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Abstract: Mangroves are grown in intertidal zones along tropical and subtropical climate areas,
which have many benefits for humans and ecosystems. The knowledge of mangrove conditions is
essential to know the statuses of mangroves. Recently, satellite imagery has been widely used to
generate mangrove and degradation mapping. Sentinel-2 is a volume of free satellite image data
that has a temporal resolution of 5 days. When Hurricane Irma hit the southwest Florida coastal
zone in 2017, it caused mangrove degradation. The relationship of satellite images between pre and
post-hurricane events can provide a deeper understanding of the degraded mangrove areas that were
affected by Hurricane Irma. This study proposed an MDPrePost-Net that considers images before
and after hurricanes to classify non-mangrove, intact/healthy mangroves, and degraded mangroves
classes affected by Hurricane Irma in southwest Florida using Sentinel-2 data. MDPrePost-Net
is an end-to-end fully convolutional network (FCN) that consists of two main sub-models. The
first sub-model is a pre-post deep feature extractor used to extract the spatial–spectral–temporal
relationship between the pre, post, and mangrove conditions after the hurricane from the satellite
images and the second sub-model is an FCN classifier as the classification part from extracted spatial–
spectral–temporal deep features. Experimental results show that the accuracy and Intersection over
Union (IoU) score by the proposed MDPrePost-Net for degraded mangrove are 98.25% and 96.82%,
respectively. Based on the experimental results, MDPrePost-Net outperforms the state-of-the-art
FCN models (e.g., U-Net, LinkNet, FPN, and FC-DenseNet) in terms of accuracy metrics. In addition,
this study found that 26.64% (41,008.66 Ha) of the mangrove area was degraded due to Hurricane
Irma along the southwest Florida coastal zone and the other 73.36% (112,924.70 Ha) mangrove area
remained intact.

Keywords: fully convolutional network; convolutional long short-term memory (ConvLSTM);
mangroves degradation; Hurricane Irma; Sentinel-2

1. Introduction

Mangroves are recognized as unique forms of vegetation in subtropical and tropical
coastal zones in 118 countries and territories [1]. Mangrove vegetation provides many
benefits for humans and surrounding ecosystems. For example, they provide carbon
storage vegetation [2], coastal protection vegetation [3], breeding grounds [4], biodiversity
conservation [4], and commercial vegetation [5]. Research revealed that 35% and 2.1% of
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the global distribution of mangroves vanished during 1980–2000 [6] and 2000–2016 [7],
respectively; also, the annual rate of mangrove loss was 0.26%–0.66% from 2000 to 2012 [8].
Because mangrove wetlands are among the few ecosystems with a large capacity for carbon
storage, their mapping is essential.

The causes of mangrove loss can be both natural and anthropogenic. Human activ-
ities such as aquaculture, agriculture, hydrological pollution, port development, timber
extraction, and urban development are some human causes of mangrove forest loss [9–11].
Extreme climate events [10], sea-level rise [12], and hurricanes [13] are some of the natural
disasters that provoke mangrove forest loss. A principal factor behind biodiversity loss
is ecosystem degradation [14]. Degradation can be defined as decreases in ecosystem
composition, the provision of ecosystem services, productivity, and in vegetation canopy
cover, which can all fundamentally alter an ecosystem [15–18]. Hurricanes are also among
natural events that have substantially contributed to mangrove degradation [13,19]. In
September 2017, southwest Florida was hit by one such storm, classed as a Category 3 hur-
ricane, named Hurricane Irma [20]. Studies have reported on the Hurricane Irma–induced
mangrove degradation in southwest Florida [20–22].

The mapping of mangrove degradation caused by Hurricane Irma is essential for
understanding the status of mangroves at an affected area. The greatest challenge of
mangrove mapping is to deal with the marred condition of mangrove forests and their
wide distribution within a location. Remote sensing satellite imagery is advantageous
because of a large observation scale and time-series data. Thus, it has been widely applied to
mangrove mapping using traditional extraction methods or machine learning classification
methods like pixel-based classification and object-based classification. The large scale of
remote sensing data can be used to deal with the wide distribution of mangrove areas.
By using remote sensing data, researchers were able to map mangroves without directly
visiting all the mangrove areas. The remote sensing data also provide multispectral bands
that can be used to get more information about the characteristics of mangrove objects. The
combination of machine learning or deep learning with remote sensing data can increase
effectiveness and reduce cost more efficiently than manual digitation techniques.

In recent years, several algorithms have been proposed for mangrove mapping. For
example, Kamal et al. used an object-based algorithm for multiscale mangrove composi-
tion mapping and achieved overall accuracies around 82–94% [23]. Diniz et al. used the
random forest (RF) algorithm for mangrove mapping in the Brazilian coastal zone over a
period of three decades and achieved overall accuracies around 80–87% [24]. Moreover,
Mondal et al. evaluated the accuracy of RF and classification and regression tree (CART)
algorithms for mangrove mapping in South Africa and achieved an overall accuracy of RF
and CART around 93.44% and 92.18%, respectively [25]. Chen also used the RF algorithm
for mangrove mapping in Dongzhaigang, China, with Sentinel-2 imagery and achieved
an overall accuracy of 90.47% [26]. Furthermore, some algorithms have been used for
mangrove degradation mapping. For example, Lee et al. applied the RF algorithm as
an ecological conceptual model for mapping mangrove degradation in Rakhine State,
Myanmar (mangrove degradation mostly caused by anthropogenic disturbances) and
Shark River in southwest Florida (mangrove degradation caused by Hurricane). The user’s
accuracy rates of the model in classifying degraded mangroves in Myanmar and Shark
River were 69.3% and 73.9%, respectively [22]. McCarthy et al. applied decision tree (DT),
neural network (NN), and support vector machine (SVM) classifiers for mapping man-
grove degradation in areas affected by Hurricane Irma by using high-resolution satellite
imagery. They reported that the user’s accuracy rates for the DT classifier in classifying
degraded mangroves were 62% and 56%, 75% for the NN classifier, and 59% for the SVM
classifier [20,21]. Although the above studies can obtain sufficient user’s accuracy rates on
mangrove degradation mapping using specific algorithms, the accuracy can be improved
with more appropriate techniques.

Recently, deep learning (DL) has been extensively applied to remote sensing satellite
imagery [27–29]. As an important derivative of machine learning with multiple processing
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layers, it can increase model performance and precision [30]. There are three sorts of DL
algorithms for assessing satellite imagery, i.e., patch-based convolutional neural network
(CNN), semantic segmentation or Fully Convolutional Network (FCN), and object detection
algorithms [27,29]. Patch-based CNN and FCN algorithms have been used for mangrove
classification using satellite imagery [31–33]. Hosseiny, et al. have proposed a spatio–
temporal patch-based CNN, called WetNet, for wetland classification by using the LSTM
layer in one of their architectures [34]. In 2014, a study introduced a fully convolutional
network (FCN) that uses an encoder for feature extraction and a decoder to restore the
input resolution by using deconvolutional or upsampling layers [35]. FCN has been widely
used for pixel-based classification [29]. FCN uses an encoder for feature extraction and
a decoder to restore the input resolution by deconvolutional or upsampling layers. A
study reported that an FCN algorithm applied with Landsat imagery produced favorable
results in mangrove mapping in large-scale areas [31]. An FCN algorithm is a pixel-based
classification method, and such algorithms have been improved with advancements in
CNN systems (e.g., AlexNet [36], VGG [37], ResNet [38], and DenseNet [39]) [29]. State-of-
the-art FCN algorithms (e.g., U-Net [40], LinkNet [41], Me-Net [32], FC-DenseNet [42], and
feature pyramid Net [43]) have recently drawn attention.

