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Abstract: Burn severity is a key component of fire regimes and is critical for quantifying fires’
impacts on key ecological processes. The spatial and temporal distribution characteristics of forest
burn severity are closely related to its environmental drivers prior to the fire occurrence. The
temperate coniferous forest of northern China is an important part of China’s forest resources and
has suffered frequent forest fires in recent years. However, the understanding of environmental
drivers controlling burn severity in this fire-prone region is still limited. To fill the gap, spatial
pattern metrics including pre-fire fuel variables (tree canopy cover (TCC), normalized difference
vegetation index (NDVI), and live fuel moisture content (LFMC)), topographic variables (elevation,
slope, and topographic radiation aspect index (TRASP)), and weather variables (relative humidity,
maximum air temperature, cumulative precipitation, and maximum wind speed) were correlated
with a remote sensing-derived burn severity index, the composite burn index (CBI). A random forest
(RF) machine learning algorithm was applied to reveal the relative importance of the environmental
drivers mentioned above to burn severity for a fire. The model achieved CBI prediction accuracy with
a correlation coefficient (R) equal to 0.76, root mean square error (RMSE) equal to 0.16, and fitting
line slope equal to 0.64. The results showed that burn severity was mostly influenced by flammable
live fuels and LFMC. The elevation was the most important topographic driver, and meteorological
variables had no obvious effect on burn severity. Our findings suggest that in addition to conducting
strategic fuel reduction management activities, planning the landscapes with fire-resistant plants
with higher LFMC when possible (e.g., “Green firebreaks”) is also indispensable for lowering the
burn severity caused by wildfires in the temperate coniferous forests of northern China.

Keywords: burn severity; wildfires; environmental drivers; random forest; live fuel moisture content;
northern China

1. Introduction

Wildfire is one of the primary natural disturbances for forest ecosystem succession and
stands composition, as well as the exchange of carbon, water, and energy between the land
and atmosphere [1–4]. Wildfires generally exhibit high inter- and intra-fire heterogeneity
and burn with varying degrees of severity depending on the fuel load, moisture content,
topography, and climate conditions [5–8].

There are generally three concepts on how to describe the severity of forest fires and
their impact on the environment: fire intensity, fire severity, and burn severity. Fire intensity
describes the rate of energy release by the physical process of the combustion of biomass [9].
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Fire severity is a more comprehensive concept than fire intensity, which is mainly used to
describe how fire intensity affects ecosystems [10]. The assessment of fire severity is mainly
based on the loss of aboveground or underground biomass caused by fire, the consumption
of the tree crown, and changes to soil characteristics. Burn severity has been defined as
the changes from the pre-fire to post-fire environment which is restricted to the vegetation
and soil [11], and is often used interchangeably with fire severity. Remotely sensed data
can directly obtain the characteristics of vegetation and soil. Exploring the relationship
between different environmental drivers and burn severity is fundamental for developing
forest management strategies [12–15].

The relationship between burn severity and its environmental drivers is not uni-
forml; it is caused by the complex interaction among physical, weather, and vegetation
variables [16–18]. Some studies concluded that topographic variables are relatively more
important for high burn severity than vegetation and meteorological variables since to-
pographic variables influence the fire behavior, fuel moisture, water balances, vegetation
distribution, and productivity [16,19–23]. The influence of topography is mainly manifested
in elevation, slope, and aspect. A sunny surface has stronger light, higher temperature,
and higher evapotranspiration, so the vegetation is relatively more flammable and drier,
which leads to faster fire spread. In contrast, the humidity of a shady surface is higher than
that of a sunny surface, and the moisture content of vegetation is higher than that of the
sunny aspect, so it is not conducive to fire spread [20,21]. In addition, the water loss in
steep areas is faster than that in flat areas, and the water content of vegetation is, therefore,
generally lower in steep areas. Moreover, steep slopes also facilitate fire spread because
of the greater radiant convective heating of upslope fuels related to the angle of flames
and the direction of convective currents [19]. However, some studies concluded that the
fuel variables are the most important factor, while the topographic factor is less impor-
tant [4,6,16,24–26]. Wildland fuels are defined as all flammable vegetation materials that
can be burnt, including living and dead fuel [27]. All vegetation can be considered as fuel,
and the most important factor controlling flammability and consumption is their moisture
content [27–30]. Therefore, fuel has a strong effect on fire behavior [29–34]. Meteorological
factors (temperature, humidity, precipitation, wind speed, wind direction, etc.) are impor-
tant factors affecting the burn severity as reported in previous literature [17–19,24], since
these factors will affect the degree of dryness and wetness of fuels in the forest ecosystem,
and further affect the flammability. Meteorological factors have both direct and indirect
effects on wildfires, which determine how and when fires burn and play an important
role in the behavior of a wildfire [27]. Generally, there is a positive correlation between air
temperature and forest fire. The higher the temperature is, the higher the possibility of fire
and severe fire is. There is a negative correlation between humidity and forest fire. More
precipitation generally results in a higher water content of the vegetation and reduces the
possibility of fire occurrence. Wind plays a dual role in the occurrence of fire, as the wind
speed will contribute to the burning of flammable fuels and the spread of fire, whereas
when the wind speed is too high, it may buffer the effects of fire through mechanisms such
as disrupting fuel continuity [35]. Furthermore, the ways in which meteorological factors
affect burn severity may vary among different fires, even in a single fire [36].

