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Abstract: The Caucasus is a diverse region with many climate zones that range from subtropical
lowlands to mountainous alpine areas. The region is marked by irrigated croplands fed by irrigation
canals, heavily vegetated wetlands, lakes, and reservoirs. In this study, we demonstrate the develop-
ment of an improved surface water map based on a global water dataset to get a better understanding
of the spatial distribution of small water bodies. First, we used the global water product from the
European Commission Joint Research Center (JRC) to generate training data points by stratified
random sampling. Next, we applied the optimal probability cut-off logistic regression model to
develop surface water datasets for the entire Caucasus region, covering 19 Landsat tiles from May
to October 2019. Finally, we used 6745 manually classified points (3261 non-water, 3484 water) to
validate both the newly developed water dataset and the JRC global surface water dataset using
an estimated proportion of area error matrix to evaluate accuracy. Our approach produced surface
water extent maps with higher accuracy (89.2%) and detected 392 km2 more water than the global
product (86.7% accuracy). We demonstrate that the newly developed method enables surface water
detection of small ponds and lakes, flooded agricultural fields, and narrow irrigation channels, which
are particularly important for mosquito-borne diseases.

Keywords: water index; logistic regression; Landsat; Caucasus; global land cover datasets

1. Introduction

Water is arguably the most essential compound related to carbon-based life [1]. How-
ever, our relationship with water can change with the quantity present in a system. Too
much water—flooding—can cause loss of life and disease prevalence, while not enough
water—drought—can cause famine and dehydration [2]. In addition, there is a relationship
between increased surface water and the abundance of mosquitoes [3]. An increase in
mosquito breeding areas may contribute to an outbreak of malaria in regions that are prone
to such outbreaks, making it worthwhile to detect and quantify surface water in those
regions. Due to limitations in their flight range and survival rate, mosquitoes are restricted
to areas that contain persistent pools of water [4,5]. Human interactions with mosquitoes
are most likely to occur in proximity to mosquito habitats [6]. The South Caucasus is not
typically an area that comes to mind when thinking about malaria outbreaks; however, after
early eradication of malaria in the mid-1900s, this region saw a malaria resurgence in the
mid-1990s to the early 2000s. To better understand which regions have the environmental
potential for another resurgence, we are interested in studying surface water, including
smaller water bodies such as irrigation channels and flooded croplands.

With satellite image availability starting in the 1970s, monitoring the entire water
cycle has been an important area of research [7]. For example, several evapotranspiration
products have been developed using satellite data, such as that from NASA’s Moderate
Resolution Imagining Spectroradiometer (MODIS) [8] and the ESA’s Medium Resolu-
tion Imaging Spectrometer (MERIS) and Advanced Along-Track Scanning Radiometer
(AATSR) [9]. These datasets have subsequently been used and applied in a variety of

Remote Sens. 2021, 13, 5099. https://doi.org/10.3390/rs13245099 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-9244-3292
https://orcid.org/0000-0002-7067-2705
https://doi.org/10.3390/rs13245099
https://doi.org/10.3390/rs13245099
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13245099
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13245099?type=check_update&version=2


Remote Sens. 2021, 13, 5099 2 of 19

research, for example, to predict evapotranspiration over the Nile Delta Region [10]. Signif-
icant efforts have also been made to use satellite data to better understand water quality.
Parameters such as turbidity and chlorophyll-a have long been studied [11,12]. With the
advent of increased computing power and progressively available, highly accurate, re-
motely sensed data, machine learning methods are increasingly applied for water quality
monitoring [13,14].