As above mentioned, a hurricane is one of the natural hazards that caused mangrove
degradation in affected areas. This motivated us to exploit the relationship of satellite
images between pre and post-hurricane events to better know the degraded mangrove
area that was affected by Hurricane Irma. Thus, in this study, an end-to-end spatial-
spectral-temporal FCN framework referred to as MDPrePost-Net is proposed to improve
the classification accuracy of mangrove mapping. MDPrePost-Net consists of two main sub-
models, a pre-post deep feature extractor, and an FCN classifier. Abundant previous studies
have successfully applied convolutional LSTM (ConvLSTM) and FCN in remote sensing
works, such as precipitation nowcasting [44], analyzing various types of input images for
Side-Looking Airborne Radar (SLAR) imagery [45], and video frame sequences [46,47].
Therefore, in this study, the ConvLSTM is mainly used to extract spatial–spectral–temporal
relationships from pre and post image data in the proposed MDPrePost-Net.

Sentinel-2 is a freely available passive remote sensing system that covers the entire
planet and has 13 bands with different spatial resolutions (10, 20, and 60 m). Many studies
have successfully applied machine learning and deep learning algorithms on Sentinel-2 for
mangrove mapping [25,26,32]. Therefore, the proposed MDPrePost-Net uses Sentinel-2
imagery before and after the hurricane as the input data. Moreover, some spectral indices
are also used in this study to improve model performance. In summary, this study has
two aims: (1) to propose an end-to-end fully convolutional network that considers satellite
imagery before and after hurricanes for mangrove degradation classification, referred to as
MDPrePost-Net; (2) to use the MDPrePost-Net to draw a mangrove degradation map of
the southwest Florida coastal zone affected by Hurricane Irma.

The rest of this paper is organized as follows: the materials and methods are discussed
in Section 2. The results for mangrove degradation mapping from MDPrePost-Net in
southwest Florida are discussed in Section 3. The discussion of our research is discussed in
Section 4. Finally, in Section 5, the conclusions are drawn.

2. Materials and Methods

The work stages in this study are divided into data processing, classification pro-
cessing, accuracy assessment, and mapping process, as shown in Figure 1. The data
processing included collecting and correcting Sentinel-2 images from TOA to BOA surface
reflectance, making spectral indices and combining with the original bands, making vi-
sually interpreted labels, and collecting reference samples for map accuracy assessments.
The classification processing includes splitting the input data into training, validation, and
testing data and classification training process. In the classification training processes,
we proposed MDPrePost-Net and trained it using input data (Section 2.5). The accuracy
assessment was divided into two parts, the first is to calculate algorithm output accuracy
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by using the testing data (Section 2.6) and the second one is to calculate map accuracy
by using collected reference samples (Section 2.7). The final stage is to extrapolate our
proposed model to the whole study area and produce the final map of intact and degraded
mangrove forests.
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Figure 1. Flowchart of all work stages for data processing (orange box), classification process (blue box), accuracy
assessments (green box), and map processing (purple box).

2.1. Study Area

We selected the coastal zones in southwest Florida, including the Everglades National
Park and Rookery Bay National Estuarine Research Reserve (NERR), as shown in Figure 2.
In this study area, there are only three mangrove species, namely Rhizophora mangle,
Avicennia germinans, and Laguncularia racemosa [48], which are dominated by lagoonal, open
coast, and estuarine mangroves [49]. Hurricane Irma in a Category-3 storm traversed this
area in September 2017 and severely degraded the local mangrove ecosystem.

We selected seven areas of interest (AOIs) in the whole study area to formulate the
input dataset of our model, as indicated by the purple and yellow boxes in Figure 1; the
four AOIs in the purple box comprise intact/healthy mangroves, degraded mangroves,
and non-mangrove areas, and those in the yellow box comprise non-mangrove areas
(e.g., urban, waterbody, vegetation non-mangrove, and bare land). The total acreage of the
study area was 1,211,312.53 Ha, and the total acreage of the 7 AOIs was 140,073.95 Ha.



Remote Sens. 2021, 13, 5042 5 of 25Remote Sens. 2021, 13, x FOR PEER REVIEW 5 of 27 
 

 

 
Figure 2. Whole study area in the southwest Florida coastal zone and Hurricane Irma track. 

We selected seven areas of interest (AOIs) in the whole study area to formulate the 
input dataset of our model, as indicated by the purple and yellow boxes in Figure 1; the 
four AOIs in the purple box comprise intact/healthy mangroves, degraded mangroves, 
and non-mangrove areas, and those in the yellow box comprise non-mangrove areas (e.g., 
urban, waterbody, vegetation non-mangrove, and bare land). The total acreage of the 
study area was 1,211,312.53 Ha, and the total acreage of the 7 AOIs was 140,073.95 Ha. 

2.2. Sentinel-2 Pre-Processing 
Sentinel-2 provides freely available satellite image data, courtesy of the European 

Space Agency (ESA). The characteristics of Sentinel-2 images are demonstrated in Table 
1. Sentinel-2 has 13 bands: 4 bands with a 10-m spatial resolution, 6 with a 20-m spatial 
resolution, and 3 with a 60-m spatial resolution. We downloaded all Sentinel-2 images 
from the Sentinel Scientific Data Hub (https://scihub.copernicus.eu/dhus/, accessed on 1 
December 2021). We selected Level-1C images (Top-of-Atmosphere (TOA) product with 
radiometric and geometric correction on a global reference system) with the lowest cloud 
cover in the downloading steps. Because Level-1C is a TOA product, we used sen2cor 
software (provided by the ESA) to correct the Level-1C images into Level-2A images (or-
thoimage Bottom-Of-Atmosphere (BOA) corrected reflectance product). After receiving 
the Sentinel-2 level-2A products, we resampled the SWIR-1 and SWIR-2 data to a 10-m 
spatial resolution to ensure a uniform spatial resolution in our entire dataset.  

  

Figure 2. Whole study area in the southwest Florida coastal zone and Hurricane Irma track.

2.2. Sentinel-2 Pre-Processing

Sentinel-2 provides freely available satellite image data, courtesy of the European
Space Agency (ESA). The characteristics of Sentinel-2 images are demonstrated in Table 1.
Sentinel-2 has 13 bands: 4 bands with a 10-m spatial resolution, 6 with a 20-m spatial
resolution, and 3 with a 60-m spatial resolution. We downloaded all Sentinel-2 images
from the Sentinel Scientific Data Hub (https://scihub.copernicus.eu/dhus/, accessed on
1 December 2021). We selected Level-1C images (Top-of-Atmosphere (TOA) product with
radiometric and geometric correction on a global reference system) with the lowest cloud
cover in the downloading steps. Because Level-1C is a TOA product, we used sen2cor
software (provided by the ESA) to correct the Level-1C images into Level-2A images
(orthoimage Bottom-Of-Atmosphere (BOA) corrected reflectance product). After receiving
the Sentinel-2 level-2A products, we resampled the SWIR-1 and SWIR-2 data to a 10-m
spatial resolution to ensure a uniform spatial resolution in our entire dataset.

