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Abstract: By effectively observing the land surface and obtaining farmland conditions, satellite
remote sensing has played an essential role in agricultural drought monitoring over past decades.
Among all remote sensing techniques, optical and thermal remote sensing have the most extended
history of being utilized in drought monitoring. The primary goal of this paper is to illustrate how
optical and thermal remote sensing have been and will be applied in the monitoring, assessment,
and prediction of agricultural drought. We group the methods into four categories: optical, thermal,
optical and thermal, and multi-source. For each category, a concise explanation is given to show the
inherent mechanisms. We pay special attention to solar-induced chlorophyll fluorescence, which has
great potential in early drought detection. Finally, we look at the future directions of agricultural
drought monitoring, including (1) early detection; (2) spatio-temporal resolution; (3) organic combi-
nation of multi-source data; and (4) smart prediction and assessment based on deep learning and
cloud computing.

Keywords: agricultural drought monitoring; optical remote sensing; thermal remote sensing; drought
indices; solar-induced fluorescence

1. Introduction

Drought is a state in which the water supply does not meet the demand. As a natural
hazard, it is considered to have the most remarkable impacts on human beings among
all types of hazards [1,2]. Drought differs from other natural hazards in that it is an
accumulating process or a “creeping phenomenon” as defined by Tannehill [3]. Although
Tannehill’s book was written more than 70 years ago, the exact definition of drought has
been a continuing controversy until now [1,4]. That notwithstanding, a four-category
classification is widely recognized, namely, meteorological, agricultural, hydrological, and
socioeconomic drought [5]. As the name suggests, agricultural drought is the result of
a water deficit in farmland and is immediately related to insufficient soil moisture and
consequent crop failure [6]. For this reason, agricultural drought is also called soil moisture
drought [7,8].
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Since the 1950s, with accelerated industrialization and urbanization, global warming
has become undoubtedly prominent. The frequency and intensity of extreme climate events
caused by global warming have increased significantly, as has the drought vulnerability
in many regions all over the world [9,10]. As a sector most constrained by climate and
weather [10], agriculture is greatly impacted by weather-induced disasters, especially
drought. When a long-lasting drought is not handled properly, a food crisis usually follows
closely, thus causing famine and mortality. Based on the Emergency Events Database
(EM-DAT) (https://www.emdat.be, accessed on 20 August 2018), we have compiled the
most severe drought events (considering total economic damage and human deaths) that
happened after 1960 into Figure 1. We can see the great impact of drought on agriculture
from the coincidence of drought events and major agricultural areas.

Figure 1. Distribution of major drought events since 1960.

During the growth period, crop water use mainly involves transpiration and metabolic
consumption. When agricultural drought occurs, the soil water deficit leads to reduced
soil evaporation and capillary edge water. Crops become unable to take in enough water
via their roots to keep their water balance. As a result, leaf transpiration decreases [11].
Since soil evaporation and crop transpiration are two main contributors to farmland evapo-
transpiration, the decline of both causes the total evapotranspiration to drop; consequently,
both soil and canopy temperature rise, which aggravates the drought condition. When
the drought is severe enough, crop leaves and stalks begin to show notable physiological
or morphological changes, i.e., wilting, yellowing, and shedding [12]. If the drastic water
shortage cannot be controlled or reverted, dehydration will start to collapse leaf and stem
cells and ultimately cause plant deaths and yield loss [13].

Crop yield is the lifeline of not only farmers but also humankind. Farmers have been
concerned about agricultural drought ever since early farming society. In the 20th century,
Kincer [14] was among the first to assess agricultural drought using precipitation data
collected by meteorological stations. The major problem is that drought occurrence at
different growth stages has different effects on crop growth and the final grain yield [12].
Moreover, there are differences in drought vulnerability and tolerance even among crops
within the same field block, depending on species and genotypes. Therefore, there is a
high demand for temporal and spatial resolutions of agricultural drought monitoring [15],
which cannot be satisfied by traditional meteorological stations or the re-analysis of data
based on station observations, especially on large scales.

The rising of satellite remote sensing has provided a new solution to this issue. In
past decades, remote sensing datasets on precipitation, snow, soil moisture, land surface
temperature, evapotranspiration, vegetation, and land cover have become increasingly
abundant with the development of satellite remote sensing [16,17], thereby creating a solid

https://www.emdat.be
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foundation for the timely and effective implementation of agricultural drought monitoring.
According to the sensor type, remote sensing can be further divided into optical remote
sensing, thermal remote sensing, microwave remote sensing (including active and passive),
and other categories such as LiDAR or gravity remote sensing. They each offer unique and
complementary information for drought detection.

1. Optical and thermal data are the most widely used in identifying vegetation condi-
tions, soil water status, and evapotranspiration [17];

2. Microwave remote sensing has a direct and solid link to soil moisture, which is
a crucial indicator of agricultural drought [18];

3. LiDAR is the best approach to obtaining structural information of vegetation, and
it can also be used to retrieve various biochemical variables such as leaf water con-
tent [19];

4. Gravity measurement is essential for monitoring groundwater; thus, it can be uti-
lized to monitor those regions where groundwater is massively used for irrigation,
especially when drought occurs [20].

We will not cover all these aspects in this review; instead, we will focus on optical and
thermal remote sensing, considering their data abundance, availability and applicability.
It should be noted that microwave remote sensing, especially passive microwave remote
sensing, is the most direct and reliable way to estimate soil moisture from space [18],
and it has a significant advantage over optical and thermal remote sensing in that it
is less affected by clouds and weather conditions [21,22]. However, there are several
issues when microwave remote sensing is applied to agricultural drought monitoring:
(1) the variability in penetration depth due to soil types, temperature and soil moisture
makes it hard to compare the soil moisture estimations of microwave remote sensing
with field measurements, especially in the case of drought monitoring [23]; (2) the effects
of vegetation on microwave signals are not easy to handle [24–27], whereas cropland
is the primary concern in the monitoring of agricultural drought; (3) the coarse spatial
resolution of passive microwaves (active microwaves generally have much better spatial
resolution than passive microwaves) cannot meet the requirements of agriculture. For
further information about microwave remote sensing of soil moisture, one can refer to
Karthikeyan et al. [28,29] for both algorithms and products, and Sabaghy et al. [15] for
downscaling techniques used to enhance the spatial resolution of passive microwave-
derived soil moisture. For the usage of gravity data in groundwater storage monitoring,
one can turn to Frappart and Ramillien [20]. Moreover, for LiDAR, research articles such
as Zhu et al. [19] can be a good reference.

Based on the understanding of existing reviews (e.g., [6,17,30,31]), as well as an
extensive collection of the latest research results, this paper is aimed at reviewing and sum-
marizing developments in optical and thermal remote sensing-based drought monitoring
in the context of agriculture and food security. Section 2 discusses optical remote sensing,
highlighting the promising utilization of solar-induced fluorescence as an early indicator,
while Section 3 is about thermal remote sensing, and Section 4 is on the combination of
optical and thermal remote sensing, with a detailed analysis of the temperature-vegetation
space. Section 5 illustrates methods and techniques that utilize multi-source data or data
assimilation. Finally, in Section 6, we discuss future development directions and give
perspectives on the more effective monitoring of agricultural drought.

2. Optical Remote Sensing
2.1. The Effect of Water Content on Soil and Crop Reflectance in the Solar Region (400–2500 nm)

Optical sensors can measure the surface reflectance in visible (VIS), near-infrared (NIR),
and short-wave infrared (SWIR) bands, within which solar radiation is the driving force.
In this range, water has two major absorption peaks centered at 1470 nm and 1900 nm, and
two minor ones centered at 970 nm and 1200 nm, while even smaller peaks and shoulders
can be found at 514 nm, 606 nm, 739 nm and 836 nm [32–34]. These characteristics lay the
foundation of soil moisture monitoring within the solar range. Many researchers observed
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that wetted natural soils showed lower reflectance [35]. This rule generally holds; however,
we can see from Figure 2 that when soil moisture is high, the change in soil reflectance
becomes subtler. There can even be an inversion at higher moisture levels, as pointed out
by Patel [36] and Neema et al. [37]. That is to say, after the soil moisture exceeds a threshold,
the reflectance of soil begins to increase with soil moisture. This critical point generally
appears within the 0.15–0.40 g/cm3 soil moisture range, which depends on soil types [38].
Since the critical point is below the saturation point, the reversion phenomenon cannot be
neglected in soil moisture retrieval. Nevertheless, within the field of drought monitoring,
we can safely assume that the soil moisture level is below this turning point. Thus, soil
reflectance is considered to decrease monotonically with increasing soil moisture. The
exact relationship between soil reflectance and soil moisture can be very complex and is
affected by many other factors, such as mineralogy, salinity, texture, organic matter content,
or roughness. Several empirical or physical models have been proposed [34,39–42], which
we will not discuss in detail here.