In this paper we are particularly interested in the detection of surface water. Many
studies around the world have applied Landsat imagery in the detection of surface water
dynamics [15–19]. As a result of the importance of surface water maps, as well as the large
spatio-temporal variability of water bodies, many ways to detect the location and amount
of surface water from space have been developed [20]. Early research in surface water
detection typically applied a simple threshold to single band images, for example, initially
to the near infrared band from Landsat MSS [21], and for subsequent Landsat sensors to
the shortwave infrared band [22]. Others used density slicing, a slightly more complicated
single band method, for example to identify water lines in tidal flats in South Korea [23].
Density slicing using a normalized threshold to allow for varying environments has also
been applied to active remote sensing data to identify Canadian Prairie Potholes [24]. In
other research using RADAR data, normalized thresholds were combined with image
segmentation to detect surface water in Canadian wetlands [25]. However, when using
optical satellite data research has shown that multiband spectral indices are better at
detecting land surface water than single spectral bands [26]. As a result, a very large
number of water indices have been developed [20], with the Normalized Difference Water
Index (NDWI; [27]), Modified NDWI (MNDWI; [28]), Automated Water Extraction Index
(AWEI; [29]), and Enhanced Water Index (EWI; [30]) some of the most frequently used
indices. Since the different spectral indices perform differently depending on regional
characteristics, we have previously evaluated four different water indices (NDWI, MNDWI,
AWEIsh, AWEInsh) and a water detection method based on EVI, NDVI and MNWDI [31]
for three study regions in the South Caucasus [32]. We found that while all of the evaluated
indices were relatively accurate, the MNDWI index resulted in the most accurate open
surface water maps for three regions in the South Caucasus. To derive a water/non-
water map from spectral water indices, threshold methods are often applied. However,
because of variations in the physical environment over space and time, it is often not
straightforward to establish a constant threshold value [32]. Some authors have resorted to
the evaluation of multiple threshold values to determine the most optimal threshold for a
specific region [33]. For example, Jiang et al. (2014) evaluated a series of threshold values to
distinguish water pixels from mountains and urban areas. Others used a confusion matrix
to determine an optimal threshold value [28]. Previously, we have argued that it is possible
and advantageous to use an iterative process to determine the optimal probability cut-off
for each individual image [32]. We apply that same flexible methodology in this paper.

Regardless of the type of data being used or the type of method being applied to
identify surface water, it is well known that training data quality can significantly impact
the accuracy and effectiveness of classification models [34,35]. In the past it was common
to argue that training data should ideally be derived from in situ data [36]. However,
over time the importance of large numbers of training samples has become increasingly
clear [34]. Imbalanced training data due to rare land cover classes such as water is another
common problem in remote sensing classification studies [37]. To solve this imbalance
problem, some researchers have down-sampled majority classes [38], while others have
given rare training observations higher weights [36]. Obtaining quality training data can be
a consumptive process, and cost, time, and processing power are common barriers [39]. In
the early 2000s, the Landsat images themselves, combined with a priori knowledge of the
study area, were sometimes used to create training data in different land cover classifiers
as an alternative to in situ training [40]. In our earlier study we used very high-resolution
images from Google Earth as training data, which is a relatively common approach [32].
However, manual evaluation of training points can be a time-consuming and challenging
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process, resulting in temporally static data that decreases in quality as time increases
from the acquisition date. Some have used previously classified data as training data; for
example, in one paper, the National Land Cover Database (NLCD) was used to classify
MODIS data [41].

Global land cover datasets are increasingly becoming freely available. Besides gen-
eral land cover datasets such as the ESRI 2020 global land use/land cover map de-
rived from ESA Sentinel-2 imagery [42] and the ESA WorldCover 10 m 2020 product
(https://esa-worldcover.org/en, 24 November 2021), the European Commission’s Joint
Research Centre (JRC) has also developed specific land cover datasets such as the Global
Man-made Impervious Surface (GMIS) [28] and Global Surface Water [26]. The JRC Global
Surface Water dataset is a regularly updated water dataset produced from the 30 m Land-
sat archive (1984 to the present) which is highly accurate in the detection of large water
bodies but struggles to detect smaller water features or vegetated water in a flooded land-
scape [32,43]. While global products have important value in providing consistent data
around the globe, it is unrealistic to expect these products to have consistent global accuracy.
Data generated with a local or regional focus may consequently have higher accuracy for
specific areas. Nevertheless, global products can be of enormous value. For example, past
studies have shown that it is possible to improve upon existing global land cover products
by using these global land cover datasets themselves to generate training samples for more
advanced classifications [44,45]. Combining training samples from existing land cover
products with other land cover classification techniques such as random forests (RF) has led
to improvements in accuracy for detecting vegetation compared to the original dataset [46].

For this study, we trained a logistic regression water model based on the Modified
Normalized Difference Water Index (MNDWI) for the Caucasus region using the JRC
Global Surface Water product to establish training points. We improved the detective
capability of the band ratio water index by establishing a relationship between water’s
spectral signature as captured in the index value and a threshold, selected using a logistic
regression model and the optimal probability cut-off (OPC) method. For each probability
map generated by the model we applied the optimal threshold to produce the most
accurate map of water/non-water. We applied the OPC method to data for the entire South
Caucasus region covering the period from May to October 2019. We selected this period
for two reasons: first, the period between May and October is mainly snow-free for most
of the South Caucasus; second, we selected 2019 because it mostly matches the validation
samples collected from the very high-resolution satellite images. In summary, we show that
it is possible to improve water mapping capabilities, especially for smaller water bodies
by taking advantage of existing land cover detection datasets to train and classify more
detailed surface water maps.