Regarding the input bands for the training model, we used the original bands from
Sentinel-2 data as well as bands derived using spectral indices from previous research on
mangrove mapping [24,25,31,32]. Spectral indices are generally mathematical formulas
used to evaluate remote sensing image bands to enhance the spectral separability of the
objects of interest. We calculated four spectral indices, namely the normalized difference
vegetation index (NDVI) [50], combined mangrove recognition index (CMRI) [51], normal-
ized difference mangrove index (NDMI) [52], and modular mangrove recognition index
(MMRI) [24] (Table 2). These indices can contribute to the determination of mangrove and
non-mangrove objects based on previous results. The NDVI is commonly used to evaluate
various vegetation objects, including mangrove objects, in remote sensing [24,25,32]. The
CMRI is derived by evaluating the differences between NDVI values and normalized dif-

https://scihub.copernicus.eu/dhus/
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ference water index (NDWI) values [53] to separate mangrove from non-mangrove objects
and thus enhance the visibility of mangrove objects in the output result. The NDMI was
designed to enhance the separability between mangrove and other vegetation types using
the normalization difference between the Green and SWIR-2 bands that are associated with
the characteristics of mangrove objects in satellite imagery. The MMRI was designed to
enhance the contrast level between mangrove and non-mangrove objects and thus enable
a swifter identification of mangrove objects. The MMRI is a combination of the NDVI
and modified NDWI (MNDWI) [54]. A total of 10 input bands were used in this study
(Blue, Green, Red, NIR, SWIR-1, SWIR-2, NDVI, CMRI, NDMI, and MMRI; Figure 3). The
spectral indices were included in the band selection process to improve the classification
performance, as discussed in Section 3.2.

Table 1. Characteristics of Sentinel-2 image.

Band Band Name Central Wavelength (nm) Spatial Resolution

B1 Aerosols 442.3 60
B2 Blue 492.1 10
B3 Green 559 10
B4 Red 665 10
B5 Red Edge 1 703.8 20
B6 Red Edge 2 739.1 20
B7 Red Edge 3 779.7 20
B8 Near Infrared (NIR) 833 10

B8A Red Edge 4 864 20
B9 Water-vapor 943.2 60
B10 Cirrus 1376.9 60
B11 Shortwave Infrared (SWIR1) 1610.4 20
B12 Shortwave Infrared (SWIR2) 2185.7 20

Table 2. Spectral indices formula.

Spectral Index Formula Reference

NDVI (NIR − Red)/(Nir + Red) [50]
NDWI (Green − NIR)/(Green + NIR) [53]
CMRI (NDVI − NDWI) [51]
NDMI (SWIR2 − Green)/(SWIR2 + Green) [52]

MNDWI (Green − SWIR1)/(Green + SWIR2) [54]
MMRI (|MNDWI| − |NDVI|)/(|MNDWI| + |NDVI|) [24]

2.3. Input Data for Model

Our proposed MDPrePost-Net is a type of supervised classification that uses the
visually interpreted or labeled image data as the target data. The input data were divided
into spectral input bands from Sentinel-2 and target data. A total of four scenes of Sentinel-2
data were used for the entire study area. Therefore, eight scenes were used in this study:
four scenes captured pre or before Hurricane Irma (from December 2016 to February 2017)
and four scenes captured post or after Hurricane Irma (from November 2017 to March
2018) (Table 3).

We obtained the target data by ourselves. Previous studies on mangrove mapping
using semantic segmentation used manually marked labels based on visual interpretations
as visually interpreted labels [32] and used machine learning methods (RF and SVM)
to classify images, then used GIS tool used in postprocessing misclassification to obtain
satisfactory visually interpreted labels [31]. In the present study, we combined the meth-
ods of the two aforementioned studies to obtain our visually interpreted label data by
comparing the images captured before and after the hurricane. We divided the visually
interpreted labels into three classes: (1) intact mangroves, comprising mangrove objects
that remained intact in the images captured before and after the hurricane; (2) degraded
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mangroves, comprising mangrove objects that remained intact in the images captured
before the event hurricane but were degraded in the images captured after the hurricane;
and (3) non-mangrove areas, comprising all objects not included in the mangrove objects
(e.g., buildings, non-mangrove vegetation, bare land, and water bodies; Table 4).

Table 3. Sentinel-2 imagery for this study.

Image (Scene Code) Date Acquired (yyyy/mm/dd)

Before Hurricane Irma:
Sentinel-2A (T17RMJ) 2016/12/30
Sentinel-2A (T17RNJ) 2017/1/6

Sentinel-2A (T17RMH) 2017/2/15
Sentinel-2A (T17RNH) 2017/2/15

After Hurricane Irma:
Sentinel-2A (T17RMJ) 2017/11/25
Sentinel-2B (T17RNJ) 2018/1/16

Sentinel-2B (T17RMH) 2018/1/16
Sentinel-2A (T17RNH) 2018/3/22
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Table 4. Three classes of visually-interpreted labels.

Classes Image before Event Image after Event

Non-Mangrove
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We divided the labeling process into four steps to obtain three classes of labeled data
(Figure 4). In the first step, we manually delineated non-mangrove and mangrove objects
by using the Sentinel-2 images captured before the hurricane; thus, we obtained labeled
images of non-mangrove and mangrove areas. In the second step, we visually interpreted
sample points and applied the RF algorithm based on the sample points to classify the
non-mangrove and mangrove objects in the Sentinel-2 image captured before the hurricane.
In the third step, we combined the manually delineated images of non-mangrove and
mangrove areas with the classified images obtained using the RF algorithm to correct
for any misclassification and obtain satisfactory images with labeled non-mangrove and
mangrove areas. In the fourth step, we determined the classes of intact mangroves and
degraded mangroves through manual delineation to obtain the visually interpreted labels
for degraded mangrove objects based on the mangrove-labeled and Sentinel-2 images after
the hurricane.

All seven AOI images including the 10 input bands and visually interpreted labels
were first cropped to 64 × 64 sizes using a 32 pixel-step patchify library. A small patch
was used to capture the spatial feature information of the mangrove objects more pre-
cisely and more easily feed the data into the model. The data set contained a total of
14,272 small patched images (64 × 64), and 70% (9990 images) of the data were used
for model training, 15% were used for training model validation (2141 images), and the
remaining 15% were used for data testing (2141 images). We used the validation data to
perform the early stopping function for the model and used the testing data to calculate
the model performance metrics for accuracy assessment. The total number of pixels of
each class is shown in Table 5. The non-mangrove class has a higher total number of pixels
due to the non-mangrove class being a background class that has some landcover types
(e.g., water bodies, vegetation non-mangrove, urban area, open area, etc.), while the intact
and degraded mangrove classes have a similar total number of pixels.
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Table 5. Total number of pixels for each class in training, validation, and testing dataset.