Previous studies analyzing the relationships between burn severity and its environ-
mental drivers generally focused on fire-prone regions such as the Mediterranean pine
forest ecosystems [16,17,37,38], Australian eucalyptus forests [39–43], Canadian boreal
forests [4,44,45] and western US mixed conifer forests [6,18,24,46]. Nevertheless, the under-
standing of environmental drivers controlling burn severity in the temperate coniferous
forest of northern China is still limited. The temperate coniferous forest is an important
part of China’s forest resources, which is mainly distributed in the plains, hills, or low
mountainous areas of the warm temperate zone in China. The characteristic species of
temperate coniferous forest are in the genera Pinus and Platycladus, and the main vegetation
communities are Pinus tabulaeformis, Pinus densiflora, and Platycladus orientalis forests [47].
The warm temperate zone is cold and dry in winter (December to February), which leads
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to the continuous accumulation of fuels in the temperate coniferous forest ecosystem. With
the rise of temperature in spring (March to May), the fuel moisture content decreases, and
the risk of fire increases. Therefore, most temperate coniferous forest fires of northern China
occur in spring [48]. The factors causing temperate coniferous forest fires can be divided
into environmental factors and human factors. Environmental factors include vegetation,
topographic, and meteorological variables, which are the basic drivers for forest fires;
human factors mainly include fire source and forest management strategy, which are the in-
ducing factors of forest fires. With the increasing awareness of fire prevention, the number
of fires caused by human factors has decreased. However, because the forest management
strategy is still primitive, forest fires are still one of the greatest threats to forest resources
in these regions. Understanding burn severity responses to environmental drivers in the
temperate coniferous forest ecosystem is critical for designing and implementing forest
management strategies [49].

In this study, we aimed to identify the environmental factors driving burn severity in
the temperate coniferous forest of northern China using a random forest (RF) algorithm.
Specifically, our objectives were (i) to determine the most important environmental driver
for the burn severity of northern China temperate coniferous forest fires; (ii) to analyze
the key environmental driver of burn severity under different flammability scenarios; and
(iii) to provide decision-making suggestions and references for reducing burn severity and
future forest management.

2. Materials and Methods
2.1. Study Area

The study area is located in Qinyuan county in the warm temperate zone of northern
China, extending from 111◦58′30′′ to 112◦32′30′′E, and from 36◦20′20′′ to 37◦00′42′′N
(Figure 1). The climate of the study area is cold and dry in winter, and hot and rainy in
summer. The study area belongs to the warm temperate continental monsoon climate,
which is the marginal area affected by the southeast monsoons and southwest monsoons
in China. Therefore, the water sources in the study area mainly include the southeast
and southwest channels. In winter, the water source is mainly affected by the northeast
monsoons and northwest monsoons from the mainland of Asia. The air is dry and the water
vapor content is low, so it is difficult to form precipitation. When the rainy season starts,
the delay or weakening of either of the two water channels will cause drought in the study
area. In general, drought may occur in the study area about every 2–3 years, from March to
October [50]. The annual average rainfall is 656.7 mm, the annual average relative humidity
is 65%, and the annual average temperature is 8.7 ◦C. Generally, the maximum precipitation
and minimum precipitation are recorded from July to September and November to March,
respectively. The study area is mountainous with intense relief with altitudes ranging
from 1020 to 1639 m. The overstory vegetation community of the study area is dominated
by Pinus tabuliformis, the middle vegetation layer is dominated by low Quercus acutissima
and Rosa xanthine, and the grass over the soil surface is dominated by Gramineous weeds
(e.g., Poa annua and Digitaria sanguinalis). Pinus tabuliformis is a unique tree species of
China. Its tree height can reach more than 25 m, the diameter at breast height can reach
more than 1 m, and the bark is a grayish brown or reddish brown, which generally cracks
into irregular and thick scaly pieces. Pinus tabuliformis is flammable and is mostly in pure
stands. Continuous dryness and low precipitation in winter reduce the moisture content of
vegetation in the study area, resulting in triggering the self-protection mechanism of Pinus
tabuliformis. These mechanisms are in place to reduce water evaporation by secreting pine
oil. In this case, once encountering a fire source, deflagration will occur, which is difficult
to extinguish. Under these conditions, a fire was triggered by the aging of power lines in
Qinyuan country on 29 March 2019, and the fire burned approximately 167.88 km2.
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2.2. Burn Severity Data and Random Sample Selection