2. Background and Study Region

The South Caucasus region is made up of three countries: Armenia, Azerbaijan, and
Georgia. This region hosts many different climate zones ranging from alpine mountains
to subtropical lowland plains [47–49]. From the 1800s, malaria has been prevalent in
the Caucasus Region, with 600,000 cases recorded in Azerbaijan in 1934 [50]. By the
1950s, the annual number of documented malaria cases reached a high of 781,239 [51].
After a comprehensive effort from the Global Malaria Eradication Campaign in the 1960s,
malaria incidents declined, and two malaria species were eradicated. A third malaria
species (P. vivax) escaped elimination and precipitated a surge of malaria cases following
the collapse of the Soviet Union [52]. Malaria even flared up as far north as Moscow
between 1999 and 2008 [53]. The South Caucasus experienced significant land reform
and privatization of the agricultural sector in the 1990s, which led to the segmentation of
large agricultural plots into smaller private and commercially owned farms. This process,
which left irrigation systems degraded in some agricultural areas [47–49], combined with
post-Soviet conflicts in the region (most notably between Armenia and Azerbaijan) to create
the ideal conditions for the resurgence of malaria that occurred from the mid-1990s to the
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early 2000s. The extensive wetland areas in the Caucasus form ideal mosquito breeding
grounds for the Anopheles mosquito, which can carry the P. vivax species of malaria. The
Anopheles mosquito requires persistent breeding pools caused by intraseasonal rainfall
to proliferate. In addition, the warm and humid summers in this region allow for the
maturation of more than one generation of P. vivax sporozoites per year [53].

3. Data and Methods
3.1. Landsat

We used Landsat Collection 1 Surface Reflectance data collected by the Landsat 8
Operational Land Imager (OLI). This is a Level-2 Science Product, atmospherically corrected
using the Land Surface Reflectance Code (LaSRC), with a spatial resolution of 30 m. We
included all images available with less than 30% cloud cover for the South Caucasus region,
consisting of 19 WRS path/rows (Figure 1), for the period from May to October 2019. We
selected images between May and October to avoid extensive periods with snow cover,
which was an issue in higher elevations especially. In addition, we selected the images
from 2019 because it matched the year for most of the very high-resolution images used for
our validation point collection, which was carried out primarily in 2019, with a few more
points collected in 2020. We selected 30% as our cloud cover cut-off because it resulted in a
substantial number of images per path/row; when we lowered the cut-off we found far
fewer images, making the final classification substantially less accurate. In addition, we
found that if we increased our cloud cover cut-off, clouds became a significant problem, and
occasional masking issues where clouds were missed resulted in spurious water detection.
The images include a quality assessment band generated using the CFMask algorithm [54],
which we used to filter cloudy or otherwise corrupted data.
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The 19 Landsat tiles are spread across eight paths (166–173; Figure 1), and each group
of images in a path is processed as a set (for example, path 167 is a set of three path/rows:
167031, 167032, and 167033).

We calculated the Modified Normalized Difference Water Index (MNDWI; Equa-
tion (1), [28]) for each Landsat dataset to train the logistic regression model using sampled
points. In a previous study [32], we evaluated NDWI, MNDWI, AWEIsh, AWEInsh, and
a water classification algorithm based on NDVI/EVI and MNDWI to find surface water
for three different study regions in the South Caucasus. We found that both the MNDWI
and AWEInsh indices resulted in one of the highest overall accuracies, and one of the
lowest levels of water underestimation. However, MNDWI performed slightly better in
mountainous areas. As a result, we have selected MNDWI as our index of choice for this
study. MNDWI is calculated as follows:

MNDWI =
(Green − SWIR1)

(Green + SWIR1)
(1)

3.2. JRC Water Training Data

The JRC Global Surface Water is a regularly updated water dataset produced from
the 30 m Landsat archive (1984 to the present) [26]. The dataset was created by applying
an expert system classifier that segregates pixels into one of three target classes: water,
land, and non-valid. While the water products offered by the JRC are highly accurate in
the detection of large water bodies, they struggle in detecting smaller water features or
vegetated water that results from a flooded landscape [32,43].

We used the JRC Monthly Water History dataset in this study to establish our training
points. We developed the training points as follows: First, for each set of Landsat images
meeting our criteria (those on a given path and date), we selected the corresponding JRC
Monthly Water History map. We then selected a stratified random sample of 1500 points
(750 water, 750 non-water) based on the JRC water map for each Landsat path.