Class/Data Training Data Validation Data Testing Data

Non-Mangrove 35,452,388 7,672,797 7,668,533
Intact Mangrove 2,575,944 525,356 523,906

Degraded Mangrove 2,890,708 571,383 577,097

2.4. Reference Samples for Map Accuracy in Whole Study Area

The second goal of this study was to map mangrove degradation caused by Hurricane
Irma along the coastal zone of southwest Florida or in the entire study area. We extrapolated
the seven AOIs to the entire study area and produced a mangrove degradation map for the
coastal zone of southwest Florida. We used stratified random sampling around the coastal
zone to obtain reference samples for calculating the accuracy of the mangrove degradation
map. Sentinel-2 and high-resolution images sourced from Google Earth before and after
the hurricane were used to obtain validation point samples. A total of 1500 reference points
were obtained along the coastal zone of southwest Florida: 500 reference points for the
non-mangrove class, 500 reference points for the intact mangrove class, and 500 points for
the degraded mangrove class (Figure 5).
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2.5. MDPrePost-Net Architecture

This section will introduce the proposed MDPrePost-Net in detail. The proposed
framework of MDPrePost-Net considers the mangrove conditions before and after Hurri-
cane Irma simultaneously because the correlation between pre and post satellite images are
salient features to determine the degraded mangrove affected by Hurricane Irma. Generally,
the proposed MDPrePost-Net consists of two sub-models as shown in Figure 6, a pre-post
deep feature extractor, and an FCN classifier. The pre-post deep feature extractor consists of
two sub-feature extractors: the ConvLSTM feature extractor and the post feature extractor.
The features extracted by the pre-post deep feature extractor are concatenated and fed into
the FCN classifier model to obtain the final mangrove degradation map (non-mangrove,
intact mangrove, and degraded mangrove classes). The details about sub-models in the
proposed MDPrePost-Net is introduced in Sections 2.5.1 and 2.5.2.
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2.5.1. Pre-Post Deep Feature Extractor

In the proposed MDPrePost-Net, the pre-post deep feature extractor is used to extract
salient features for the subsequent FCN classifier. The pre-post deep feature extractor
consists of two sub-feature extractors, the first one is the ConvLSTM feature extractor used
to extract spatial-spectral-temporal correlations between pre and post satellite imageries of
Hurricane Irma. The other one is the post extractor used to extract spatial–spectral satellite
imagery of the mangrove’s condition after Hurricane Irma. Then, the features obtained by
ConvLSTM and the post extractor are concatenated as spatial–spectral–temporal features
that can improve the performance of the subsequent FCN classifier and mangrove mapping
in the area affected by Hurricane Irma. The reason why we use two sub-feature extractors
in the pre-post deep feature extractor is that, although ConvLSTM extractor can exploit the
spatial–spectral–temporal correlation of pre and post satellite images, the post extractor
can help to improve the spatial–spectral information in terms of the mangrove’s condition
after the hurricane.

The first extractor in the pre-post deep feature extractor is a spatial–spectral–temporal
feature extractor based on ConvLSTM which is an extended version of the LSTM layer.
The LSTM layer only considers the temporal correlation without paying attention to
spatial information. To overcome this LSTM drawback, input-to-state and state-to-state
transitions are performed using convolutional structures in the ConvLSTM layer. The
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input of ConvLSTM is 5D tensor which can be denoted as Xn × T × R × C × D, where
the input images are denoted as Xn, time or sequences as T, rows and columns as R × C,
and dimensions or channels as D. We use pre and post satellite imagery as the temporal or
sequences image data with T is 2, R × C is 64 × 64, and D is 10 channels.

In ConvLSTM, the inner structure consists of X1, . . . , Xt as the inputs, C1, . . . , Ct as
the cell outputs, H1, . . . , Ht as the hidden states, and it, ft, ot as the gates of the ConvLSTM
are 3D tensors. Equation (1) shown the key equation of ConvLSTM with ‘∗’ denotes the
convolutional operator and ‘◦’ denotes the Hadamard product [44].

ConvLSTM =
it = σ(Wxixt + Whiht−1 + Wci ◦ ct−1 + bi)

ft = σ
(

Wx f xt + Wh f ht−1 + Wc f ◦ ct−1 + b f

)
ct = ft ◦ ct−1 + it ◦ tanh( Wxcxt + Whcht−1 + bc)
ot = σ(Wxoxt + Whoht−1 + Wco ◦ ct−1 + bo)
ht = ot ◦ tanh(ct)

(1)

In this ConvLSTM extractor, we use 2D kernels of size U × V is 3 × 3 and 32 filters
map for the ConvLSTM layer. The obtained feature from ConvLSTM feature extractor is a
spatial-spectral-temporal 4D tensor. Therefore, the 4D tensor obtained by the ConvLSTM
feature extractor can be formulated as follows:

X f m,ConvLSTM,3,32(T, R, C, D) = {Xn(64, 64, 32)} (2)

where X f m,ConvLSTM,n, f is the ConvLSTM feature map with n representing the kernel size
and f representing the total filter.

The second feature extractor in the pre-post deep feature extractor is the spatial–
spectral extractor of the mangrove’s condition after Hurricane Irma, referred to as post ex-
tractor. This post extractor implements inception modules from the inception network [55]
as the convolutional network to get detailed information of the mangrove’s condition after
the hurricane using post images data. The advantages of the inception module are that it
can overcome overfitting and computational cost problems by using a 1 × 1 convolutional
layer at the first stage before 3 × 3 and 5 × 5 convolution layers. This inception module
uses three parallel 1 × 1 convolutional layers and one 3 × 3 maxpooling layer at the
first stage. One 1 × 1 convolutional layer is directly fed into concatenation in the first
stage. The second stage is the other two 1 × 1 convolutional layers being fed into 3 × 3
and 5 × 5 convolutional layers before concatenation, and the output of maxpooling layer
fed into 1 × 1 convolutional layer. Each 2D convolutional in the inception module was
followed by ReLU and batch normalization. The final output of the inception module is
the concatenation layer that concatenates the output feature maps from the second stage
and 1 × 1 convolutional from the first stage. We used two consecutive inception modules
with dimension reductions. The input data for the post extractor are post images data with
a size of R × C × D10. The final output of the two inception modules with a dimension
reduction can be formulated as follows:

X f m,Im(R× C× D10) = Im1 + Im2

Im = S
{[

X1
f m,1, X2

f m,1, X2
f m,3, X2

f m,5

]} (3)

where X f m is the 2D convolutional feature map, Im is the inception module, S is the
concatenation layer, and Xy

f m,n is the 2D convolutional feature map with y representing the
stage in the inception module and n representing the kernel size of the 2D convolutional.

Generally, the aim of the pre-post deep feature extractor is to perform spatial–spectral–
temporal analysis from pre and post images by using ConvLSTM. In addition, since
timeliness is vital for the disaster-related research, with the aid of the post image features,
more spatial–spectral information of the mangrove’s condition after the hurricane are
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obtained to improve the effectiveness of the pre-post deep feature extractor. The final
output of the deep feature extractor is the concatenation layer that the concatenated output
features from the ConvLSTM feature extractor and post feature extractor. Equation (4)
shows the formula of the concatenation output feature map from this sub-model denoted
as X f m,sm.

X f m,sm = S
{[

X f m,convLSTM, X f m,Im

]}
(4)

2.5.2. FCN Classifier

The second sub-model in the proposed MDPrePost-Net is FCN architecture for the
final classifier. This sub-model consists of encoder and decoder components. We adopted
U-Net architecture for this sub-model. The skip connection with the concatenation layer
between each block of encoder and decoder was used in this sub-model, as shown in
Equation (5).

X f m,sc = S
{[

X f m,ec,i , X f m,dc, i

]}
(5)

where X f m,sc represents skip connection, X f m,ec,i represents each encoder block, and
X f m,dc, i represents each decoder block.

We adopted VGG-16 architecture to construct the encoder part by removing two fully
connected layers and SoftMax from VGG-16 architecture. The concatenated feature maps
from the previous pre-post deep feature extractor are directly fed into the encoder part. The
first and second encoder blocks consist of two 2D convolutional layers with ReLU as the
activation function followed by the 2D maxpooling layer. The other three encoder blocks
consist of three 2D convolutional layers with ReLU as the activation function followed
by the 2D maxpooling layer. The bottom part of this sub-model after the encoder part
has a feature map size of 2 × 2 and consists of two 2D convolutionals followed by batch
normalization and ReLU. The decoder part uses the Upsampling2D layer to up-sample
the feature map. Each block of the decoder part consists of Upsampling2D followed by
two 2D convolutional layers followed by batch normalization and ReLU. The final 2D
convolutional layer uses 1 × 1 kernel size and SoftMax activation function as the classifier
layer. The SoftMax activation function represents a probability of each class between 0
and 1.