Figure 2. Measured spectra of a soil sample with different soil moisture, c.f. Fabre et al. [42].

Water content also affects the reflectance of crops, mainly in NIR and SWIR bands [43].
To identify the sensitive spectral bands of vegetation water content, Thomas et al. [44]
obtained the spectra of leaves with different water content by gradually drying saturated
leaves at room temperature. The results showed that the spectral reflectance of leaf samples
increased with decreasing leaf water content, and the reflectance at 1450 and 1930 nm are
significantly correlated with the relative water content of leaf blades. Sims and Gamon [45]
pointed out that the reflectance at 950–970, 1150–1260, and 1520–1540 nm are well correlated
with canopy water content. Here, simple simulations using the leaf radiative transfer model
PROSPECT-D [46] and the canopy radiative transfer model 4SAIL [47] are carried out to
illustrate the effects of water content on crop reflectance (see Figures 3 and 4). It can be seen
from the simulations that leaf water content has a remarkable impact on crop reflectance
at both the leaf and canopy level, indicating that remotely sensed reflectance can be a
measure of crop water content and water stress. However, sensitivity analysis shows
that the other factors, such as leaf area index (LAI), average leaf angle (ALA), and leaf
chlorophyll concentration, make it difficult to accurately retrieve leaf water content directly
from reflectance data, especially at the canopy level [48].

Besides the direct influences on crop reflectance, the water content can also affect crop
reflectance via its effects on crop physiology. The water needed for growth, development,
and reproduction is mainly absorbed from the soil during crop growth. When soil moisture
falls below a certain threshold and cannot meet the water demand, crop cells start to lose
water, causing decreases in swelling pressure and changes in morphological structure and
canopy cover (e.g., the leaf area). Water stress can also cause changes in biochemical (such



Remote Sens. 2021, 13, 5092 5 of 34

as chlorophyll, carotenoids) concentrations, resulting in further changes in crop spectral
reflectance [12].

Figure 3. Simulated spectra of plant leaves with different equivalent water thickness (EWT)
levels. Generated using the PROSPECT-D model [46], with leaf parameters set as: N = 1.5,
ca+b = 40 µg/cm2, ccar = 1.0 µg/cm2, cant = 1.0 µg/cm2, cbrown = 0.05, and cm = 0.004 g/cm2.

Figure 4. Simulated spectra of plant canopy with different leaf equivalent water thickness (EWT)
levels. Generated using the PROSAIL (PROSEPCT-D + 4SAIL) model [46,47], with leaf parameters
remaining the same as Figure 3 and canopy and other parameters set as: LAI = 2.0, ALA = 60◦,
hspot = 0.5, θs = 30◦, θv = 30◦, and φ = 60◦.

2.2. Spectral Indices as Drought Indicators

Optical remote sensing is used to identify soil and vegetation water status based
on the spectral reflectance of soil and vegetation in the VIS-NIR-SWIR regions. Due to
the complicated relationship between soil moisture, crop water content, and remotely
sensed reflectance, this representation is usually implemented by proxy of a spectral index,
a mathematical formulation of two or more bands. In particular, spectral indices that reflect
the growth of vegetation are called vegetation indices (VIs).

The simplest form is a ratio of two bands (e.g., the Moisture Stress Index (MSI) [49],
the Simple Ratio Water Index (SRWI) [50]), or a linear mixture of several bands (e.g., the
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Visible and Shortwave Infrared Drought Index (VSDI) [51]). However, the most prominent
form is without doubt [52] that of the Normalized Difference Vegetation Index (NDVI)
proposed by Rouse et al. [53]. Through an equation as simple as

NDVI =
ρNIR − ρRed
ρNIR + ρRed

(1)

NDVI can effectively assess the status of vegetation, thus reflecting environmental
changes [54], including water stress and drought [55,56]. Beyond its own use, in the
following decades, forms of NDVI have been adopted by numerous spectral indices (e.g.,
the Normalized Difference Water Index (NDWI)[57], the Photochemical Reflectance In-
dex (PRI) [58], the Normalized Difference Infrared Index (NDII) [59] and the Normalized
Multiband Drought Index (NDMI) [60]).

Since NDVI is directly related to the fractional vegetation cover (FVC), a common
practice is to measure the severity of water stress based on NDVI anomalies instead of
NDVI itself. Based on historical data of NDVI, Kogan [61] established the vegetation
condition index (VCI):

VCI =
100(NDVI−NDVImin)

NDVImax −NDVImin
(2)

where NDVImin is the historical minimum NDVI value for a specific location, while
NDVImax is the historical maximum NDVI value for the same location. Since VCI is
normalized by historical values, it allows one to compare the impact of drought in neigh-
boring areas, even when they have different ecological and economic resources. Similarly,
Chen et al. [62] defined the Anomaly Vegetation Index (AVI):

AVI = NDVI−NDVI (3)

where NDVI is the multi-year averaged NDVI value for a given location in a specific month,
thus reflecting the average soil moisture. Based on the deviation from this average, AVI
can indicate drought severity. Additionally, Peters et al. [63] proposed the Standardized
Vegetation Index (SVI):

z =
NDVI−NDVI

σ

SVI = P(Z < z)
(4)

Of all these methods, VCI is the most acknowledged and has been used to monitor or
evaluate droughts in many countries and regions after being proposed [64–67].

Due to the saturation of NDVI in the case of dense vegetation and its sensitivity to
the soil background, a series of new vegetation indices have been proposed, such as the
Soil Adjusted VI (SAVI) [68], the Atmospherically Resistant VI (ARVI) [69], the Enhanced
VI (EVI) [70,71], and the Inverted Difference VI (IDVI) [72], but none of these indices have
taken the place of NDVI in agricultural drought monitoring.

An alternative way to combine the information from multiple bands is the reflectance
space, i.e., building a linear space with the spectral reflectance of each band. Figure 5
gives a sketch of the NIR-Red reflectance space. When enough vegetation and soil pixels
are gathered in the plot, the outline of the points corresponding to the pixels will form a
triangle. The points of bare soil pixels tend to form a line in this plot called the soil line.
Based on the NIR-Red reflectance space, Richardson and Wiegand [73] first established the
Perpendicular Vegetation Index (PVI), which is the vertical distance from an observed point
to the soil line. Zhan et al. [74] further found that the two-dimensional NIR–Red space is
related to the characteristics of land cover and soil/vegetation water: the lower-left edge
of the triangle represents the water-saturated status and the upper-right edge represents
the extremely dry status, while the parallel lines of the soil line correspond to different
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vegetation covers. Based on this finding, Ghulam et al. [75] proposed the Perpendicular
Drought Index (PDI):

PDI =
1√

M2 + 1
(ρRed + MρNIR) (5)

where M is the slope of the soil line. As is shown in Figure 5, PDI is the vertical distance
from an observed point to the perpendicular line of the soil line which crosses the origin.
PDI proves to be highly effective in soil moisture estimation over bare soil. To compensate
for the effect of vegetation cover, Ghulam et al. [76] further introduced the concept of
vegetation coverage and proposed the Modified PDI (MPDI) to resolve this limitation:

MPDI =
1

1− FVC
(PDI− FVC · PDIv) (6)

where FVC is the fractional vegetation cover, and PDIv is the PDI value for fully covered
vegetation, which is often taken as an empirical value. In this way, mixed pixels in the
NIR-Red space are decomposed to obtain pure soil information. The MPDI can be applied
to various land cover types and hydrothermal conditions and has a clear biophysical
meaning. Moreover, it does not require complex calculations and can be easily interpreted.
Rao et al. [77] analyzed Landsat-derived MPDI and long-term Climatic Water Deficit
(CWD) data for the year 2014 to evaluate the impacts of the 2014 California drought on
forest and agriculture ecosystems in California, U.S. The results demonstrated that MPDI
is an effective and direct method to monitor vegetation stress and forest declines at the
landscape scale and provide land managers and stakeholders with forest management
and planning guidance. To avoid the determination of PDIv, Li and Tan [78] proposed the
second Modified Perpendicular Drought Index (MPDI1):

MPDI1 =
√

PDI2 + PVI2 (7)

which equals segment DF in Figure 5. Zhang et al. [79] proposed the Ratio Dryness
Monitoring Index (RDMI), which is defined as the ratio of the segment PE to the segment PQ
in Figure 5. These two new indices can be directly obtained from the NIR-Red reflectance
space, but more evaluations are required to compare their feasibilities with MPDI.

