart of the data processing and time series analysis.

4. Results

In the following sections, results of the study are presented for each BBCH stage
individually. Figures 5 and 6 show the temporal behavior of all analyzed wheat and
barley fields for selected parameters, test sites and years. Boxplot diagrams within the
single chapters represent parameters and metrics that best reflect the corresponding BBCH
stage by having the lowest mean and median differences in days to BBCH entry dates.
The lower the median value of a boxplot, the smaller is the difference in days between
reported entry date and a feature of the time series of a specific parameter. The smaller
the box (interquartile range), the more consistent are the results of all fields and a better
transferability is assumed. At the end of Section 4, Table 3 summarizes the results of all
BBCH stages and crop types.
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Table 3. Summarized results of all BBCH stages and crop types. The last two columns indicate mean and median differences

in days between reported entry date and time series feature of the listed parameters.

BBCH Crop Type Parameter Time Series Feature Mean Median
Alpha, Entropy, .
Wheat Anisotropy, VH/VV 2. Breakpoint 8-15 5-6
NDVI (2018) 2. Breakpoint 10-14 4-9
VH Maximum 8-15 6-15
31 VV (2017) 1. Breakpoint 11 8-10
VV (2018) 1. Breakpoint 3-5 1-3
Alpha, Entropy,
Barley Anisotropy, VH/VV, 1. Breakpoint 8 5
NDVI (2018)
VH (2018) Maximum 9 9
Alpha, Entropy, VH/VV Maximum 7-9 4-7
Anisotropy Minimum 7-9 4-7
Wheat VH, VV Minimum 47 2-5
NDVI Maximum 2-8 2-7
51 Alpha, Entropy, VH/VV Maximum 9-10 9
Barl Anisotropy Minimum 9-10 9
ey VH, VV Minimum 3-6 3-6
NDVI Maximum 10 10
Alpha, Entropy, VH/VV ..
Wheat (2017) Minimum 10 5
75 Anisotropy (2017) Maximum 10 5
Barley no data - - -
Alpha, Entropy,
Wheat Anisotropy, VH/VV 4. Breakpoint 7-12 7-8
(2018)
VV (2018) Maximum 10-19 3-5
Alpha, Entropy,
Anisotropy, VH/VV Maximum 7-13 5-7
87 (2017)
Barley Alpha, Entropy,
Anisotropy, VH/VV 4. Breakpoint 7-12 3-13
(2018)
VH, VV Maximum 6-8 5-9
VH (2018) 4. Breakpoint 3-5 1-3.5
VV (2018) 3. Breakpoint 6-8 1-3.5
Wheat not detected - -
Alpha, Entropy, .
% Barley Anisotropy, VH/VV, VH 4 Breakpoint 12 29
\'AY Minimum 9-14 2-10

4.1. BBCH 31—Beginning of Stem Elongation

The beginning of stem elongation (BBCH 31) is characterized by the erection of the
main stem as well as of the tillers, whereas the top of inflorescence is located at least one
centimeter above the tillering node (Figure 3). DWD phenology stations report the entry date
of the beginning of stem elongation as soon as about half of the plants of the observed field
grow clearly in length and their first stem node above the ground is perceptible (Table 2).

Stem elongation of wheat usually takes place at the beginning of April, in 2018 only
at mid-April or at the end of April because of a delayed development caused by lower
temperatures. The stem elongation of barley happens earlier than that of wheat and can
already take place at the end of March (2017). In 2018, stem elongation of barley started in
mid-April.
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The plant appearance does not change remarkably compared to previous (end of
tillering) and subsequent phases (development of further nodes during ongoing stem
elongation) and the change is rather fluent. The stem elongation leads to an increase in
biomass, LAl and plant height, and the radar signal is increasingly influenced by vegetation
at the expense of the soil. Consequently, time series of SAR parameters as well as of NDVI
do not reveal remarkable changes of the temporal behavior like local extrema around this
time in April. However, multiple parameters show breakpoints during the time of the
beginning of the stem elongation which confirms the growing of the plants.