3.3. Validation Dataset

Within the country boundaries of Georgia, Armenia, and Azerbaijan, we indepen-
dently and randomly selected and then evaluated and classified 6491 stratified validation
points (3238 non-water and 3253 water) using Google Earth imagery. The validation points
were collected in 2019 and 2020, and we used the highest resolution basemap available on
Google Earth. The basemap imagery was entirely from Maxar Technologies, Centre na-
tional d’études spatiales (CNES) and Airbus. In other words, the imagery for the basemap
came from the following very high-resolution satellites: Worldview series and Quickbird
(Maxar), Pleiades (CNES), and SPOT 6/7 (1.5 m; Airbus). As a result, the basemap served
on Google Earth which was used for validation had a spatial resolution of 70 cm or less
for most places, with a maximum spatial resolution of 1.5 m. We limited the validation
point locations to the Landsat paths’ overlapping sections in order to increase the number
of uses in validating the model across the South Caucasus region (Figure 1), as each point
can be used twice to validate the logistic regression model in adjacent paths. Although
theoretically the highest quality data are in the center of the image, this gives us a more
conservative estimate of the accuracy of our method.

Based on the three study regions in the South Caucasus studied in [32], we estimated
that surface water occupied about 0.9% of the land surface in the South Caucasus (note
that in this paper focusing on the entire South Caucasus, we find that water occupied just
over 2%). Since water is a relatively uncommon land cover class in the study area, it is
rare to randomly select a pixel where JRC water is missed. For example, if for simplicity
we assumed that water occupies exactly 1% of the entire landscape, we would need
to sample 100 random points to find one sample point with water. This means that if
we were interested in finding 250 sample points with water, we would have to sample
250 × 100 = 25,000 random points. Our previous study ([32]; Table 5 in that paper) found
that the JRC data underestimates the amount of water in three study regions in the South
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Caucasus by about 15.7%. In other words, if we would sample 25,000 random points,
statistically we would find approximately 250 points with water (assuming water occupies
1% of the landscape), and out of those 250 points, only 39 (15.7%) would be water data that
was not found in the JRC dataset. Considering these low numbers, even when we sample
25,000 points, it seemed that we would need to apply a different strategy to evaluate water
that was missing in the JRC dataset. Based on the results in [32], we estimated that our
OPC method underestimates water by about 5.2%. This means that we estimate that we
find about 10.2% more water in the OPC data than in the JRC data. Therefore, to offset this
bias, we selected the 500 water validation points focused on areas where JRC missed water,
but OPC did not; in other words, focusing on the 10.2% discussed earlier.

The 500 additional points were also manually classified using Google Earth imagery,
separating the points into four classes: water, not water, cloudy, and water fraction (WF).
We labeled pixels as WF if there was subpixel water present (water fraction less than 50%).
Pixels classified as cloudy or WF were omitted from the additional water validation points,
leaving 254 points added to the validation dataset. Most pixels dropped were because
of a water fraction, that is, there was water in the grid cell, but it occupied less than 50%.
Including the post-classification validation points, the total number of the validation sample
size rose to 6745 points (3261 non-water, 3484 water). In other words, these 254 points
occupied about 7.5% of our total water sample. We then used the validation dataset to
determine the performance metrics of overall accuracy, sensitivity, specificity, ROC, and
concordance for the OPC and JRC Max Extent water maps.

3.4. Generating Optimal Probability Cut-Off Water Maps

The previously developed method [32] depended heavily on both hand-selected
training and validation points. Here, we scaled up this methodology and applied the OPC
method to all Landsat images covering the South Caucasus region from May to October
2019. Instead of manually identifying thousands of training points, we used training data
sampled directly from the JRC Monthly Water History. We believe that this is a valid
method because previously we found that the JRC data had a much higher user’s accuracy
(95.7%) than producer’s accuracy (84.7%) for three study regions in the South Caucasus [32].
In other words, we found a relatively high error of omission in the JRC data (15.7%), but
a relatively low error of commission (4.3%). As a result, if the JRC data indicated water,
we found water in the validation sample 95.7% of the time. This means that we can use
the JRC data as a training dataset for our study, because while the JRC data misses 15.7%
of the water, it rarely overestimates water. Figure 2 presents an overview of the method
applied to each available Landsat image.

We used the JRC Monthly Water History product to generate logistic regression
training points for each Landsat path. After generating the training points, MNDWI values
were extracted from the point locations and used to train a logistic regression model,
resulting in slope and intercept values for the water model. The slope and intercept values
were then entered into the logistic regression probability equation:

p =
1

e−(a+bx)
(2)

In this equation, p represents the probability that water is present in a pixel, a is
the y-intercept, b represents the slope, and x represents the MNDWI value. We used the
probability Equation (2) to create water probability maps.