Attempts have also been made to develop indices that utilize SWIR bands, which are
more sensitive to water content [80,81]. Gao [57] established the Normalized Difference
Water Index (NDWI) based on a NIR band (860 nm) and a SWIR band (1240 nm). The
NDWI can sensitively reflect canopy water levels because water absorption is enhanced
by canopy decentralization. The influence of the atmosphere on NDWI is weaker than on
NDVI because there is less atmospheric aerosol scattering within 860–1240 nm. Similar to
NDVI, NDWI also fails to remove the effect of the soil background completely. To reduce
this effect, Zhang et al. [51] proposed the Visible and Shortwave infrared Drought Index
(VSDI), which made use of the Blue, Red, and SWIR bands to monitor agricultural drought
over different land-cover types during plant growing seasons.

Since the NIR-SWIR reflectance space has similar features to the NIR-Red space, Ghu-
lam et al. [82] analyzed the potential of the NIR-SWIR space in drought monitoring. The
established Shortwave infrared Perpendicular Water Stress Index (SPSI) has the same form
of PDI, but unlike PDI, SPSI fits well in various vegetation conditions, from bare soil to full
coverage. Ghulam et al. [83] further developed the Vegetation Water Stress Index (VWSI)
to quantify the vegetation water stress at the canopy level. The relationship between the
VWSI and fuel moisture content was examined through leaf- (i.e., PROSPECT [46,84,85])
and canopy-level radiative transfer simulations [47,86] incorporating field measurements.
Based on the fuel moisture content under different water stress conditions and correspond-
ing VWSI values, the authors established threshold values for VWSI to help precision
irrigation. Several follow-up studies have utilized the NIR-SWIR space for estimating veg-
etation water stress, aboveground dry biomass, and yield [87] and understanding drought
impacts on forest ecosystems [88]. Later, Feng et al. [89] proposed the Modified Shortwave
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Infrared Perpendicular Water Stress Index (MSPSI), which keeps the form of SPSI but uses
the Rs-Rd (Rs = ρSWIR + ρRed; Rd = ρSWIR − ρRed) space instead.
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Figure 5. Sketch map of the NIR-Red reflectance space. The triangle ABC is the outline of the scatter
points. A represents full vegetation cover. AB is the wet edge, representing the water-saturated status.
AC is the dry edge, representing the extremely dry status. BC is the soil line, representing bare soil.
E corresponds to the pixel value. Line L is the perpendicular line of BC that crosses the original. EF is
the perpendicular line of L which crosses E. EF intersects with AB at P, while also intersecting AC at
Q. ED is the perpendicular line of EF that crosses E and intersects with BC at D. The length of the
segment EF is the PDI, and the length of the segment ED is the PVI.

When hyperspectral data are available, the Photochemical Reflectance Index (PRI)
should not be neglected. PRI is often used as an early indicator of plant health [90–93].
It can reflect the epoxidation state of the xanthophyll cycle pigments and photosynthetic
efficiency [58], thus providing scale-invariant signatures of early water stress for vari-
ous vegetation types [94]. PRI is usually calculated using 531 nm and 570 nm as the
reference bands [58]:

PRI =
ρ531 − ρ570

ρ531 + ρ570
(8)

However, there are a number of candidates, e.g., 512 nm [95], 515 nm [90], 519 nm [96]
and 586 nm [91].

The aforementioned spectral indices are elementary to calculate and use. Compared
with traditional long-time drought indices, the indices and their anomalies can be a near-
real-time indicator of the onset, extent, intensity, and duration of agricultural water stress
and droughts. However, it should be noted that it is hard to exclude the effects of other
environmental stress and adversities, e.g., diseases and pests [63], since the indices are
merely mathematical results and do not have a definite physical or biophysical meaning.
Another caveat is that their relationships with soil moisture or crop water content are often
restricted to a particular area and cannot be represented by a unified formula. Therefore,
these indices are only capable of rough estimations of drought conditions, while their
model parameters must be recalibrated when applied in regions with different soil and
crop types or different climatic characteristics.

For the convenience of our readers, Table 1 gives an overview of the indices men-
tioned above, along with references for typical applications of these indices in agricultural
drought monitoring.
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Table 1. Summary of spectral indices suitable for agricultural drought monitoring.

Index Expression Notes Year Introduced Applications

Normalized Difference Vegetation Index
(NDVI)

ρNIR − ρRed

ρNIR + ρRed
1974 [53] U.S. [97], Poland [98]

Perpendicular Vegetation Index (PVI) 1√
M2 + 1

(ρNIR −MρRed − I)
M and I are the slope and interception of the soil
line in the NIR-Red reflectance space 1977 [73]

Soil Adjusted Vegetation Index (SAVI) (1 + L)
ρNIR − ρRed

ρNIR + ρRed + L
L is an empirical coefficient 1988 [68] Kenya [99]

Moisture Stress Index (MSI) ρ1600

ρ820
1989 [49] Morocco [100], India [101]

Vegetation Condition Index (VCI) 100(NDVI−NDVImin)

NDVImax −NDVImin

NDVImin is the historical minimum NDVI value
for a specific location, while NDVImax is the
historical maximum NDVI value for the same
location

1990 [61] U.S. [65,102], China [64,66,67], South
Korea [103]

Atmospherically Resistant Vegetation Index
(ARVI)

ρNIR − (1 + γ)ρRed + γρBlue

ρNIR + (1 + γ)ρRed − γρBlue

γ is an empirical coefficient 1992 [69] Poland [98]

Anomaly Vegetation Index (AVI) NDVI−NDVI NDVI is the multi-year average of NDVI for a
given location in a specific month

1994 [62] China [104]

Enhanced Vegetation Index (EVI) G
ρNIR − ρRed

ρNIR + C1ρRed − C2ρBlue + L
G, C1, C2 and L are empirical coeifficents 1995 [70] East Asia [105]

Normalized Difference Water Index (NDWI) ρ860 − ρ1240

ρ860 + ρ1240
1996 [57] India [106], Morocco [100]

Photochemical Reflectance Index (PRI) ρ531 − ρ570

ρ531 + ρ570
There are other wavelength selections 1997 [58] Bolivia [107], Spain [108],

China [109,110]

Simple Ratio Water Index (SRWI) ρ860

ρ1240
2001 [50] Brazil [111]

Standardized Vegetation Index (SVI) z =
NDVI−NDVI

σ

SVI = P(Z < z)

σ is the standard deviation of multi-year NDVI
for a given location at a specific time of year. 2002 [63] U.S. [63], South Korea [103]
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Table 1. Cont.

Index Expression Notes Year Introduced Applications

Shortwave Infrared Water Stress Index (SIWSI),
also known as the Normalized Difference
Infrared Index (NDII)

ρSWIR − ρNIR

ρSWIR + ρNIR
The SWIR band can be MODIS band 5 or 6 2003 [59] China [112]

Normalized Multiband Drought Index (NMDI) ρ860 − (ρ1640 − ρ2130)

ρ860 + (ρ1640 − ρ2130)
2007 [60] Jordan [113]

Perpendicular Drought Index (PDI) 1√
M2 + 1

(ρRed + MρNIR)
M is the slope of the soil line in the NIR-Red
reflectance space 2007 [75] Iran [114,115], China [116]

Modified Perpendicular Drought Index (MPDI) 1
1− FVC

(PDI− FVC · PDIv)

FVC is the fractional vegetation cover, and PDIv
is the PDI value calculated for fully covered
vegetation.