Breakpoints around the entry dates of BBCH 31 are detected by NDVI and by all SAR
parameters except for VV and VH backscatter (Figure 5). For wheat, the mean difference
between the observed entry date of BBCH 31 and the second detected breakpoints of
alpha, entropy, anisotropy and VH/VV is approximately 8-15 days. However, some
extreme values influence the average difference remarkably and the median values of
5-6 days (except for Demmin 2017 with a median around 12) are much lower (Figure 7A).
Breakpoints for NDVI are only calculated for 2018 because of an insufficient number of
images in 2017. The mean absolute differences between the entry date of BBCH 31 and the
second breakpoint of NDVI are approximately 10 days for Blonsdorf (median 4 days) and
14 days for DEMMIN (median 9 days). VV and VH backscatter show breakpoints for single
fields, but no general trend is observable. Instead, VH backscatter has a local maximum
around the entry dates of BBCH 31, which is particularly close in 2018 in both test sites
with median values of 6 days (Figure 7B).
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Figure 7. Boxplots of temporal differences in days between the second breakpoint of alpha and
the entry date of the beginning of stem elongation (BBCH 31) of wheat (A) as well as boxplots of
temporal differences in days between the local maximum of VH backscatter and the entry date of the
beginning of stem elongation (BBCH 31) of wheat (B).

For barley, the first breakpoint instead of the second one shows lowest mean differ-
ences compared to the entry dates of BBCH 31 (Figure 6), mainly for fields of 2018. In
this year, the mean difference between the observed entry dates and the first detected
breakpoint is around 8 days for all SAR parameters except for VH. Median values are even
lower with approximately 5 days for Blonsdorf. Particularly for VV backscatter, the first
detected breakpoint and the entry date of BBCH 31 result in low mean absolute differences
of approximately 4 days (median: 1 day (Blonsdorf) and 3 days (DEMMIN)) (Figure 8A).
VH backscatter also shows a local maximum around the entry dates of BBCH 31 in 2018.
The mean and median difference is approximately 9 days. For NDVI, the mean difference
between the entry date of BBCH 31 and the first detected breakpoint of 2018 is approxi-
mately 7.5 days in Blonsdorf (median 5 days). Figure 9 displays the spatial representation
of the mean difference in days between the entry date of BBCH 31 and the first breakpoint
of VV backscatter for barley. In DEMMIN 2017, the second detected breakpoint instead of
the first one shows the lowest mean difference of approximately 13 days (median 3.5 days).
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Figure 8. Boxplots of temporal differences in days between the first breakpoint of VV backscatter
and the entry date of the beginning of stem elongation (BBCH 31) of barley (A) as well as boxplots
of temporal differences in days between the local maximum of entropy and the entry date of the
beginning of heading (BBCH 51) of barley (B).
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Figure 9. Temporal differences in days between reported entry date of BBCH 31 (beginning of stem
elongation) and first breakpoint of VV backscatter of barley fields in both study areas and both years.

4.2. BBCH 51—Beginning of Heading

The beginning of heading (BBCH 51) marks the time when the first spikelets are visible
and emerge laterally from the sheaths (Figure 3). DWD phenology stations report the entry
date of BBCH 51 as soon as about half of the stems of the observed field show the before

mentioned behavior (Table 2).
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The beginning of heading of wheat usually takes place at the end of May or at the
beginning of June, depending on meteorological conditions of a specific year. The heading
of barley starts a few weeks earlier than the heading of wheat and can already take place at
the beginning of May, for example in Blonsdorf 2018.

The beginning of heading with emerging heads represents a rather strong change of
the plant appearance. Biomass, LAI and plant height often reach their maximum values
and the appearance of a whole field is much more divers, which particularly influences
the SAR signal [16]. The analyzed SAR parameters as well as the NDVI also reflect these
strong changes. All parameters show local or even global maxima or minima, which are
often directly related to the heading stage.

For wheat, entropy, anisotropy, alpha and VH/VV have very similar mean absolute
differences and median values between their maximum (entropy, alpha, VH/VV) or
minimum (anisotropy) compared to the reported entry dates (Figure 5). Lowest mean
differences of approximately 7-9 days are visible for both years and test sites except for
Demmin 2017 (median values: 7 days for Blonsdorf 2017 and 4 days for Demmin 2018).
The minimum values of VH and VV backscatter show even lower mean differences of
around 4-7 days (median values between 2 and 5 days) for the same years and test sites
(Figure 10A). Figure 11 depicts the spatial representation of the mean difference in days
between the entry date of BBCH 51 and the minimum of VV backscatter for wheat.