X f mo = σ
(

X f m,1,1

)
σ = ezi

∑K
j=1 ezj

(6)

where X f mo represents the final output map, σ represents the SoftMax function, X f m,1,1
represents the 2D convolutional with 1 × 1 kernel and 3 filters, ezi represents the standard
exponential function for the input vector, K represents the number of classes, and ezj

represents the standard exponential function for the output vector.

2.6. Algorithm Output Accuracy Assessments

We used a testing dataset (15% of the dataset) to calculate the algorithm output
assessments, also known as the model evaluation. We calculated three metrics for the
model evaluation: intersection over union (IoU) [56], overall accuracy (OA), and F1-score
(F1) [57] for three classes (non-mangroves, intact mangroves, and degraded mangroves).
IoU, also known as the Jaccard index, is widely used in semantic segmentation tasks [56].
IoU is the area of overlap between the visually interpreted labels and the predicted results
divided by the area of union between the visually interpreted labels and the predicted
results. Table 6 presents the formulas for the model evaluation metrics, where C, TP, TN,
FP, and FN represent class, true positive, true negative, false positive, and false negative.
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Table 6. Evaluation metrics for algorithm output assessments.

Model Evaluation Metrics Formula

IoU Score IoU = |Ground truth ∩ Predicted result|
|Ground truth ∪ Predicted result|

Overall Accuracy OA = ∑C
i=1 TPi

∑C
i=1 (TPi+FPi+TNi+FNi)

F1-Score F1 = 2×
∑C

i=1

((
TPi

TPi+FPi

)
×
(

TPi
TPi+FNi

))
∑C

i=1

((
TPi

TPi+FPi

)
+
(

TPi
TPi+FNi

))

2.7. Map Accuracy Assessments

We used reference samples (Section 2.4) that have been collected by visual interpreta-
tion to calculate the map accuracy in the entire study area. We used OA, the Kappa score
(K) [58,59], user’s accuracy (UA), and producer’s accuracy (PA) for the non-mangrove, in-
tact/healthy mangrove, and degraded mangrove classes. These four metrics are commonly
used to evaluate predicted mapping results against reference sample points. We used the
confusion matrix to calculate those four metrics (Table 7). The OA score was calculated
using the following Equation (1):

OA = (A + E + I)/Total Sample (7)

Table 7. Confusion matrix for map accuracy assessments.

Reference Data

Non-
Mangroves

Intact
Mangroves

Degraded
Mangroves Rows Total User’s

Accuracy Chance Agree

Pr
ed

ic
te

d
D

at
a

Non-
Mangroves A B C A+B+C A/Rows Total 1 Rows Total

1/Total Sample
Intact

Mangroves D E F D+E+F E/Rows Total 2 Rows Total
2/Total Sample

Degraded
Mangroves G H I G+H+I I/Rows Total 3 Rows Total

3/Total Sample
Columns total A+D+G B+E+H C+F+I Total Sample

Producer’s
Accuracy

A/Columns
Total 1

E/Columns
Total 2

I/Columns
Total 3 OA Kappa

Chance Agree Columns Total
1/Total Sample

Columns
Total 2/Total

Sample

Columns
Total 3/Total

Sample

Total Change
Agree

In the OA formula, A, E, and I are the corrected predicted data based on reference
samples. The other metric accuracy used to calculate the map accuracy is the Kappa score.
To calculate the Kappa score, we needed to change the agreed value that represents the
row and column total divided by the total sample for each row and column. The formula
for the Kappa score was calculated in the following Equation (2):

Kappa = (OA − total change agree)/(1 − total change agree) (8)

2.8. Implementation Details

The 10 bands (Blue, Green, Red, NIR, SWIR1, SWIR2, NDVI, CMRI, NDMI, and
MMRI) of the Sentinel-2 images captured pre and post-Hurricane Irma, along with the
visually interpreted labels, were first patched into 64 × 64 images and used as input data
for our DL model. To perform the early stopping function based on a validation loss with
the patience of 30 epochs, 70% of the input data were used for training and 15% were
used for validation. IoU and F1 were used for validation during training, and the sum of
categorical focal loss and dice loss was used to derive training loss during training. We
used Adam as the optimizer with the default parameter setting and a learning rate of 0.001,
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as recommended by an original Adam paper. The batch size was set to 64 for all the models.
We constructed the model using Tensorflow and Keras (https://www.tensorflow.org/api_
docs/python/tf/keras accessed on 1 December 2021) provided by Google in Python. The
Python code was executed on a Windows 10 platform with an Intel Core i9-11900K CPU,
NVIDIA GeForce RTX 3090 GPU, and 64 GB of RAM.

3. Results

This section presents the experimental results of the MDPrePost-Net (Section 3.1).
The comparison of the MDPrePost-Net results with existing FCN architecture is drawn
in Section 3.2. We investigated the effects of adding the NDVI, CMRI, NDMI, and MMRI
to the input data and found that added spectral indices improved the accuracy result
(Section 3.3). We extrapolated and applied the trained and proposed MDPrePost-Net to
produce an intact and degraded mangrove map in the entire study area and calculate the
map’s accuracy. Our map shows good Kappa, producer’s, user’s and overall accuracy
scores (Section 3.4).

3.1. MDPrePost-Net Results

MDPrePost-Net was trained using an early stopping schema to avoid overfitting,
signifying that the training process automatically stopped if the validation loss did not
improve further. The accuracy and loss curves from training and validation data from
MDPrePost-Net are shown in Figure 7. The training and validation loss decreased steadily,
and the training and validation IoU score and F1-Score increased steadily until the training
was completed (292 total epochs). This result shows that the MDPrePost-Net completely
learned the input and target data for three classes of mangrove degradation classification.
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The trained model of MDPrePost-Net was evaluated by using a testing dataset that
is different data from the input training data. The IoU score, F1-Score, and class accuracy
for non-mangrove, intact mangrove, and degraded mangrove classes are shown in Table 8.
Overall, the non-mangrove class achieved better accuracy than the intact and degraded
mangrove classes. This indicates that intact and degraded mangrove classes are harder
to classify than the non-mangrove class. However, the accuracy of intact and degraded
mangrove classes is also high (>95%). The IoU score of intact and degraded mangrove
classes is 96.47% and 96.82%, respectively. These results indicate the MDPrePost-Net
successfully identifies three classes of this study with high accuracy.

https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/keras
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Table 8. MDPrePost-Net IoU, F1-Score, class accuracy, and average accuracy from testing data (15% of
total data).

Accuracy Metrics Non-Mangrove Intact Mangrove Degraded Mangrove

IoU 99.82% 96.47% 96.82%
F1-Score 99.91% 98.21% 98.39%
Class Accuracy 99.91% 98.31% 98.25%

The effects of the various total numbers of input data are tabulated in Table 9. We
performed experiments by using 25%, 50%, 75%, and 100% of training data to demonstrate
the effects of the total number of input data on the accuracy and IoU score, respectively.
Based on the experimental results, the overall accuracy and IoU scores increase gradually
in line with the increase in the total number of input data. The mean IoU decreased by
9.11% if we just used 25% of training data, while the mean IoU decreased by 5.01% and
2.32% if we just used 50% and 75% of training data, respectively. This result indicates that
the total number of input data affects the accuracy scores. The fewer input data that are
used, the lower accuracy scores are obtained.