The optimal probability cut-off (OPC) method determines the threshold used to
distinguish between water and non-water. The OPC is an iterative process based on the
receiver operator characteristic (ROC), testing all probability cut-off values that produce
the most significant degree of accuracy for water classification [55]. There is still potential
for confusion between water pixels and other surfaces, such as barren mountains (often in
shadow) and urban impervious surfaces. As part of the final water map development, we
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used a digital elevation model to mask steep mountain slopes, and an impervious surface
dataset to mask urban areas [32].
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3.5. Performance Evaluation of Water Maps

The performance of the JRC and OPC water datasets was assessed by comparing
the accuracy of the Max Extent for the entire Caucasus region. This included comparing
the accuracy between the individual path/row sets of the JRC Monthly Water History
and the OPC water maps. To evaluate the two datasets, we developed an error matrix of
sample counts and an error matrix of estimated proportions. Olofsson et al. (2013) warn of
calculating overall and producer’s accuracy estimations directly from a sample count error
matrix, suggesting that such a matrix would not account for the variation in estimation
weights based on proportions of the mapped classes [56]. An error matrix describing
the estimated proportion of area provides a more appropriate mechanism for evaluating
the producer’s and overall accuracies of land cover classification maps. Following this
guidance, we calculated the overall accuracy from the sample count matrix and compared
the result to the user’s, producer’s, and overall accuracies based on the mapped area class
proportion [56]. We compared the performance of the JRC Monthly Water History and the
OPC water datasets for each Landsat path in the Caucasus region. We used the sample
count matrix for each observation to calculate overall accuracy. The producer’s accuracy
for the water class is derived from the estimated proportion of water in the map area.

4. Results

We used a random stratified sample of the annual JRC Max Extent water map to
construct a dataset to train a logistic regression water model. The index-based logistic
regression model uses the OPC method to classify water across Armenia, Azerbaijan, and
Georgia from May to October 2019.

We compared the overall accuracy between the JRC Monthly Water History and
the OPC water maps for each observation of the Landsat datasets. We then evaluated
the data products with a traditional error matrix, including the overall estimated area of
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surface water/land detected, and an error matrix using an unbiased estimator of the area
proportion.

4.1. Overall Accuracy

To thoroughly assess the performance of land cover classification maps, we generated
an error matrix [56]. The matrix displays the proportion of mapped area for each category
(water/non-water), including the user’s, producer’s, and overall accuracies (Table 1). We
found that the OPC method detects almost 400 km2, or 10.5%, more water in six months
of 2019 than the annual JRC Max Extent (4130 km2 vs. 3738 km2; Table 1). Calculating
the overall accuracy of the two detection methods gives a result of 85.2% for the JRC Max
Extent and 88.6% for the OPC Max Extent.

Table 1. Error matrix of sample-based validation points from the JRC Max Extent water map for 2019 and the OPC Max
Extent water map from May to October 2019.

JRC
Jan–Dec 2019 Non-Water Water Total Overall

Accuracy (%)
Mapped Area
by Class (km2)

Proportion of the Mapped Area
by Class (Wi)

Non-Water 2675 408 3083 85.2 182,060 0.9799
Water 586 3076 3662 3738 0.0201
Total 3261 3484 6745 185,798 1

OPC
May–Oct 2019 Non-Water Water Total Overall

Accuracy (%)
Mapped Area
by Class (km2)

Proportion of the Mapped Area
by Class (Wi)

Non-Water 2834 342 3176 88.6 181,668 0.9777
Water 427 3142 3569 4130 0.0222
Total 3261 3484 6745 185,798 1

Considering the error matrix using the estimated proportion of area, both datasets are
highly accurate, retaining an overall accuracy of 86.7% (JRC) and 89.2% (OPC) (Table 2).
The JRC and OPC water maps accurately detected the non-water land cover in the South
Caucasus region, having a commission/omission error of 13%/0.4% (JRC) and 11%/0.3%
(OPC). Examining the producer’s accuracy for the water land cover class, we see the JRC
dataset correctly detects 11.5% of the surface water, omitting a large proportion of water
from the map. The OPC water map performs significantly better (p < 0.01), having a
producer’s accuracy of 15.5%, indicating a loss of performance from the underestimation
of surface water area.

Table 2. The estimated proportion of area error matrix, including user’s, producer’s, and overall accuracies, between the
JRC Max Extent water map for 2019 and the OPC Max Extent water map from May to October 2019.