Furthermore, the NDVI shows a global maximum around the time of the beginning of
heading. The mean difference between maximum and reported entry date is particularly
low for Blonsdorf 2017 and Demmin 2018 with approximately 4 days (Figure 10B).

Barley fields indicate a similar behavior as wheat. However, the polarimetric parame-
ters entropy, anisotropy and alpha as well as VH/VV have in general higher mean and
median differences of approximately 9-10 days (Blonsdorf 2017 around 16 days) between
reported entry date of BBCH 51 and local maximum or minimum. Suprisingly, most
Blonsdorf 2018 fields show a perfect match between local extrema and reported entry date
(Figures 6B,D and 8B). The minimum values of VH and VV backscatter of barley reveal a
very uniform behavior of all fields. The mean and median difference is very similar or even
equal with around 3-6 days. Furthermore, NDVI maximum values are very consistent
between fields, but the mean and median differences are slightly higher with around
10 days. Only Blonsdorf 2018 fields show a lower difference of approximately 4 days. Note
that the local extrema of all SAR parameters are detected a few days before the entry date
of BBCH 51, whereas the NDVI maximum is located a few days afterwards.

Wheat - BBCH 51
A) VV - Minimum B) NDVI - Maximum

30
30

25
25

20
20

Days
15
Days
15

o
e

10
L

o 4 o 4

B|(')V|Sd0‘rf 2017 Bliinsdc‘rf 2018 Demm:n 2017 Demm\"n 2018 B|('l"5d0‘l’f 2017 Bliinsdc‘rf 2018 Demm:n 2017 Demm\"n 2018
Median  2.33 5.00 8.33 4.00 Median  2.00 13.00 7.33 4.00
Mean 389 5.80 9.48 6.82 Mean 243 12.97 7.59 464
sD 173 5.1 3.36 3.33 sD 183 5.45 2.0 3.06

Figure 10. Boxplots of temporal differences in days between the local minimum of VV backscatter
and the entry date of the beginning of heading (BBCH 51) of wheat (A) as well as boxplots of temporal
differences in days between the local maximum of NDVI and the entry date of the beginning of
heading (BBCH 51) of wheat (B).
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Figure 11. Temporal differences in days between reported entry date of BBCH 51 (beginning of

heading) and local minimum of VV backscatter of wheat fields in both study areas and both years.

4.3. BBCH 75—Medium Milk

During fruit development, BBCH 75 indicates the stage of medium milk ripening.
The grain content is still milky and first grains reached their final size while they are still
green (Figure 3). The entry date of medium milk is strongly dependent on meteorological
conditions of a specific year. In 2017, it started end of June (Blonsdorf) or at the beginning
of July (Demmin), while in 2018 it already started in mid-June. DWD phenology stations
report BBCH 75 only for wheat, therefore no data for barley is available.

The plant appearance during fruit development does not change remarkably and
is rather characterized by constant or slightly decreasing biomass, LAI and plant height.
Furthermore, the water content of the whole plant as well as of the grains starts to decrease
as well, but is not as prominent as in the later ripening or senescence stages yet.

Consequently, there are no explicit changes of the temporal behavior of the SAR
parameters and the NDVI during this time of the vegetation period (Figure 5). However,
some parameters detect breakpoints or even local extrema near medium milk for single test
sites or years for wheat. The polarimetric parameters entropy, anisotropy and alpha as well
as VH/VV show a local minimum (entropy, alpha, VH/VYV), respectively, a local maximum
(anisotropy) approximately 10 days (median: 5 days) after the entry date of BBCH 75
in 2017 (Figure 12A). However, these local extrema are not that prominent because their
neighboring values differ only marginally (Figure 5C). For some parameters, years and
test sites, the fourth breakpoint is also detected around 10 days before the beginning of
medium milk, but no consistent behavior is identified.
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Figure 12. Boxplots of temporal differences in days between the local minimum of alpha and the
entry date of medium milk (BBCH 75) of wheat (A) as well as boxplots of temporal differences in days
between the fourth breakpoint of entropy and the entry date of hard dough (BBCH 87) of wheat (B).