2007 [76] Iran [114,115], China [116,117]

Shortwave Infrared Perpendicular Water Stress
Index (SPSI)

1√
M2 + 1

(ρSWIR + MρNIR)
M is the slope of the soil line in the NIR-SWIR
reflectance space 2007 [82] China [112]

Two-band Enhanced Vegetation Index (EVI2) G
ρNIR − ρRed

ρNIR + CρRed + 1
G and C are empirical coefficients 2008 [71] China [118]

Vegetation Water Stress Index (VWSI) EG
EF

G is the point of the pixel in the NIR-SWIR space,
and EF is the parallel line of the base soil line that
crosses G, which intersects the wet edge at E and
the dry edge at F (see Figure 4 in [83]).

2008 [83] India [119]

Visible and Shortwave Infrared Drought Index
(VSDI) 1− (ρSWIR + ρRed − 2ρBlue) 2013 [51] Jordan [113], Iraq [120], China [104]

Modified Shortwave Infrared Perpendicular
Water Stress Index (MSPSI)

1√
M2 + 1

(Rs + MRd)
Rs = ρSWIR + ρRed; Rd = ρSWIR − ρRed; M is the
slope of the soil line in the Rs-Rd space 2013 [89] China [89]

Second Modified Perpendicular Drought Index
(MPDI1)

√
PDI2 + PVI2 2013 [78] China [78]

Inverted Difference Vegetation Index (IDVI) 1 + (ρNIR − ρRed)

1− (ρNIR − ρRed)
2018 [72]

Ratio Dryness Monitoring Index (RDMI) DP
DE

P is the point of the pixel in the NIR-Red space,
and DE is the parallel line of the base soil line
that crosses P, which intersects the wet edge at D
and the dry edge at E (see Figure 8 in [79]).

2019 [79] China [79]
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2.3. Solar-Induced Chlorophyll Fluorescence as an Early Drought Indicator

An obvious shortcoming of spectral indices is that they lack explicit physical meanings.
To deal with this, several vegetation physiological or biochemical parameters (which can be
estimated via optical remote sensing) have been considered as drought indicators, e.g., the
Leaf Area Index (LAI) [121], the Fraction of Absorbed Photosynthetically Active Radiation
(FAPAR) [122–125], and the leaf chlorophyll concentration [126]. However, most of these
parameters still cannot overcome the problem of time latency. When precipitation shortages
and soil moisture deficits take place, they show no significant change within a temporal
range of ten days to two months [127–130] because they are reflections of accumulated
vegetation growth rather than instant indicators.

Solar-induced chlorophyll fluorescence (SIF) is a stimulated emission which occurs
after the chlorophyll absorbs light [131]. The spectral emission spans approximately
650–800 nm, normally having two local maxima—one located in the red region around
685–690 nm (called F685), and the other located in the far-red region around 730–740 nm
(called F740) [132]. A conceptual illustration of the distribution of absorbed radiation in
plant leaves is given as Figure 6. There are four possible fates for an absorbed exciton: (i) it
can be consumed during photochemical reactions via Photosystem I (PSI) or Photosystem
II (PSII); (ii) it can undergo radiationless decay without emitting electromagnetic energy;
(iii) it can be quenched by a non-photochemical trapping center, in which case the process is
called non-photochemical quenching (NPQ); and (iv) it can be re-emitted as a fluorescence
emission [132,133].

Figure 6. Conceptual illustration of the distribution of absorbed solar radiation in plant leaves,
adapted from Frankenberg et al. [133].

A detailed introduction to the physiological and biochemical processes related to
the emission of SIF can be referred to in Jonard et al. [134]. SIF has a notable potential in
agricultural drought monitoring, and is beneficial for drought early warning due to its
response to early water stress, which can be a precursor to impending agricultural drought,
large scale vegetation dieback and community shifts. At the early stage, crop water stress
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is not readily apparent, causing a failure to recognize impending vegetation dieback before
the process has advanced beyond recovery. In contrast, early stress can be reflected via
SIF since SIF is an immediate signal of plant photosynthetic status [132,135–137]. Studies
based on leaf- and canopy-level experiments have demonstrated the possibility of using
SIF to track diurnal changes caused by heat and water stress [138,139].

To calculate solar-induced chlorophyll fluorescence, the Fraunhofer Line Depth
method [131], leaf and canopy fluorescence simulations using Fluorescence Model (Fluor-
MOD) [140] and Soil-Canopy Observation Photosynthesis and Energy fluxes (SCOPE) are
used [141]. The amount of chlorophyll fluorescence emitted by a leaf under natural sunlight
only makes up to 1–3% of the absorbed light in the visible part of the spectrum, making
it hard to quantify [131]. At Fraunhofer lines, however, fluorescence can be quantified
because there is no reflected light at those wavelengths. In recent decades, several space
missions have been utilized for global SIF measurements, and a space mission targeted at
SIF, the FLuorescence EXplorer (FLEX), is planned to be launched in 2024, which will offer
a much higher spatial resolution. A summary of related missions can be seen in Table 2.

Table 2. Summary of satellite missions capable of solar-induced chlorophyll fluorescence measurements.

Mission Sensor Time Range References

Greenhouse gases Observing SATellite (GOSAT)
Thermal And Near-infrared Sensor for carbon
Observation Fourier Transform Spectrometer
(TANSO-FTS)

2009–Now [142,143]

GOSAT-2 TANSO-FTS/2 2018–Now [144]

Meteorological Operational satellite (MetOp) Global Ozone Monitoring Experiment-2
(GOME-2)

2006–Now (MetOp-A);
2012–Now (MetOp-B);
2018–Now (MetOp-C)

[145–147]

Environmental Satellite (EnviSat) SCanning Imaging Absorption spectroMeter for
Atmospheric CHartographY (SCIAMACHY) 2002–2012 [146,147]

MEdium Resolution Imaging Spectrometer
(MERIS)

Orbiting Carbon Observatory (OCO-2) Orbiting Carbon Observatory (OCO) 2014–Now [148]

Sentinel-5 Precursor (S-5P) TROPOspheric Monitoring Instrument
(TROPOMI) 2017–Now [149]

Carbon Dioxide Observation Satellite (TanSat) Atmospheric Carbon dioxide Grating
Spectrometer (ACGS) 2016–Now [150–152]

FLuorescence EXplorer (FLEX) FLuORescence Imaging Spectrometer (FLORIS) 2024 (Planned) [153,154]

3. Thermal Remote Sensing
3.1. Thermal Properties of Crops and Soil

Thermal infrared sensors mainly receive the thermal radiation emitted by the Earth
itself, and its amplitude is related to the land surface temperature (LST) and land surface
emissivity (LSE):

L(λ, T) =
∫ λ2

λ1

εs(λ)µ(λ, T)h(λ)dλ (9)

where T is the LST, λ is the wavelength, L(λ, T) is the spectral radiance received by a
thermal sensor, εs(λ) is the LSE, which is a function of λ, µ(λ, T) is the Planck function,
and h(λ) represents the spectral response function. The integral of dλ is done within the
sensitive range [λ1, λ2] of the sensor. Thus, parameters, such as surface temperature and
surface emissivity, can be retrieved after radiation calibration and atmospheric correction of
the thermal radiation signal received by the spaceborne thermal infrared sensor. It should
be noted that LST is a skin temperature, reflecting the temperature of the top 1–2 mm of
the soil for bare surfaces [155,156].

Under severe water stress, the evaporation of soil remarkably declines [157]. Mean-
while, the decrease of the stomatal conductance of crop leaves leads to the inhibition of
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transpiration [158,159]. The decline of evapotranspiration thus contributes to the rise in
the observed LST. Moreover, the difference between the leaf/canopy temperature and the
air temperature also increases [160].

LSE is also affected by soil moisture. Experiments [161,162] show that the LSE of
soil can increase up to 16–17% after wetting; the change varies for different soil types.
Mira et al. [163] further shows that it is possible to retrieve soil moisture from LSE with a
standard estimation error of about ±0.08 m3 ·m−3, but this method depends on known
organic matter content and thus is not feasible for remote sensing use.