Table 9. Effects of the total number of input data on accuracy scores, the bold values indicate the best results. NM, Mg, and
DgMg stand for non-mangrove, intact mangrove, and degraded mangrove class, respectively.

Total Input Data Total Images (64 × 64) Overall Acc Mean IoU NM IoU Mg IoU DgMg IoU

25% of training data 2497 98.53% 88.59% 99.27% 82.76% 83.73%
50% of training data 4995 99.10% 92.69% 99.56% 88.84% 89.68%
75% of training data 7492 99.44% 95.38% 99.73% 92.95% 93.46%

All training data 9990 99.71% 97.70% 99.82% 96.47% 96.82%

To evaluate the effectiveness of each extractor part in the pre-post deep feature extrac-
tor, ablation studies were conducted. We removed certain parts in the first sub-model of
the MDPrePost-Net to understand the contribution of each extractor part to the overall
architecture based on the accuracy result. The classification results of removing the Con-
vLSTM extractor or the post extractor in the proposed model are shown in Table 10. The
average accuracy is the averaging of Mean IoU, OA F1-Score, and overall accuracy. The
results show that the ConvLSTM extractor part is the most important and effective part
of the spatial–spectral–temporal deep feature extraction sub-model. If we removed the
ConvLSTM extractor from the network, the average accuracy decreased by 1.13%, while
the mean IoU decreased by 2.05%. This finding indicates that the spatial–spectral–temporal
extracted feature from the ConvLSTM part, with pre-post data as the input, is an important
feature for mangrove degradation classification affected by Hurricane Irma.

Table 10. Analysis of each removed part in the spatial–spectral–temporal deep feature extraction sub-model, the bold values
indicate the best results. Mg and DgMg stand for intact mangrove and degraded mangrove class, respectively.

Architecture Mean IoU Average Accuracy Mg IoU DgMg IoU

MDPrePost-Net 97.70% 98.75% 96.47% 96.82%
No Post extractor 97.11% 98.43% 95.57% 95.97%

No ConvLSTM extractor 95.65% 97.62% 93.41% 93.85%

The mean IoU decreased by 0.6% if we removed the post extractor part and the IoU of
intact and degraded mangrove decreased by 0.85%~0.90%. The post extractor part is less
influential than the ConvLSTM part based on the accuracy metrics. However, adding the
post extractor part in the network increased the average accuracy and IoU for each class.
This result demonstrates the effectiveness of the two feature extractors in the proposed
MDPrePost-Net.
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3.2. Comparison with Existing Architecture

The classification result from the proposed model was compared with some well-
known FCN architecture, namely FC-DenseNet [42], U-Net [40], LinkNet [41], and FPN [43].
We used the same input data and same seed random number to train the existing FCN
architecture. Because the existing FCN architecture cannot handle time-series data, we
stacked the pre-post image data from (2 × R × C × D10) into (R × C × D20) and fed
the data to the existing FCN architecture. A visual comparison of a small part from the
MDPrePost result and some existing FCN architecture is presented in Figure 8. Based on
the visualization analysis, the proposed model achieved improved classification compared
to other existing FCN architecture. The classified map from MDPrePost-Net can clearly dis-
tinguish each class even if it has a little misclassification (non-mangrove, intact mangrove,
and degraded mangrove).
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FC-DenseNet103 with a growth rate (K) of 32 and U-Net architecture both demon-
strated good visualization results, but there exist some misclassified areas of degraded
mangrove classes at the top section. On LinkNet results, the top section can better classify
intact and degraded mangrove classes, but in the center until the bottom section, there
exist many misclassified areas. On FPN results, the classified map result is very general
and missing a lot of important details. In general, existing FCN architecture can clearly
distinguish non-mangrove and mangrove objects but there exist more misclassified results
in terms of intact or degraded mangroves classes when compared with MDPrePost-Net
results. This result indicates the spatial–spectral–temporal extracted features from the
MDPrePost-Net are very important to distinguish intact and degraded mangrove objects.

The detailed quantitative comparison including IoU score, training time, and total
parameters as shown in Table 11. The proposed MDPrePost-Net outperforms other existing
FCN architecture in terms of mean IoU and IoU scores for each class. The total parameter of
the proposed model is larger than LinkNet and FPN-Net, and the training time is also longer
than LinkNet and FPN-Net but is still acceptable due to the higher accuracy and reasonable
total training time that is lower than one hour. LinkNet has a very fast training time and
fewer total parameters due to LinkNet aiming for real-time semantic segmentation.

Table 11. Quantitative comparison of the MDPrePost-Net with existing FCN architecture, the bold values indicate the
proposed model results. K in FC-DenseNet stands for growth rate.

Architecture Mean IoU IoU
Non-Mg IoU Mg IoU DgMg Time

Per-Epoch (s)

Training
Times

(hh:mm)

Total
Parameters
(millions)

MDPrePost-Net 97.70% 99.82% 96.47% 96.82% 16 01:17 23.8
FC-DenseNet103

(K = 32) 93.00% 99.63% 89.24% 90.13% 59 03:22 35.2

U-Net 92.58% 99.62% 88.57% 89.54% 13 01:14 31.4
LinkNet 92.19% 99.42% 88.24% 88.93% 5 0:15 11.6
FPN-Net 82.27% 98.46% 73.08% 75.28% 10 0:29 17.6

In general, almost all the existing architecture achieved a high mean IoU of more
than 90%. Only FPN achieved a mean IoU lower than 90%. Based on the IoU score of
the non-mangrove class, all existing FCN achieved a very high IoU score (>98%), which
indicates that all the existing FCN can clearly distinguish mangrove and non-mangrove
objects based on the visual analysis. FC-DenseNet103 (K = 32) achieved the second-best
place in terms of mean IoU but the IoU of the intact mangrove was still lower than 90%, and
the total training time and total parameter of FC-DenseNet103 were the longest and biggest.
In the U-Net result, the training time is almost the same as the proposed MDPrePost-Net,
but U-Net has IoU intact and degraded mangrove scores of lower than 90%. Based on this
result, MDPrePost-Net successfully outperforms some existing FCN architecture in terms
of mangrove degradation affected by Hurricane Irma using temporal satellite data.

3.3. Effects of Vegetation and Mangrove Indices on the Results

This section demonstrates the effect of the different total number of input bands in
the MDPrePost-Net. In the first experiment, we used only true-color images or the blue,
green, and red bands of Sentinel-2 as the input data. A true-color image is widely used
for DL-based image classification. In the second experiment, we used true-color images
with the NIR band (blue, green, red, NIR). In the third experiment, we used true-color
images with the NIR and SWIR bands (blue, green, red, NIR, SWIR1, and SWIR2). The
third experiment was conducted to study the effects of including the SWIR bands in the
classification of intact and degraded mangroves because the SWIR band is sensitive to wet
objects. The last experiment was conducted using the original input data to prove that
the 10 input bands (including the NDVI, CMRI, NDMI, and MMRI) could improve the
accuracy of the classification of mangroves and degraded mangroves.
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Table 12 presents the accuracy assessment results (i.e., mean IoU, overall F1, OA,
and average accuracy) for the three classes (non-mangroves, mangroves, and degraded
mangroves) as well as the IoU result for each class. For the first experiment using RGB
data, the mean IoU was 95.54%, the IoU value for the mangrove class was 93.13%, and
the IoU value for the degraded mangrove class was 93.76%. This finding shows that the
proposed MDPrePost-Net model has satisfactory accuracy for the true-color Sentinel-2
images. For the second and third experiments, the addition of the NIR, SWIR1, and
SWIR2 bands improved the accuracy value. Specifically, the average accuracy increased
by approximately 0.57%, the IoU value for the intact mangrove class increased by 1.69%,
and the IoU value for the degraded mangrove class increased by approximately 1.37%.
For the final experiment involving the 10 input bands, the results revealed that the added
vegetation and mangrove indices considerably improved the classification accuracy.