4.4. BBCH 87—Hard Dough

BBCH stage 87 indicates the hard dough stage at the end of the ripening. DWD
phenology stations report the entry date of BBCH 87 as soon as first grains in about half
of the ears changed their color from green to yellow and can be easily removed from the
panicle (Figure 3). The grain content is solid. For wheat, the hard dough stage starts in
mid-July (2017) or already at the beginning of July (2018) depending on the meteorological
conditions in the respective year. For barley, BBCH 87 already starts a few weeks earlier
between mid-June and end of June.

The whole ripening stage is marked by a remarkably decreasing vegetation water
content and the proceeding drying of the whole plant as well as of the grains. Their
color has turned from green to yellow. The LAI decreases and the soil presumably has an
increasing influence on the radar signal or the reflection again, whereas the plant volume
is still higher than at the beginning of the season.

The SAR parameters usually have a breakpoint during the time of the hard dough
stage for wheat in 2018 (Figure 5). In this year, the fourth breakpoint of the polarimetric
parameters entropy, anisotropy and alpha as well as of VH backscatter is on average
located around 7-12 days (median: 7-8 days) before the reported entry dates of BBCH 87
(Figure 12B). In 2017, the fourth breakpoint also indicates hard dough in Blonsdorf, but
because not all fields show this behavior, mean and median differences in days are still high.
The crop development stagnated in DEMMIN in July 2017 because of multiple heavy rain
events and relatively low temperatures, therefore ripening and particularly hard dough
is not detectable. VV backscatter has a local maximum before the hard dough stage in
2018 with a median difference of 3-5 days. However, this local maximum only differs
marginally from its neighboring values. Furthermore, NDVI detects a local minimum at
approximately 4 days after BBCH 87, but only for the Blonsdorf fields of 2017.

Differences between the two years 2017 and 2018 for BBCH 87 are also observable
for barley. While polarimetric parameters as well as VH/VV show a breakpoint around
7-12 days before the hard dough stage in 2018 (median values: 3.5 days in Blonsdorf and
13 days in DEMMIN), the same parameters have a local maximum (alpha, entropy, VH/VV)
or local minimum (anisotropy) with a mean difference around 7-13 days (median values:
5-7 days) to the hard dough stage in 2017 (Figure 6). VH and VV backscatter both show
a breakpoint as well as a local maximum during the time of the hard dough stage. In
contrast to polarimetric parameters, the local maxima are found for both years, whereas
the breakpoints are only present in 2018. The local maximum of VV backscatter is located
approximately 6-8 days before the hard dough stage (median: 5-9 days) (Figure 13A).
In 2018, the fourth breakpoint of VH backscatter has a mean difference of around 3-5 days
(median: 1-3.5 days) and the third breakpoint of VV backscatter has a mean difference
around 6-8 days (median: 1-3.5 days) to the reported entry date of hard dough. The fourth
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breakpoint of NDVI in 2018 results in mean differences of approximately 6.5 days (median:
4.5 days) for Blonsdorf and around 14 days (median: 11 days) for Demmin.
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Figure 13. Boxplots of temporal differences in days between the local maximum of VV backscatter
and the entry date of hard dough (BBCH 87) of barley (A) as well as boxplots of temporal differences
in days between the fourth breakpoint of entropy and the harvest date (BBCH 99) of barley (B).

4.5. BBCH 99—Harvest

The harvest date (BBCH 99) is the most drastic change of the field appearance because
all plants are usually harvested within one day. The harvest date is quite individually
between fields and often depends on availability of machinery and manpower next to
weather conditions. In 2017, the harvest of wheat in DEMMIN took only place in August,
whereas wheat fields in Blonsdorf are already harvested end of July. In 2018, wheat fields
are harvested at the beginning of July (Blénsdorf) or in mid-July (DEMMIN). Barley fields
are harvested at the beginning of July 2017 and at the end of June in 2018.

Surprisingly, no parameter reliably indicates the harvest date of wheat. Single pa-
rameters show low mean differences between harvest and local extrema or breakpoints,
for example a local minimum of the NDVI in Blonsdorf 2017 (Figure 5F). However, this
behavior is not observed in further years and test sites.