Another important thermal property of the land surface is the thermal inertia, which
is defined as follows:

P =
√

Kρcp (10)

where P is the thermal inertia, K is the thermal conductivity, ρ is the density, and cp is
the specific heat at a constant pressure [164,165]. Because K, ρ and cp all increase with
increasing soil moisture [166], soil with higher moisture content has higher thermal inertia
and a smaller diurnal temperature difference, and vice versa. In contrast to LST, thermal
inertia is a bulk property and can reflect the change of root-zone soil moisture [165].

3.2. Thermal Inertia as a Drought Indicator

Watson [167] constructed a simple forward model to simulate the temperature of
terrestrial objects. In this model, the attributes of terrestrial objects (thermal inertia, albedo,
and emissivity), meteorological factors (transmission, effective air temperature), loca-
tion (latitude), and season (solar declination) are set as input parameters. Subsequently,
Pohn et al. [164] proposed an empirical formula based on simulated data to invert the
thermal inertia of terrestrial objects based on albedo and diurnal temperature difference. It
was found that inversion results are closely related to soil density and interstitial water
content and have considerable potential for application in near-surface moisture moni-
toring. Price [168] constructed a thermal inertia inversion model using thermal infrared
observations from the Synchronous Meteorological Satellite-2 (SMS-2). This model is more
universal than the empirical formula developed by Pohn et al. [164]. Price [169] further
developed the theoretical model of Price [168] and successfully applied it to data of the
Heat Capacity Mapping Mission (HCMM). By analyzing the relationship of the inversion
results with the soil moisture and the evaporation rate, it was revealed that the 24-h mean
surface temperature is sensitive to the mean evaporation rate, whereas the diurnal tem-
perature difference is sensitive to the near-surface soil moisture. This finding indicates
that space-borne thermal infrared data has potential applications in assessing the surface
water budget.

Nevertheless, most thermal inertia inversion models require meteorological parame-
ters as inputs, which are difficult to acquire through remote sensing [170]. This requirement
complicates thermal inertia inversion but can be addressed by apparent thermal inertia
(ATI), a simpler alternative to thermal inertia, defined as

ATI =
C(1− α)

Tday − Tnight
(11)

where C is a constant coefficient, α is the surface albedo, and Tday and Tnight are day/night
LST [171].

ATI products have been used to characterize the diurnal temperature change of the
land surface. The algorithmic method of ATI is simpler than that of thermal inertia because
it does not require input parameters that satellites are unable to offer. Watson [172] and
Kahle and Alley [173] initially verified the feasibility of ATI products for soil moisture mon-
itoring, and many researchers have followed their footsteps [165,174–176]. However, the
ATI method assumes that the effect of soil evaporation on temperature changes is negligible.
This assumption is invalid in areas experiencing considerable soil evaporation [171].
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The thermal inertia and ATI methods are mainly applied to soil moisture inversion
under bare soil or sparse vegetation conditions [168,177]. Therefore, the thermal inertia
and ATI need to be modified under dense vegetation conditions [170,178,179].

3.3. Temperature-Based Drought Indices

To retrieve parameters such as thermal inertia or ATI, diurnal surface temperature
changes have to be determined. However, many widely used thermal sensors do not
provide nighttime data products, e.g., Landsat-8 [180], limiting the application of thermal
inertia to sensors that offer day-night observations, e.g., MODIS [181].

To monitor drought severity from a single thermal observation, additional information
is needed. Kogan [102] used the maximum and minimum changes in surface temperature
to monitor agricultural drought and constructed the TCI by using a long time-series of
daytime LST:

TCI = 100
Tmax − T

Tmax − Tmin
(12)

where T is the smoothed weekly temperature, and Tmax and Tmin are the multi-year
maximum and minimum. Originally, the brightness temperature is used as T for
simplicity [102,182], while LST is used instead in the most recent literature to exclude
the influence of the atmosphere [183–185]. Similar to VCI, TCI weakens the impact of
the uncertainty of the relationship between drought and LST on drought assessment by
integrating historical data as a reference [186]. The advantage of TCI is that its calculation
is simple and requires lower temporal resolution than thermal inertia or ATI. Nevertheless,
the calculation of TCI requires accumulating a long time series of surface temperature
data that must include extremely dry and wet conditions to ensure representativeness. In
addition, seasonal variation in surface temperature influences TCI. In different seasons, the
same drought conditions can lead to different TCI values, which adds to the uncertainty of
TCI [187].

McVicar et al. [188] and Jupp et al. [189] constructed the Normalized Difference
Temperature Index (NDTI) by applying daytime surface temperatures obtained from
the Advanced Very High Resolution Radiometer (AVHRR) to eliminate the influence of
seasonal changes. The NDTI is defined as:

NDTI =
T∞ − Ts

T∞ − T0
(13)

where T∞ is the LST when the composite surface resistance rs is infinity and the evap-
otranspiration (ET) is zero, Ts is actual LST, T0 is the LST when rs is zero and the ET is
equal to the potential ET. The actual LST can be obtained through thermal remote sensing,
and the LST under boundary conditions can be obtained by inverting a resistance energy
balance model (REBM) [190]. In contrast to TCI, NDTI does not need a long time series:
only a single observation phase is required for calculation. NDTI does not suffer from
seasonal changes and is a close approximation to soil moisture availability. Given the latter
characteristic, NDTI can be used as an easily calculable surrogate for moisture availability
in drought monitoring [187]. The simulation of LST under boundary conditions, however,
relies on high-resolution meteorological parameters. Thus, the application of the NDTI is
limited because meteorological data associated with satellite observation times are often
difficult to obtain.

When the temporal resolution of surface temperature data is no longer an issue, as
in the case of geostationary satellites, Hu et al. [191] proposed a new index called the
Temperature Rise Index (TRI), defined as:

TRI =
(dT/dt)max − (dT/dt)i

(dT/dt)max − (dT/dt)min
(14)
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in which dT/dt is the slope of the LST-time fitting line for the observations within the
time span of 1.5–3.5 h after the sunrise. Furthermore, (dT/dt)i is the average value
for a compositing period, and (dT/dt)max and (dT/dt)min are the maximum and min-
imum for the same period among multiple years. When evaluated over the Australian
wheatbelt using the Multifunction Transport Satellite-2 (MTSAT-2) data, the TRI showed
a strong correlation with precipitation and soil moisture anomalies, and its correlations
with wheat yields peaked higher and earlier by almost one month in comparison to other
indices [191], implying the great potential of geostationary satellite observations for agri-
cultural drought monitoring.

Table 3 gives an overview of the indices mentioned in this section.

Table 3. Summary of thermal indices suitable for agricultural drought monitoring.

Index Expression Notes Year Introduced Applications

Apparent Thermal
Inertia (ATI)

C(1− α)

Tday − Tnight

C is a constant coefficient, α is the surface
albedo, and Tday and Tnight are
day/night LST

1985 [171] China [192],
Thailand [165]

Normalized Difference
Temperature Index (NDTI)

T∞ − Ts

T∞ − T0

T∞ is the LST when the composite
surface resistance rs is infinity and the
evapotranspiration (ET) is zero, Ts is
actual LST, and T0 is the LST when rs is
zero and the ET is equal to the potential
ET

1992 [188] Australia [187]

Temperature Condition
Index (TCI) 100

Tmax − T
Tmax − Tmin

T is the smoothed weekly temperature,
and Tmax and Tmin are the multi-year
maximum and minimum

1995 [102] U.S. [102]

Temperature Rise
Index (TRI)

(dT/dt)max − (dT/dt)i

(dT/dt)max − (dT/dt)min

(dT/dt)i is the average value for a
compositing period, and (dT/dt)max
and (dT/dt)min are the maximum and
minimum for the same period among
multiple years

2020 [191] Australia [191]

4. Combination of Optical and Thermal Remote Sensing

As has been stated in the previous sections, both the vegetation indices (VI) from
optical remote sensing and the land surface temperature (LST) from thermal remote sensing
are closely related to vegetation growth conditions and soil moisture. VI can reflect
vegetation growth status and leaf water content underwater stress through the various
combinations of VIS, NIR, or SWIR reflectance spectra of green plants [193], while LST
can be used to indirectly reflect soil moisture conditions under the same vegetation cover
conditions [194]. On the other hand, despite the difference in internal mechanisms (optical
remote sensing relies on the reflectance of solar radiation, while thermal remote sensing
measures the emission of the land surface itself), optical and thermal remote sensing often
share similar spatiotemporal resolutions and data availability, for many satellite sensors
have optical and thermal detecting capabilities at the same time, e.g., AVHRR [182,195],
MODIS [196,197], and the Visible/Infrared Imager Radiometer Suite (VIIRS) [198,199].
These two respects form the mechanical and practical foundations for the combination of
optical and thermal remote sensing in agricultural drought monitoring [200,201].