Table 12. Accuracy results of added vegetation and mangrove indices, the bold values indicate the best results.

Input Bands Mean IoU OA
F1-Score

OA
Accuracy

Average
Accuracy

IoU
Non-Mg IoU Mg IoU Dg Mg

RGB 95.54% 97.69% 99.45% 97.56% 99.71% 93.13% 93.76%
R,G,B,NIR 96.25% 98.07% 99.55% 97.96% 99.79% 94.25% 94.70%

R,G,B,NIR,SWIR1,SWIR2 96.58% 98.25% 99.58% 98.13% 99.78% 94.82% 95.13%
All 10 input bands 97.70% 98.83% 99.71% 98.75% 99.82% 96.47% 96.82%

3.4. Mangrove Degradation Map in Southwest Florida

The second goal of this study is to map intact/healthy mangrove and degraded
mangrove forests along the southwest Florida coastal zone effectively and efficiently
because southwest Florida has a long and wide coastal zone. The most effective, efficient,
and accurate method is needed to know the impact of Hurricane Irma on the mangrove
forests area. The trained proposed MDPrePost-Net was used to produce the non-mangrove,
intact/healthy, and degraded mangrove map along the southwest Florida coastal zone.

We used a confusion matrix to calculate the map accuracy based on reference samples:
1500 reference point samples, 500 samples of non-mangrove, 500 samples of intact/healthy
mangroves, and 500 samples of degraded mangrove classes (Table 13). The overall accuracy,
user’s accuracy, producer’s accuracy, and kappa score have been calculated for map
accuracy based on the confusion matrix. The result shows that the overall accuracy is
0.9733. The user’s accuracy and producer’s accuracy of non-mangrove classes are 0.998
and 0.978, intact mangrove classes are 0.9680 and 0.9622, while degraded mangrove classes
are 0.9540 and 0.9794, respectively. Based on this result, our mangrove degradation map
affected by Hurricane Irma has a very good result with a kappa score of 0.960. Based on
the calculation of the map accuracy, the MDPrePost-Net achieved a very good result in
terms of mapping the intact and degraded mangroves affected by Hurricane Irma in the
large study area.

The result of the non-mangrove, intact and degraded mangrove map along the south-
west Florida coastal zone is shown in Figure 9. Based on the map, almost the entire
mangrove forest which is directly adjacent to the shoreline was degraded. The degraded
mangrove areas include several degraded mangroves or slightly degraded mangroves. The
purple box on the map shows zoom areas that indicate severely degraded mangrove areas.
Based on the zoom areas, we can see that our model can clearly distinguish intact/healthy
mangrove, degraded mangrove, and non-mangrove areas. The map shows in the lower
north and northwest study area that there are many degraded mangrove areas. Based
on the map, we can see the pattern of intact/healthy mangrove and degraded mangrove
areas. Most of the intact mangrove areas are behind the degraded mangrove areas, which
indicates that the mangrove area in front of it can protect against Hurricane Irma. We
can see the mangrove areas bordering the land are not degraded. These results show that
mangroves can protect the coastline area from hurricanes.
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Table 13. Confusion matrix of map accuracy with overall accuracy, kappa score, user’s accuracy and producer’s accuracy
from non-mangrove, intact mangrove, and degraded mangrove classes in the whole study area.

Reference Data

Non-
Mangroves

Intact
Mangrove

Degraded
Mangrove Rows Total User’s

Accuracy

Predicted Data

Non-Mangrove 499 0 1 500 0.9980
Intact Mangrove 7 484 9 500 0.9680

Degraded Mangrove 4 19 477 500 0.9540
Column total 510 503 487 1500

Producer’s Accuracy 0.9784 0.9622 0.9794 Overall Acc = 0.9733
Kappa = 0.960
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4. Discussion

Ecosystem degradation is a principal factor behind biodiversity loss [14]. Mapping
of mangrove degradation is very important to know the status of the mangroves because
mangroves have many benefits [2–5]. In September 2017, southwest Florida was hit by
Hurricane Irma (a category 3 hurricane) which degraded mangrove forests [20]. By devel-
oping advanced technology in satellite and computer science, remote sensing imagery have
been widely used for mangrove mapping using object-based classification [23], RF algo-
rithm [24,26], CART algorithm [25], Capsules-U-Net [31], Me-Net [32], and convolutional
neural network [33]. Some previous studies used satellite imagery for mangrove degrada-
tion mapping in southwest Florida affected by Hurricane Irma by using machine learning
algorithms [20–22]. This study proposed the deep learning model that can be used for
mangrove degradation mapping using Sentinel-2 data by considering the spatial–spectral–



Remote Sens. 2021, 13, 5042 21 of 25

temporal relationship between images before hurricanes and images after hurricanes and
producing a map of intact and degraded mangrove areas affected by Hurricane Irma along
southwest Florida.

In this study, we consider two kinds of satellite imagery for mangrove degradation
mapping. The first one is pre-image referring to images before Hurricane Irma and the
second one is post-image referring to images after Hurricane Irma. We assume the de-
graded mangrove class is the mangrove object in the image before Hurricane Irma which is
then degraded in the image after Hurricane Irma because the degraded mangrove area in
this study was affected by Hurricane Irma. The proposed MDPrePost-Net consists of two
sub-models, a pre-post deep feature extractor and an FCN classifier. The MDPrePost-Net
considers the relationship between the pre and post-hurricane events by using the ConvL-
STM feature extractor in the deep feature extraction sub-model. Previous studies used the
combination of ConvLSTM with semantic segmentation for precipitation nowcasting [44],
extracting spatiotemporal relationships and classifying SLAR images [45] and extracting
spatiotemporal relationships of video sequences classifications [46,47]. In this study, we
used the ConvLSTM part for extracting the spatiotemporal relationship between the images
captured before the hurricane and those captured after the hurricane. The post extractor
also considered the spatial–spectral information of images after the hurricane that was
more correlated with the degraded mangrove area that was affected by Hurricane Irma.

Based on the classification result, our proposed model achieved good results in terms
of accuracy metrics and acceptable training time. Our proposed model has a mean IoU
score, F1-Score, and overall accuracy of 97.70%, 98.83%, and 99.71%, respectively. The
total training time of our proposed model is about one hour (01:17). We compared our
MDPrePost-Net results with other existing FCN architecture (FC-DenseNet [42], U-Net [40],
LinkNet [41], and FPN [43]). We used the same input data to train all the existing FCN
architecture. All the existing architecture can clearly distinguish non-mangrove objects with
IoU scores of more than 90% for the existing FCN architectures. However, the existing FCN
architectures have more misclassified results in terms of intact and degraded mangrove
classes, and the average IoU scores for both classes are lower than 90%. These results were
caused by the existing FCN architecture not being specially designed to acquire a spatial–
spectral–temporal relationship of pre-post images. Our proposed model considered the
spatial–spectral–temporal relationship and increased the IoU scores of intact and degraded
mangrove objects.