JRC
Jan–Dec 2019

Non-Water
(-)

Water
(-)

Total
(-)

User’s Accuracy
(-)

Producers Accuracy
(-)

Overall Accuracy
(%)

Non-Water 0.8502 0.1297 0.9799 0.8677 0.9962 86.7
Water 0.0032 0.0169 0.0201 0.8400 0.1153
Total 0.8534 0.1466 1

OPC
May–Oct. 2019

Non-Water
(-)

Water
(-)

Total
(-)

User’s Accuracy
(-)

Producers Accuracy
(-)

Overall Accuracy
(%)

Non-Water 0.8725 0.1053 0.9778 0.8923 0.9970 89.2
Water 0.0027 0.0196 0.0222 0.8804 0.1567
Total 0.8751 0.1249 1

4.2. Accuracy Assessment by Region

The previous section evaluated the JRC and OPC max extent water products’ overall
accuracy from all validation points across the South Caucasus region. However, because
the spatial and temporal distribution of surface water is not uniform across the study
region, it is also essential to assess the overall accuracy of the JRC and OPC methods for
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each Landsat dataset in the study period. Figure 3 describes the overall accuracy between
the two datasets across all Landsat paths from May to October 2019. With the western paths
171, 172, and 173 being the exception, we observe that the overall accuracy for both water
detection methods remains high, ranging from 87% to 98%. The JRC and OPC max water
extent share similar accuracy trends, each outperforming the other at various points for the
selected months (Figure 3). The OPC and JRC accuracy dropped in the three westernmost
Landsat paths (171, 172, 173), with a lower overall accuracy of 80%. These three paths cover
the western half of Georgia and have the least amount of surface water area of the eight
paths that comprise the Caucasus study region.
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Figure 3. The overall accuracy between the JRC monthly water history and the OPC method from May to October 2019 for
eight different Landsat paths. Note that the accuracy (y-axis) has a lower limit of 80%. The paths are visualized according to
the map direction, with path 173 in the West (left) and path 166 in the East (right).

4.3. Producer’s Accuracy

The high overall accuracy of the JRC and OPC Max Extent water datasets is partly
due to the detection of non-water class, which is the dominant land cover class covering
more than 97% of our study area. However, the main focus of these two water detection
methods is to detect water. When we focus on just the producer’s accuracy of detecting the
water class, the performance is not as strong as the high values of overall accuracy.

Figure 4 gives insight into the water detection difficulties among the different Path/Row
sets. The Landsat paths in the eastern part of our study area (esp., 166, 167, and 169) boast
the highest producer’s accuracy in detecting surface water, because they contain the largest
and most stable water bodies from which to extract the MNDWI values for the model’s
training and validation points. There are some temporally unstable water bodies in paths
167 and 168 due to heavy vegetation growth in the larger water bodies, which can vary
throughout the year. We believe that these water bodies cause a loss in performance in the
JRC dataset compared with the OPC dataset [57]. We attribute the drop in performance in
the western paths to the temporal instability of the braided river system. Visual inspection
with high-resolution imagery revealed that these paths contain sinuous and non-sinuous
braided river systems, with a few small reservoirs and lakes (Figure 5). Braided river
systems can rapidly change due to seasonal flow regimes and sediment transport, causing
changes in water location and discharge [58]. High-discharge events and water channel
drift can influence the spectral signature and MNDWI values of a pixel by changing the
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fraction of subordinate land cover classes within the satellite image’s spatial resolution [33].
Variations in these river conditions can change the land cover type of a validation point,
making it unreliable. The consequence of confining the validation points to the Landsat
paths’ overlapping areas is a condensed sampling of the river systems in these areas,
resulting in a loss of overall accuracy.

4.4. Water Detection in the Caucasus

For our entire study region covering Azerbaijan, Armenia and Georgia, we found
that the OPC method detected approximately 10.5% more water for 2019 than the annual
JRC Max Extent dataset. This matches very closely the difference in underestimation we
found in our previous paper for three focused study regions in the Caucasus [32], where we
estimated that the JRC Max Extent omission error was 15.7%, compared with 5.2% for the
OPC method. Most of the omitted areas are focused on very small bodies of water, such as
irrigation channels, which are especially relevant for this study. The amount of additional
water found with the OPC method was not equal for all three countries. Georgia showed
the lowest amount of surface water, about 404 km2 for the JRC method, and 444 km2 for
the OPC method. This means that we found about 10% more water in Georgia using the
OPC method. The two methods estimated almost equal amounts of surface water for
Armenia, 1395 km2 (JRC) and 1415 km2 (OPC); the OPC method only found about 1.5%
more water. Azerbaijan revealed the largest amount of surface water, and we found that
the OPC method estimated almost 17% more water in Azerbaijan (2266 km2) than the JRC
method. Many of these additional water bodies are smaller flooded fields and smaller
irrigation channels.
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Figure 5. Two examples of the braided river system in Georgia. The rivers are broad and move around a fair amount, which
is clear from the underlying satellite image. The OPC water data is shown in blue, with the JRC water data in pink. The
OPC data picks up more of the smaller water channels.