4.1. Simple Integrations

The most straightforward approach is to construct a drought index using VI and LST
at the same time. Carlson et al. [202,203] first used the ratio of LST to NDVI as an indicator
of surface soil moisture, which was later named the Vegetation Supply Water Index (VSWI)
and has been widely applied as a drought index [204–206].



Remote Sens. 2021, 13, 5092 16 of 34

Based on VCI and TCI, the Vegetation Health Index (VHI) was proposed by
Kogan [102,186,207,208]. It was originally named V/TCI in Kogan [102], VCI/T4 in
Kogan [186], and VTI in Kogan [207]. VHI is a linear mixture of VCI and TCI:

VHI = αVCI + (1− α)TCI (15)

In Kogan [102], α = 0.7 was suggested, while in most later works, α = 0.5 was used
as a default value [184,186].

Kogan [102] mentioned that the weighting coefficient α could be calibrated via
correlation analysis on the validation dataset but did not provide a practical scheme.
Bento et al. [183,185] proposed a reference-based method, in which the Standardized
Precipitation-Evapotranspiration Index (SPEI) was used as a reference to estimate the
value of α. From their findings, VCI could dominate as high as 80% for dry land pixels,
which suggests that a larger α should be chosen for drought monitoring.

4.2. The Concept of Temperature-Vegetation Space

Simple integrations like VSWI or VHI are easy to apply while lacking a solid physical
foundation, and thus cannot be theoretically interpreted. Emerging for the first time in
the 1990s, the Temperature-Vegetation space (also called LST-FVC or LST-VI space in
other literature; here, LST is short for Land Surface Temperature, and FVC is short for
Fractional Vegetation Cover) is considered to be a vital tool for estimations of surface
energy fluxes and soil moisture [209]. As the name suggests, the space leverages both
LST from thermal observation and vegetation conditions, usually from optical remote
sensing. The basic idea is that LST, and, by association, the surface turbulent energy
fluxes, are sensitively dependent on soil moisture and water fluxes Carlson [200], and
this dependence can be modulated by vegetation through the process of transpiration
Jasechko et al. [210]. Practically, the space appears when drawing LST-FVC or LST-VI pairs
obtained from a remotely sensed image as a scatter plot. Since the outline of the scatter
plot is usually a triangle or a trapezoid, the Temperature-Vegetation space is also called the
triangle or trapezoid space. Simulations using several soil/vegetation/atmosphere transfer
(SVAT) models also strongly support the existence of such a triangular or trapezoidal
outline [200,211].

Figure 7 conceptually illustrates the evolution of the understanding of the Temperature-
Vegetation space. The most significant properties of the Temperature-Vegetation space are
the wet edge and the dry edge, which are the lower and the upper boundary of the triangle
or trapezoid, respectively. In some literature, e.g., Carlson [200], the wet edge is also called
the cold edge, while the dry edge is also called the warm edge.

The difference between the triangle and the trapezoid lies in the temperature variation
under full vegetation coverage. In the triangle (Figure 7a), vegetation transpiration is
considered to occur at near potential regardless of the surface soil moisture, so there is
no temperature variation when a pixel is fully covered by vegetation (Tv is a constant).
This assumption precludes any analysis of the water stress on vegetation [200]. In the
trapezoid (Figure 7b), however, vegetation is no longer considered to be unaffected by soil
moisture variation. Thus, there is temperature variation from Tmin

v to Tmax
v even under full

vegetation coverage.
Recently, a two-stage explanation of the Temperature-Vegetation trapezoid has at-

tracted much attention. Conventionally, the sloping straight lines connecting quantile
points on the left and the right border of the trapezoid (dashed lines in Figure 7b) are
considered to be soil moisture availability isopleths, based on the assumption that soil
evaporation and vegetation transpiration change synchronously. Nevertheless, due to the
difference in their direct source (surface soil moisture for soil evaporation and root-zone
soil moisture for vegetation transpiration), this assumption can hardly hold [211]. In the
two-stage trapezoid(Figure 7c), however, it is assumed that soil evaporation varies first,
while vegetation transpiration does not start to change until the surface soil moisture
availability drops to 0 (“Dry Edge I” in Figure 7c). Thus, points which fall below the
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Dry Edge I have near-potential vegetation transpiration, while points above Dry Edge I
have minimum soil evaporation. In this way, both surface and root-zone soil moisture
availability can be obtained. According to Sun [211]’s simulations (Figure 4 in the same
paper), although there are still some mismatches, the two-stage explanation better reflects
the variation of surface and root-zone soil moisture.

0 1
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s

Tv
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Figure 7. Evolution of the Temperature-Vegetation space (adapted from Sun [211]). (a) Triangle;
(b) trapezoid; (c) two-stage trapezoid.

No matter which hypothesis is chosen (triangle, trapezoid, or two-stage trapezoid),
once the outline is determined, the soil moisture availability of a given (FVC, T) pair can
be easily calculated. Therefore, the primary issue is to determine the outline. There are
generally three ways to solve this issue: visual recognition, automatic fitting, and theoretical
calculation [212]. Visual recognition relies on human experience and judgment and has
great subjectivity and uncertainties. Automatic fitting is usually based on a set of rules to
find representative pixels for the dry edge and the wet edge or exclude outliners (usually
water and cloud pixels). The chosen (if representative pixels are picked) or remaining (if
outliners are excluded) pixels are used in the regression of a linear or nonlinear expression
of the dry/wet edges. Tang et al. [213] is a good example of such methods. However,
these methods still have some empirical parameters which require fine-tuning for different
regions and datasets, and they also lack physical interpretability. Moreover, if the study
area does not have extremely dry and wet pixels as well as bare and fully vegetation-
covered pixels at the same time, these methods may yield biased outputs. In contrast,
the theoretical calculation is directly based on the energy balance equation, facilitating
the understanding and interpretation of the dry/wet edges’ physical meanings. They
can be applied to any area, or even a single pixel [214], regardless of its coverage of the
Temperature-Vegetation space [212,215,216]. A major drawback of theoretical methods is
their dependence on meteorological data such as surface air temperature, wind speed, or
roughness length, which are difficult to obtain from remote sensing.

The capability of detecting both surface and root-zone soil moisture status ensures
the value of the Temperature-Vegetation space in drought monitoring. Nevertheless,



Remote Sens. 2021, 13, 5092 18 of 34

one should take caution that the Temperature-Vegetation space is not suitable for certain
subarctic or arctic regions where temperature, instead of water, is the primary limit of
vegetation growth [217].

4.3. Applications of the Temperature-Vegetation Space in Drought Monitoring

First utilized in evapotranspiration estimation in the 1990s [209], the Temperature-
Vegetation space began to be used in drought monitoring soon after. Based on the triangular
Temperature-Vegetation space, Wang et al. [194] developed the Vegetation Temperature
Condition Index (VTCI):

VTCI =
LSTmax

NDVIi
− LSTNDVIi

LSTmax
NDVIi

− LSTmin
NDVIi

(16)

LSTmax
NDVIi

= a1 + b1NDVIi (17)

LSTmin
NDVIi

= a2 + b2NDVIi (18)

where LSTmax
NDVIi

and LSTmin
NDVIi

represent the maximum and minimum LST of pixels with
the same NDVIi value in the study area, respectively. a1, a2, b1, and b2 are the coefficients
of the fitting equation for the LST and NDVI of the dry and wet edges. From the discussion
above, it can be seen that VTCI is equivalent to the soil moisture availability defined in
the conventional trapezoid. Patel et al. [197] verified the feasibility of applying VTCI
in monitoring drought threats in India by using MODIS/Terra NDVI and LST 8-day
composition products.