A previous study revealed that the difference in input bands affects the accuracy result
of mangrove classification [32]. We considered the effects of vegetation and mangrove
indices in the accuracy results because mangroves are a unique form of vegetation with
unique spectral characteristics, such as wet vegetation features. The SWIR band is useful
for distinguishing wet objects. Some mangrove indices are designed according to spectral
mangrove characteristics. Sentinel-2 can produce vegetation and mangrove indices. The
CMRI, NDMI, and MMRI make up the vegetation index which has a good capability
to distinguish mangrove objects [24,51,52]. In our original input data for this study, we
used 10 input bands (blue, green, red, NIR, SWIR1, SWIR2, NDVI, CMRI, NDMI, and
MMRI) with vegetation and mangrove indices. Our results in Section 3.3 reveal the mean
IoU of 10 input bands increased by approximately 2.16% relative to that observed for the
first experiment (R, G, B). This significant improvement was observed in the IoU value
for the intact and degraded mangrove classes. The IoU value for the intact mangrove
class increased by nearly 3.34%, and for the degraded mangrove class, it increased by
approximately 3.06%. Based on this result, the addition of vegetation and mangrove
indices increased the accuracy result.

We used the proposed MDPrePost-Net with 10 input bands to make an intact and
degraded mangroves map affected by Hurricane Irma along the southwest Florida coastal
zone. The confusion matrix was used to calculate the map accuracy based on reference
samples. The kappa score from our proposed model result is 0.960 and is included in the
almost perfect agreement category based on Landis and Koch categorizations [58].
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Previous studies of mangrove degradation affected by Hurricane Irma in some areas
of southwest Florida have been performed by using WorldView-2 and Landsat data which
are different data from our input data in this research. The ecological conceptual model
with annual metrics before and after Hurricane Irma has been used to calculate the annual
NDVI mean, NDVI standard deviation, Normalize Difference Moisture Index (NorDMI)
mean, NorDMI standard deviation and NDWI mean from Landsat data, and the RF
algorithm for intact and degraded mangrove classification [22]. The time series WorldView-
2 data (2010, 2016, 2017, and 2018) with the decision tree (DT) algorithm has been used to
classify damaged mangrove forests [20], while WorldView-2 data (2018) has been used for
mapping damage inflicted by Hurricane Irma using SVM, DT, and neural network [21].
Our proposed method considered the spatial–spectral–temporal relationship of pre-post
Sentinel-2 imagery by using a pre-post deep feature extractor.

The comparison of the map accuracy from our proposed model with other existing
results is shown in Table 14. Lee et al. conducted mangrove degradation research in the
small area of Shark River in southwest Florida by using the RF algorithm and Landsat
image data. They achieved an OA of 79.1% [22]. McCarthy et al. applied some machine
learning algorithms (DT, NN, and SVM) to mangrove degradation research in Rookery
Bay NEER in southwest Florida using WorldView-2 imagery and achieved an OA around
82%–85% [20,21]. The non-mangrove class from DT, NN, and SVM results in Table 12
have come from averaging soil, upland, and water classes. Our MDPrePost-Net results
revealed the pre-post deep feature extractor significantly improved the map accuracy of
intact mangrove and degraded mangrove classes.

Table 14. Map accuracy comparison of our proposed model with other models. N-Mg, Int-Mg, Dg-Mg stand for non-
mangrove, intact mangrove, and degraded mangrove class, respectively.

Model UA and PA of
N-Mg (%)

UA and PA of
Int-Mg (%)

UA and PA of
Dg-Mg (%) OA (%) Image Data References

Our proposed model 99.8 and 97.8 96.8 and 96.2 95.4 and 97.9 97.3 Sentinel-2 -
Neural Network 89.3 and 89 80 and 88 75 and 57 85 WorldView-2 [21]

Decision Tree 89.7 and 86.7 73 and 91 62 and 38 83 WorldView-2 [21]
Decision Tree 87.7 and 84.7 78 and 77 56 and 54 82 WorldView-2 [20]

Support Vector Machine 88.7 and 87 77 and 86 59 and 62 83 WorldView-2 [21]
Random Forest - 85.7 and 72.3 73.9 and 86.7 79.1 Landsat [22]

A total of 22% of mangrove areas were lost from spring 2016 to fall 2018 in Rookery
Bay NEER and most were affected by Hurricane Irma [20], while 97.4% of mangrove areas
have been degraded by Hurricane Irma in the small area of the Shark River case-study
region [22]. These two areas are part of our study area. Our study reported that the
total mangrove area, including intact/healthy and degraded mangroves in our study area,
which is 153,933.36 Ha, has losses of 6.96% from Global Mangrove Forest reported by Giri,
et al in 2000 [1]. Based on our result, 26.64% (41,008.66 Ha) of the mangrove area has been
degraded by Hurricane Irma, and the other 73.36% (112,924.70 Ha) of the mangrove area is
still intact. Our result indicated that extreme climates event [10] and hurricanes [13] can
degrade mangrove forests.

Our results of total intact and degraded mangrove areas are affected by the presence of
cloud cover in some Sentinel-2 data that we used. The acquisition time of Sentinel-2 used in
this research also affects the total or degraded mangrove areas because degraded mangrove
areas can recover in a certain period of time. McCarthy et al. reported a total of 1.73 km2 of
mangroves recovered in their study area 6 months after Hurricane Irma [20]. The last data
from Sentinel-2 we used in this research were in March 2018 which is 6 months after the
Hurricane Irma event. The selection of this data is based on the percentage of cloud cover
to minimize discrepancies in results. The recovery time of degraded mangroves affected
by hurricanes needs more attention for future research.
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5. Conclusions

In September 2017, Hurricane Irma hit the coastal zone of southwest Florida and
caused mangrove degradation. This study aimed to propose an end-to-end deep learning
network that exploited the spatial–spectral–temporal relationship between images before
the hurricane and images after the hurricane, referred to as the MDPrePost-Net. Generally,
our proposed model consists of two sub-models, a pre-post feature extraction and the FCN
classifier. We used pre and post Sentinel-2 to extract the spatial–spectral–temporal relation-
ship of intact and degraded mangroves that were affected by Hurricane Irma by using the
ConvLSTM feature extractor and used post image Sentinel-2 data to extract spatial–spectral
of the mangrove condition after the hurricane by using a post feature extractor. Then the
extracted spatial–spectral–temporal features were fed into an FCN classifier. A total of
10 input bands were used in this study (blue, green, red, NIR, SWIR-1, SWIR-2, NDVI,
CMRI, NDMI, and MMRI bands). Our results reveal that the adding of vegetation and
mangrove indices improves the accuracy of intact and degraded mangrove classes.

The experimental results demonstrate that the proposed model achieved better results
in terms of accuracy metrics than the existing FCN architecture (FC-DenseNet, U-Net,
Link-Net, and FPN). The proposed model also has an acceptable training time (01:17) or
16 seconds of each epoch. In addition, the proposed model achieved the algorithm output
mean IoU, F1-Score, and OA of 97.70%, 98.83%, and 99.71%, respectively. We used the
proposed model to produce an intact/healthy and degraded mangrove map affected by
Hurricane Irma in 2017 along the southwest Florida coastal zone. The overall map accuracy
of non-mangrove, intact/healthy and degraded mangrove classes is 0.9733 with a kappa
score of 0.960. This study reported that 26.64% (41,008.66 Ha) of mangrove areas have been
degraded by Hurricane Irma in September 2017, and the other 73.36% (112,924.70 Ha) of
mangrove areas are still intact.
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