4.5. Detection of Small Water Bodies and Irrigation Channels

Evaluating the performance of the two water datasets solely with statistical evaluations
does not fully represent their ability to discriminate between the different sizes and types
of water bodies present in the satellite image. Previous studies have already shown that the
JRC water dataset is highly accurate in detecting large bodies of surface water but tends
to omit smaller bodies of water, including water bodies that contain significant amounts
of vegetation [32,43]. Examples of the omission errors for these types of water bodies are
highlighted in Figures 6 and 7. Figure 6 shows the difference in performance between the
two water detection methods in identifying small floodwater areas within agricultural
plots. The OPC method can detect this water type, whereas the JRC method remains
insensitive to it. In addition to the floodwater areas omitted by the JRC water map, small
irrigation channels also go undetected. In contrast, the OPC method can delineate these
water types, giving a more accurate representation of the surface water present in the scene.
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Figure 6. The difference in floodwater and canal detection between the JRC and the OPC Max Extent water maps. The
water detected in the JRC Max Extent dataset is shown in pink, while the water detected in the OPC Max Extent map is
shown in blue. At the bottom left, the river is detected in both datasets, while the small irrigation canal that branches off to
the north is only found in the OPC dataset, easily seen in the smaller inset (yellow box) on the right. The larger water body
to the east of the irrigation channel is found in both datasets, while the smaller water bodies to the left and right of the
irrigation channel are visible in the OPC dataset, but not complete in the JRC data. The OPC areas on the agricultural fields
in the east were verified as flooded fields at the time of the surface water recording.
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Figure 7. Comparison of the ability of the OPC and JRC methods to detect water in the Bash Shirvan Canal, northeast of
Z@ng@n@, Azerbaijan. The canal water detected by the OPC Max Extent in blue, compared with the canal water detected by
the JRC Max Extent in pink. The water body on the east is detected in both datasets, but the canal is only visible in the
OPC dataset.

The difficulties in detecting surface water from the JRC dataset are not limited to small
and vegetated bodies of water. Major water canals can also be a source of confusion in the
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JRC data, as shown by the omission of the canal infrastructure in Azerbaijan (Figure 7). Here
we can see that the JRC Max Extent water map almost completely ignores this section of
the canal. Alternatively, the OPC method proves to be more reliable in detecting the water
present in the canal, giving a more accurate representation of the surface water present
in the scene. The omission of shallow, vegetated, and unstable water bodies can result in
significant underestimation of surface water area and possibly affect the conclusions of
studies that use this dataset in their model. Some of the very small irrigation channels are
also not accurately detected in the OPC data.

5. Discussion
5.1. Challenges in Water Detection

Olofsson et al. (2013) found that a map can be highly accurate while still having low
accuracy in detecting individual classes due to bias, suggesting that commonly-used accu-
racy metrics such as overall accuracy and the kappa coefficient do not take full advantage
of the accuracy assessment data [56]. They recommend including user’s, producer’s, and
overall accuracies, along with an area-adjusted map classification error, and generating
confidence intervals for the adjusted area estimates [56].

We evaluated the user’s, producer’s, and overall accuracies, in addition to the adjusted
accuracy from the estimated proportion of the area. We applied these accuracy metrics to
the Max Extent water maps from the JRC and OPC methods for 2019. In comparing the
overall accuracy between the two Max Extent water maps, we see that both datasets are
highly accurate when evaluating both classes together (86.7% JRC, 89.2% OPC). Despite
retaining high overall accuracy across the study area, assessing the accuracy of the two
water maps by class provides insight into the effectiveness of the datasets in relation to
water classification. When evaluating the estimated proportion producer’s accuracy for
water, the accuracy drops for the JRC and OPC Max Extent water maps (11.5%/15.7%),
displaying a substantial underestimation of the surface water present. Comparing the
path/row sets (Figure 4), we observe a significant reduction in the producer’s accuracy
for detecting the water class. The overall accuracy of the water maps is misleading in
evaluating performance because each class is weighted equally in the calculation directly
from the sample count error matrix [56,59]. In this region inland water is a rare class,
making up around 2% of the total land cover in both water maps. The unweighted
accuracy of both water datasets suggests that the water detection methods accurately
detect water. However, a proportionally weighted accuracy assessment shows us that the
water maps accurately distinguish non-water land cover. By weighting the error matrix
by the proportion of estimated area, we observe a very low producer accuracy, suggesting
that a large portion of water is omitted from both water maps, contradicting the viability
of traditional unweighted accuracy assessments. Such a loss in performance between the
JRC and OPC in detecting water shows that it is necessary to use an unbiased estimator of
the area’s proportion to properly weight each class in a sample count error matrix to avoid
bias and strengthen land cover accuracy assessments.