The harvest of barley fields is detected by the fourth breakpoint of the polarimetric
parameters as well as VH backscatter and VH/VV (Figure 6). The mean difference be-
tween reported harvest and the fourth breakpoint is around 3-12 days (median: 2-9 days),
whereas the difference is generally lower in DEMMIN in both years (Figure 13B). Fur-
thermore, VH backscatter detects a breakpoint around 5-10 days before harvest, whereas
VV backscatter reveals a local minimum at approximately 9-14 days (median: 2-10 days).
Because of the individual harvest dates of the single fields, mean differences are in some
cases influenced by outliers and the median values are better indicators. The NDVI does
not reliably indicate the harvest of barley.

5. Discussion
5.1. Evaluation of the Results

The results of this study confirm and complement results of earlier studies. Schlund
and Erasmi [30] and Low et al. [31] also identified a breakpoint at the beginning of
stem elongation. Both studies could furthermore identify a breakpoint during the har-
vest period for wheat, which was only the case for barley in this study. Similar to our
study, Schlund and Erasmi [30] could not detect ripeness with a high degree of certainty.
Nasrallah et al. [32] identified the VH/VYV ratio as particularly suitable to detect phenolog-
ical development, whereas in our study, the VH/VYV ratio performed equally well as the
polarimetric parameters entropy, anisotropy and alpha in most cases.

The evaluation of the results depends on the intended application purpose. In this
study, a difference lower than 10 days is considered as a good fit. For farmers, a difference
of 10 days between time series feature and entry date of a specific BBCH stage might be
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too high for some BBCH stages, whereas the accurate detection of the entry date of the
beginning of heading is rather important, knowing the correct date is not that crucial for
the beginning of stem elongation or ripening stages. On the other hand, an accuracy of
around 10 days might be sufficient for hydrological and climate modeling. Furthermore,
a low variability between fields as well as similar results between test sites and years are
evaluated as good results. Moreover, the combination of different parameters is helpful.
The more parameters are sensitive for a BBCH entry date, the more certain is the result.

The consistency of the results, meaning the majority of fields show a similar difference
in days in both test sites and both years, is similarly important than a low difference in
days. This is, for example, the case for the beginning of heading (BBCH 51), where the local
maxima or minima of polarimetric parameters are located a few days before. In this case,
the local extrema might be rather sensitive to a few BBCH stages earlier, for example the
development of the flag leave (BBCH 47). Knowing this, the beginning of heading, which
is a crucial time step for farmers to apply fungizids, could be predicted.

Additionally, similar results between test sites and years indicate stable results and
a successful transferability. Although the analyzed test sites DEMMIN and Blonsdorf do
not differ remarkably in their geographic conditions, their comparability is a promising
step towards a fully transferable approach of the method. Considering meteorological
conditions, the test site Blonsdorf is characterized by higher temperatures and lower pre-
cipitation because of its more continental location, which usually leads to a faster plant
development of on average around one week compared to DEMMIN. Main reasons for dif-
ferences between years are varying weather conditions, which was also found by Schlund
and Erasmi [30]. However, although the two years 2017 and 2018 are meteorologically
extremely different with very dry and hot conditions in 2018 and rather wet conditions
in 2017, overall trends are similar for most BBCH stages. The detection of the beginning of
stem elongation (BBCH 31) and heading (BBCH 51) show very similar mean differences to
corresponding SAR parameters and NDVI. However, some time series features only detect
entry dates of BBCH stages for specific years. The beginning of stem elongation (BBCH 31)
of barley is detected by more parameters and with a higher accuracy in 2018 because of a
higher contribution of soil to the signal. The reason is the slower development because of
colder temperatures in early 2018, whereas in 2017 barley plants were already very dense
and high at the same time. The medium milk stage (BBCH 75) is only detected for wheat
in the wet year 2017. This might be due to the extremely fast ripening in 2018 so that the
medium milk stage might not be captured by the sensors. The hard dough stage (BBCH 87)
shows different time series features in different years for barley and is only detected in 2018
for wheat. Furthermore, for barley, results are much better in 2018 and captured by more
SAR parameters. This suggests that the detection of hard dough can only be performed in
dry years, but extended studies with more years are necessary to confirm this assumption.