Similarly, Sandholt et al. [218] established the Temperature Vegetation Dryness In-
dex (TVDI):

TVDI =
LST− LSTmin

a + b ·NDVI− LSTmin
(19)

TVDI is almost equivalent to VTCI (ideally, VTCI = 1− TVDI); however, the wet edge is
assumed to have a constant temperature LSTmin instead of a linear function of NDVI. Due
to its simplicity and clarity, TVDI is one of the most widely used remote-sensing-based
drought indices [219].

Besides LST and FVC (or by proxy NDVI), other physical variables have also been
exploited in constructing the Temperature-Vegetation space. Petropoulos et al. [220] made
a comprehensive review of different variable combinations. LST has been substituted with
surface-air temperature difference [221] and day-night temperature difference [222], while
FVC/NDVI has been substituted with surface albedo [223]. The improved TVDI (iTVDI)
proposed by Rahimzadeh-Bajgiran et al. [224] used the surface-air temperature difference
∆T = Ts − Ta for the temperature axis and was found to have stronger relationships with
precipitation and soil moisture than the traditional TVDI; thus, it was considered to be a
better indicator of water stress.

Such attempts have continued in recent decades. For instance, Liu et al. [225] assessed
a long-term drought across China using the Microwave TVDI (MTVDI), which has the same
form as TVDI but uses the microwave brightness temperature instead of thermal infrared
LST, and Microwave NDVI (MNDVI), which is based on the Microwave Polarization Differ-
ence Index (MPDI) instead of optical NDVI. Zhang et al. [226] proposed the Temperature
Fluorescence Drought Index (TFDI), which replaces NDVI with SIF. Applications in Henan
Province, China, showed that this new drought index could effectively reflect the severity
of the agricultural drought. It should be noted here that such replacements still need to be
evaluated and validated by physical models (e.g., the SVAT models) to be better calibrated
and illustrated.

A potential improvement lies in the usage of the two-stage trapezoid in drought
monitoring. Currently, the two-stage trapezoid is mainly used for evapotranspiration
estimation [227], while the drought monitoring community has not widely adopted
this concept.
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Table 4 gives an overview of the drought indices in this section.

Table 4. Summary of optical-thermal combined indices suitable for agricultural drought monitoring.

Index Expression Notes Year
Introduced Applications

Vegetation Supply Water
Index (VSWI)

LST
NDVI

1990 [202] China [204],
Brazil [205,206]

Vegetation Health Index
(VHI) αVCI + (1− α)TCI α is an empirical coefficient 1995 [102]

U.S. [102,186,207],
Indonesia [228],
Euro-Mediterranean [183],
Ethiopia [229]

Vegetation Temperature
Condition Index (VTCI)

LSTmax
NDVIi

− LSTNDVIi

LSTmax
NDVIi

− LSTmin
NDVIi

LSTmax
NDVIi

and LSTmin
NDVIi

represent the
maximum and minimum LST of pixels with
the same NDVI value

2001 [194] China [194,230], India [197]

Temperature Vegetation
Drought Index (TVDI)

LST− LSTmin

a + b ·NDVI− LSTmin

a and b are fitting coefficients of LSTmax and
NDVI 2002 [218] Senegal [218], China [231],

Turkmenistan [232]

Improved TVDI (iTVDI) ∆T − ∆Tmin

∆Tmax − ∆Tmin

∆T = Ts − Ta is the difference between LST
and the surface air temperature 2012 [224] Iran [224]

Microwave TVDI
(MTVDI)

LST− (a2 + b2 ·MNDVI)
a1 + b1 ·MNDVI− (a2 + b2 ·MNDVI)

MNDVI is the Microwave NDVI calculated
from the Microwave Polarization Difference
Index (MPDI), a1 and b1 are fitting coefficients
of LSTmax and MNDVI, and a2 and b2 are
fitting coefficients of LSTmin and MNDVI;
there is also iMTVDI which is similar to iTVDI

2017 [225] China [225]

Temperature
Fluorescence Drought
Index (TFDI)

LST− (a2 + b2 · SIF)
a1 + b1 · SIF− (a2 + b2 · SIF)

a1 and b1 are fitting coefficients of LSTmax and
SIF, and a2 and b2 are fitting coefficients of
LSTmin and SIF

2020 [226] China [226]

5. Multi-Source Data and Data Assimilation
5.1. Combination of Remote Sensing and Other Data Sources

Meteorological indicators can reflect the cause and development of agricultural
drought, while remote sensing indicators can directly describe the state and influence
of agricultural drought. The combination of existing remote sensing and meteorological
indicators has already proven to be beneficial for the comprehensive monitoring of agri-
cultural drought [233–235]. Except for comprehensive utilization of existing indicators,
a series of agricultural drought monitoring models and methods that combine remote
sensing and meteorological data have been constructed.

Soil moisture budgets affect vegetation transpiration directly, which in turn changes
vegetation canopy temperature [236,237]. Idso et al. [238] found that the difference between
the foliage temperature and the air temperature of the crop under potential evaporation
conditions is linearly correlated with the vapor pressure deficits of the air. The crop water
stress index (CWSI) is proposed as:

CWSI =
∆T − ∆TPE

∆TNE − ∆TPE
(20)

where ∆T = Tf − Ta refers to the difference between crop foliage temperature and the
air temperature [238]. ∆TPE is the difference between the foliage temperature and the air
temperature in the potential evaporation state of the crop and is the lower limit of the
temperature difference, while ∆TNE is the difference between the foliage temperature and
the air temperature of a crop in the absence of transpiration and is the upper limit of the
temperature difference.

Since foliage temperature cannot be obtained from the space, Jackson et al. [239]
replaced the foliage temperature in CWSI with the canopy temperature. With CWSI,
thermal infrared (canopy temperature) and meteorological data (air temperature) are
combined to invert soil moisture under crop cover conditions indirectly. This method
is based on the principle of energy balance and has a clear physical meaning and high
precision. The soil moisture inversion accuracy of the CWSI in vegetated areas is better
than that of the thermal inertia method. However, CWSI also has its limitations. CWSI has
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a poor effect when the canopy is sparse, which is the actuality during the early stage of
crop growth. Moreover, massive input data are required for model calculation, and the
calculation is complicated. The errors introduced by the surface meteorological data in
scale expansion also affect the accuracy of CWSI.

CWSI can only be applied under the condition of full vegetation coverage.
Moran et al. [221] combined VI and LST to expand the application of the CWSI theory to
partially-vegetated conditions and established the water deficit index (WDI). The WDI
can be used to estimate the relative soil moisture based on the trapezoidal feature space
characterized by the VI and the surface-air temperature difference. The WDI replaces ∆T
in the CWSI with ∆T′ = Ts − Ta, in which Ts is the surface composite temperature, which
can be seen as a weighted average of crop leaf temperature and soil surface temperature.
In contrast to CWSI, WDI is applicable in agricultural drought monitoring under various
vegetation cover conditions. Like CWSI, WDI requires air temperature as its input; it
cannot be calculated only using remote sensing data.

Anderson et al. [240] proposed the atmosphere–land exchange (ALEXI) model, which
uses thermal infrared data from the Geostationary Operational Environmental Satellite
(GOES) and LAI products from MODIS to simulate daily ET at a 10-km spatial resolution.
Besides the remote sensing data, the ALEXI model also requires shelter-level wind speed
and air temperature data. Based on the ALEXI model, Anderson et al. [241] constructed
the Evaporative Stress Index (ESI) as a water stress indicator for drought monitoring:

ESI = 1− fPET = 1− E
PET

(21)

where E is the actual ET fluxes from the system (canopy and soil), and PET is the potential
ET rate. ESI shows strong correlations with Palmer’s Drought Severity Index (PDSI) and
monthly precipitation anomalies. ESI is constructed based on surface energy balance and
accounts for the effects of available energy and atmospheric conditions on LST. This makes
it applicable in both water-limited and energy-limited situations [241,242].