5.2. Vegetated and Very Small Waterbodies

Detection of small, dynamic, vegetated surface water bodies is essential for monitoring
the risk of mosquito-borne illnesses [60]. We find that the JRC dataset particularly struggles
to detect the shallow, vegetated water bodies which are typical in the agricultural areas
of the South Caucasus (Figures 8 and 9). The presence of vegetation in water can change
the spectral signature, depending on the distribution of its subpixel components [33]. The
OPC method proves to be more resilient to the spectral deviations of pixels that contain
water with vegetation, in addition to the improved identification of water bodies that have
unusual configurations, such as irrigation canals.
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Figure 8. The two photographs (A & B) are taken looking north (A) and south (B) from the yellow dot in the middle of the
image, showing an agricultural area of southern Armenia (C). The larger water body to the north that is partially vegetated
is largely captured by the OPC data, with fewer areas of water detected in the JRC data. The aquaculture water bodies in
the photograph looking south are too small to be detected in either dataset.
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Figure 9. This photograph (top) is looking south from the yellow dot on the image (bottom), showing
southern Armenia. The irrigation canal closest to the photographer is not visible in either the OPC
or the JRC dataset. However, the larger marshy water bodies toward the top of the photograph are
found in the OPC data but not in the JRC data.

We made field observations in the summer of 2018 at many of the large marshy areas
found in southern Armenia. Figure 9 shows how close these marshy areas are to the
surrounding farmlands and villages. This is one of the primary areas of malaria infection
in the early 2000s in Armenia. These small, vegetated water bodies are difficult to detect in
both datasets. Water detection methods must continue to develop improved sensitivity to
these areas, perhaps using a broader range of openly available data and including active
sensors such as Sentinel-1 and cloud computing tools [60,61].

6. Conclusions

Previous work has demonstrated the utility of satellite earth observations for monitor-
ing environmental regions with malaria transmission risk; however, much of that work
was focused on tropical areas of Africa, Asia, and Central and South America [60,62]. Here
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we look at a temperate region spanning the boundary of Europe and Asia, which is also
vulnerable to mosquito-borne illnesses, and we demonstrate the use of a global surface
water dataset to create improved regional data for detection of the type of surface water
that indicates potential mosquito breeding habitats.

Global land cover datasets are becoming essential to land cover detection in remote
sensing communities, with several products freely available to users [57,63–65]. These
datasets are especially useful as reference data in areas with little opportunity to collect
sample data [46]. A study focused on urban regions improved urban area maps using the
European Space Agency’s GlobCover product to train a classifier based on a multinomial
logistic regression [46]. Global land cover datasets have given us great insight into land
cover presence, distribution, and temporal behavior [57,64,65]. We can also use these global
datasets to train classifiers for regional studies [45].

Here, we displayed that applying a logistic regression using the JRC water product
can improve the performance of the original water dataset retroactively. We previously
demonstrated that the JRC tends to underestimate the area of water present [32]. The
underestimation of surface water reveals that the JRC dataset is conservative in its ability
to delineate water from other land cover types, omitting small water bodies in the final
product. We used this conservative nature of the JRC water dataset to our advantage; as
we can trust that water is present in locations where it is indicated by the JRC dataset, we
used the JRC dataset to train a logistic regression water model and optimal probability
cut-off to improve regional surface water maps.

We demonstrated our method by applying it across the entire Southern Caucasus
region for May to October 2019 using training points generated from the JRC monthly
history and yearly max extent water datasets. Comparing the JRC and OPC max extent
water maps, we found that both are highly accurate, with an overall accuracy of 86.7% and
89.2%, respectively, when applied over the Caucasus region. The fact that this global JRC
dataset has such high accuracy is a tremendous feat by itself. We demonstrated that our
OPC method trained on the highly accurate JRC water datasets has increased sensitivity to
small water bodies, detecting 392 km2 more water than the JRC max extent water map for
the entire year. We prove the viability of using existing global datasets to train a model and
improve accuracy, giving a better representation of regional total surface water area.
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