Differences between wheat and barley are most apparent at the beginning of the
vegetation period, when barley is usually more dense and further developed. Therefore,
the first instead of the second breakpoint of most time series matches best with the entry
date of BBCH 31 (beginning of stem elongation). The reason might be the already higher
development of barley at this time with already higher biomass, LAI and plant height.
Consequently, the contribution of soil to the signal is lower than that of vegetation for
barley, which is detected by all SAR parameters and NDVI. Furthermore, this is only the
case for fields of 2018, which are generally less developed compared to 2017. In 2017, barley
plants might be already that dense at the time of the beginning of stem elongation, that no
explicit change is detected by the parameters. Furthermore, the ripening stage (BBCH 87,
hard dough) and the harvest (BBCH 99) is more prominent in barley fields.

There are some reasons why an extreme event like harvest is not clearly detectable
by time series of SAR parameters and NDVI, particularly for wheat. One reason is the
smoothing of the time series, that eliminates extreme breaks in the curve. Some fields
indeed indicate a drastic change of the curve around harvest, which is not visible anymore
after smoothing. Another reason is the condition of the field after harvest, which was also
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found by Shang et al. [33]. Whereas some fields are completely cleared and ploughed and
the signal of the bare soil is influenced by soil moisture, some crop residues in different
heights and densities are left on other fields (Figure 3). These different post-harvest
characteristics complicate the detection of stable time series features to detect harvest
events. Regarding the NDVI, the index indicates photosynthetic activity of plants, which is
already very low at the end of the ripening stage and therefore does not necessarily result
in drastic differences before and after harvest. However, the fourth breakpoint of multiple
SAR parameters is often located between BBCH 87 (hard dough) and BBCH 99 (harvest)
(Figures 5 and 6). Similarly to Schlund and Erasmi [30], who also used the last breakpoint
to detect harvest, this breakpoint can be an indicator for a near harvest event. For future
analyses, the explicit harvest dates of each field can be requested by farmers. In contrast
to other phenological entry dates, harvest dates are easy to track and the information is
usually available at field level.

5.2. Uncertainties and Outlook

Although some mean and median differences in days between reported entry dates
of BBCH stages and the corresponding feature of the time series are with less than six
days lower than the temporal resolution of Sentinel-1 and Sentinel-2, these numbers are
still dependent on the concrete acquisition dates of both sensors. The NDVI performs
comparably to SAR parameters, but some disadvantages become apparent. Most evident
is the lack of an adequate number of images in 2017. Consequently, it was not possible
to smooth the time series and to calculate meaningful breakpoints in this year. However,
a global maximum of NDVI is visible around the time of the beginning of heading in
both years, but particularly in 2017, the date of this maximum is highly dependent on the
acquisition date of Sentinel-2. The irregular availability of Sentinel-2 images in general is a
further problem that might prevent the comparability of the findings of this study to other
years with a different distribution of suitable images.

Additionally, the smoothing algorithm and particularly the degree of the polynomial
regression and the chosen span value, which defines the degree of smoothing, influence the
results because the degree of smoothing decisively determines the occurrence and location
of local extrema and breakpoints. Particularly, local extrema that do not differ remarkably
from their neighboring values might not indicate significant phenological changes and
might be not detected by studies using different smoothing algorithms with varying
parameters. Additionally, it might be advantageous in future analyses to separate between
significant and non-significant local extrema as it was already done by Léw et al. [31] and
Meroni et al. [34].

In this study, the detection of phenological stages is analyzed retrospectively for
complete vegetation periods. However, farmers might be more interested in having current
information about the development of their fields to have the chance to react accordingly;,
for example, with adapted fertilizing or irrigation strategies. The knowledge about the
general temporal behavior of wheat and barley enables to explicitly look for local extrema,
exemplary during the time of the expected beginning of heading (BBCH 51). Furthermore,
the local maximum of VH backscatter could be used to detect the beginning of stem
elongation, which takes place a few days later (Figures 5 and 6). A local maximum of
VV and VH backscatter of barley is also detected a few days before hard dough (BBCH
87) and indicates ripening (Figure 6D,E). It is more challenging to calculate breakpoints
for incomplete time series. The calculation of breakpoints needs a specific number of
observations, therefore the time at which a breakpoint can be clearly identified might
be already too late for the farmer. Considering the temporal resolution of six days of
Sentinel-1, the identification of a breakpoint can only take place at least two or three
observation afterwards, which would be at least around two weeks later. Additionally, the
revisit frequency of six days only accounts for Europe and is even lower in other parts of
the world.
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Another problem of breakpoints are their varying number between fields. In this study,
breakpoints are numbered in the order in which they appear. However, as soon as a field has
an additional breakpoint at the beginning of the vegetation period or lacks of a breakpoint,
the numbering is confused and the transferability between fields is complicated. In this
case, the first breakpoint instead of the second one would best detect the beginning of stem
elongation, but is not considered in this study. This also explains some outliers, which result
from a wrong breakpoint numbering. In future analyses, breakpoints could be explicitly
searched in a known time period and unexceptional breakpoints could be ignored.