5.2. Data Assimilation

Data assimilation can improve the accuracy of inversed parameters (e.g., LAI and soil
moisture) by assimilating observation information into dynamic models (here, a dynamic
model is a discrete stochastic-dynamical system whose parameters may include the exter-
nal forcings or the boundary conditions [243]) and minimizing the differences between
observed and simulated values [243–246]. The temporal resolutions of dynamic models
are usually higher than those of remote sensing data, thus addressing the discontinuity
of remotely sensed data. As for drought monitoring, data assimilation can improve the
accuracy and temporal resolution of soil moisture inversion. Moreover, the root-zone soil
moisture could be acquired through assimilating remote sensing data into hydrological
models, which is critical for evaluating agricultural drought [247]. However, most remote
sensing detection methods can only obtain surface soil moisture [248,249]. When drought
occurs, surface soil moisture is decoupled from root-zone soil moisture, and the vertical
gradient of soil moisture cannot be directly retrieved [250,251]. In recent years, it has
become a notable trend to assimilate remote sensing soil moisture products and related
meteorological factors into dynamic models [251–259].

The ensemble Kalman filter (EnKF) is currently the mainstream method for data
assimilation [260–263]. Margulis et al. [260] and Reichle et al. [261] demonstrated that the
inversion accuracy and efficiency of soil moisture could be improved by assimilating mi-
crowave data into the land surface and radiative transfer models with EnKF. Zhu et al. [262]
proved that the precision of simulated soil moisture of the Boreal Ecosystem Production
Simulator (BEPS) in arid and semi-arid areas was higher after assimilating inversed soil
moisture of remote sensing. Crow and Yilmaz [263] constructed the Auto-Tuned Land Data
Assimilation System (ATLAS) to analyze soil moisture anomalies and monitor drought by
assimilating the rainfall data and soil moisture inversed with remote sensing. Apart from
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soil moisture, Silvestro et al. [264] also used EnKF to assimilate other parameters (e.g., LAI,
FVC, fraction of absorbed photosynthetically active radiation (FAPAR) and chlorophyll
content, which are inversed mainly with optical remote sensing) into the AcquaCrop model
and estimated the loss of wheat grain yield caused by drought.

Root-zone soil moisture can be obtained from surface moisture conditions with the
utilization of dynamic models, especially in the context of microwave remote sensing. It has
been demonstrated that the assimilation of the Advanced Microwave Scanning Radiometer
for Earth Observing System (AMSR-E) as well as the Scanning Multichannel Microwave
Radiometer (SMMR) soil moisture to NASA’s Catchment land surface model can achieve
higher accuracies in both surface and root-zone soil moisture estimation [265,266]. Sub-
sequent studies have made use of more data sources, e.g., the Advanced SCATterometer
(ASCAT, active microwave), the Soil Moisture and Ocean Salinity (SMOS, passive mi-
crowave), the Soil Moisture Active Passive (SMAP, activate/passive microwave) and
GRACE (gravity), and further enhanced the retrieval of root-zone soil moisture [267–272].

The correlation between surface and root-zone soil moisture is often nonlinear or non-
significant [273]. For hydrological models with nonlinear expressions, it is inappropriate to
assume that errors in EnKF follow a Gaussian distribution. Moreover, linear updating rules
might violate the conservation of mass [274]. To solve this problem, Moradkhani et al. [275]
noticed that the particle filter (PF) method could relax the Gaussian hypothesis while
conforming to the conservation of mass. Additionally, PF does not rely on the cross-
covariance between the surface and root-zone soil moisture. Therefore, PF is considered
more suitable than EnKF for estimating soil moisture in the root zone [276]. Subsequently,
the PF-MCMC method combining PF with Markov Chain Monte Carlo (MCMC) was
proposed [275], which can effectively improve the accuracy of soil moisture estimation in
the root zone. This method was later validated by Yan and Moradkhani [277], and utilized
in drought monitoring of spring and winter wheat over the entire continental United States
(CONUS) [278].

The above data assimilation methods can estimate soil moisture more accurately
and obtain the root-zone soil moisture vital to agriculture. Thus, better decisions and
management become possible when we are faced with agricultural droughts.

6. Perspectives

Thanks to the rapid development of satellite sensors and the outstanding contributions
of many researchers, the use of remote sensing in the monitoring of agricultural drought
has been dramatically expanded ever since the 1960s. This paper introduced the physi-
cal mechanisms behind agricultural drought monitoring via optical and thermal remote
sensing, summarized classical and state-of-the-art models and methods, and explained
how sensor advancement has contributed to better monitoring of agricultural drought.
Reviewing the past and looking to the future, we suggest that in future research onthe
remote sensing of agricultural drought, the following aspects should be prioritized.

6.1. Early Detection of Drought

In contrast to many other natural hazards, drought does not happen immediately.
Instead, it is the accumulated consequence of continuous water scarcity. It then becomes
crucial whether we could detect agricultural drought at an early stage so that quick actions
can be taken to prevent crops from being damaged. Traditional VIs such as NDVI can reflect
crop water deficit, but only after it has lasted long enough to cause greenness changes.
Solar-induced fluorescence is a very promising early indicator of agricultural drought [132],
and as has been introduced in Section 3, much research has been carried out to investigate
how to monitor agricultural drought with SIF [226,279]. However, more work still needs to
be done to elaborate on the physiological bond between water stress and SIF, especially at
the spatial scale of satellite remote sensing [132,134].
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6.2. Improvements in Spatiotemporal Resolution

Most satellite remote sensing data are not available at high spatial and temporal
resolutions simultaneously, meaning that they cannot fully meet the requirements of
precision agriculture. Due to the characteristics of different crop growth stages and
spatial heterogeneity of soil conditions (e.g., micro-typography, texture, moisture, nu-
trient status), frequent observations at a high spatial resolution are needed during the
entire crop growth period to determine the precise timing and location of irrigation
or fertilization [280]. Concerning drought monitoring, precision agriculture has exerted
higher technical demands [281,282]. Faced with the challenge, researchers have experimen-
tally applied the unified system of satellites, unmanned aerial vehicles (UAVs) [283,284],
and ground-based sensor networks [285] to the monitoring of agricultural drought [286].
Well-designed space-air-ground coordination can provide more accurate information on
spatially heterogeneous farmland conditions. We can thus perform precision irrigation
to stem water deficits before damage and losses are caused. With regards to continuous
observation, geostationary satellites and virtual satellite constellations are also going to
play more significant roles [287].

6.3. Organic Combination with Other Data Sources

This paper focuses on optical and thermal remote sensing, whereas many other data
sources have also been utilized in agricultural drought monitoring [288]. These include
microwave remote sensing, LiDAR, gravity remote sensing (e.g., GRACE), and other non-
remote-sensing data sources. The most significant obstacle lies in that the mechanisms
behind each data source can be dramatically different. For example, optical and thermal
remote sensing mainly captures the information of the “skin” of the land surface [155,156],
while microwaves can have a penetrating depth ranging from several centimeters to several
decimeters. The gap is even more prominent when comparing remote sensing data with
station-based or reanalyzed meteorological or hydrological data. It is acceptable to combine
different data sources through some machine learning processes [289–291], but it would be
better to have a better depiction of the underlying physical mechanisms and find out how
to coalesce their information while minimizing obfuscation errors. That is why models
with better comprehensibility and interpretability are preferred .

6.4. Smart Prediction and Assessment

At present, massive remote sensing and meteorological data pose new challenges
to existing empirical and theoretical methods. These methods need to be corrected or
adjusted according to specific regions and crop species, thereby limiting the accuracy of
monitoring agricultural drought on a large scale. In this context, the deep learning method
and cloud computing on Google Earth Engine (GEE) [292] or Amazon Web Services
(AWS) [293] is increasing in popularity because of its ability to process, analyze, and
effectively mine information in a large area promptly. Some researchers have applied deep
learning methods to agricultural drought prediction and assessment successfully [294–297].
However, deep learning has its limitations. At present, the mainstream models require
a huge amount of labeled training data, and the workload of marking remote sensing
images is very heavy [298]. A possible way to make up for this efficiency is to integrate
knowledge-driven drought expert systems [299], which can structurize expert knowledge
and experience flexibly with the support of a cloud computing ecosystem. The combination
of deep learning and expert systems within cloud computing can make the intelligence of
agricultural drought prediction and assessment more adaptive and promising from field to
global scales.
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