There are some further uncertainties that might influence the results of this study.
A great advantage of the DWD phenology data is their free availability as well as the nu-
merous phenology stations, often offering complete time series of up to 30 years. However,
in most cases only one field per phenology station is observed, consequently the analyses
of this study are dependent on the report of the entry dates of at most four fields in the
best case. These fields are located a few kilometers outside of the test sites and might have
slightly differing conditions. Although the selected stations are filtered beforehand by
using own phenological observations of single fields of the test sites, and although the
mean difference to all phenological stations is considered in this study, some entry dates of
the selected phenological stations differ remarkably, which worse the results. Furthermore,
the entry dates of a BBCH stage are already reported as soon as half of the field or half of
the plants show a specific behavior. In consequence, SAR parameters and NDVI might
react a few days later to a specific change, for instance as soon as the whole field underwent
this change.

In the future, the detection of within-field heterogeneity of the phenological develop-
ment would be advantageous to enable a site-specific management for farmers. However,
previous studies found the challenge of SAR data to detect differences of biophysical
parameters like biomass, LAI or plant height within a field, mainly caused by geometric
inaccuracies [16,17]. Furthermore, the next step is to perform the detection of phenological
entry dates for larger regions and for further years, exemplary for complete federal states
like Mecklenburg-West Pomerania.

6. Conclusions

This study confirms that time series features of different SAR parameters as well as
NDVI are sensitive to phenological changes and therefore can detect phenological entry
dates with different accuracies and transferabilites between years and test sites. The
beginning of stem elongation (BBCH 31) of wheat and barley is successfully detected by
the first (barley), respectively, the second (wheat) breakpoints and a local maximum of VH
backscatter with an accuracy often lower than 9 days. Local minima of anisotropy, VH
and VV backscatter as well as local maxima of alpha, entropy, VH/VV and NDVI even
better detect the beginning of stem elongation (BBCH 51) for both crop types, whereas VH
and VV backscatter show lowest differences of less than 5 days between entry date and
minimum for both crop types. The medium milk stage (BBCH 75) cannot be detected with
a high degree of certainty and only for 2017. The hard dough stage (BBCH 87) can only
be detected in the very dry and hot year 2018 with differences of often less then 5 days by
the fourth breakpoint as well as by local extrema of different polarimetric and backscatter
parameters. Multiple reasons such as varying field conditions after harvesting as well as the
smoothing of the time series complicate the detection of the harvest dates. Harvest cannot
be detected for wheat, but with a high accuracy for barley using the fourth breakpoint
of polarimetric parameters, VH/VV and VH backscatter as well as a local minimum of
VV backscatter.

Differences between test sites and years are mainly caused by varying meteorological
conditions, whereas some BBCH stages can only be detected in a rather wet year (BBCH 75),
while other BBCH stages can only be detected in very dry years like 2018 (BBCH 87).
The variability between years is higher than between test sites, therefore the method is
transferable to different test sites as well. For future analyses, the incorporation of further
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years as well as of test sites from different regions is suggested to verify the transferability of
the method. Backscatter parameters, polarimetric parameters and NDVI complement each
other because of their different reactions to phenological changes. However, NDVI time
series are restricted to years with a sufficiently high data basis, therefore the transferability
between years is questionable in this case because of irregular acquisition dates. The use
of dense SAR time series is thus recommendable. In the future, it is aimed to realize a
real-time application that can be used by farmers to adapt their management strategies
according to the current plant development.
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