The composite burn index (CBI) is a common ground-based severity index that is
obtained by averaging the scores assigned to several variables of five vertical strata (soil
background, understory, two midstories, and overstory) [51]. This index has continuous
values ranging from 0 (unburned) to 3 (completely burned). According to the burning
status of soil and different vegetation strata, the burn severity can be divided into four
categories: low (CBI < 1), moderate (1 ≤ CBI < 2), moderate to high (2 ≤ CBI < 2.5), and
high (2.5 ≤ CBI). For low burn severity level, only the lower grassland is affected, and the
middle and upper vegetation is almost unburned. For moderate burn severity level, there
is a total consumption of the organic matter on the soil, and the middle vegetation has
scorched leaves. For moderate to high burn severity level, there is a total consumption of
the organic matter on the soil and middle vegetation, and the overstory has scorched leaves.
For high burn severity level, most of the overstory is scorched and the substratum can be
charcoal or ash depending on the burn efficiency [11,51]. The CBI data (Figure 1) used in
this study were obtained based on the algorithm proposed by Yin et al. in 2020 [52], which
was estimated by introducing tree canopy cover (TCC) into a coupled radiative transfer
model. Through the field measured CBI and landscape photos, we verified the quantitative
(R2 = 0.92, RMSE = 0.2) and qualitative CBI estimation accuracy, which demonstrated good
performance [52].
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Figure 1. Location of the study area and the burn severity sample plots used in this study. The right map is the spatial
distribution map of burn severity, represented by CBI retrieved from remote sensing data and radiative transfer model
inversion [52]. The CBI was stratified into 4 categories from 0 to 3, and 500 random samples with CBI greater than 1 were
selected to analyze the relationship between burn severity and environmental drivers.

In post-fire management, the location and characteristics of high-level burn severity
are generally of greater interest than areas of low burn severity [53]. Areas with CBI lower
than 1 will quickly recover to the pre-fire status after the rainy season. Consequently, we
randomly selected 500 samples in areas greater than 1 on the spatial distribution map of
CBI to analyze the relationship of burn severity and environmental drivers (Figure 1). The
selected CBI samples are divided into three categories [38]: moderate (1–2), moderate to
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high (2–2.5), and high (>2.5). The frequency distribution histogram of the selected samples
is shown in Figure 2.
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Figure 2. Frequency of the selected sample plots. The observed CBI from the spatial distribution map
is divided into moderate, moderate to high, and high levels. The high burn severity level prevails in
the study area.

2.3. Environmental Variables

The environmental drivers of burn severity mainly include fuel, topographic, and
meteorological variables. In this study, we pre-selected these three types of environmental
drivers, including 12 specific indicators (Table 1).

Table 1. The pre-selected environmental drivers to predict CBI. The type and abbreviation of the variables, data source, and
range of the variables are all counted in the table.

Group of Variables Environmental Variables Abbr. Data Source Range

Topography
Elevation (m) EL

ASTER GDEM 2 data
1152~1673

Slope (◦) SL 1.08~40.59
Topographic radiation aspect index TRASP 0~1

Fuel

Tree canopy cover (%) TCC Landsat VCF product 5~64
Normalized difference vegetation index NDVI

Sentinel-2A MSI data

0.18~0.81
Live fuel moisture content (%) LFMC 20.83~168.38
Leaf area index LAI 0.6~4.6
Normalized difference water index NDWI −0.15~0.68

Meteorological

Cumulative precipitation in the three months pre-fire
(mm) P

Daily observation dataset
of meteorological stations
in China

8.54~10.51

Relative humidity on the day of fire (%) RH 29.8~30.8
Maximum air temperature on the day of fire (◦C) T 15.02~15.72
Maximum wind speed on the day of fire (m s−1) WS 9.92~10.29

2.3.1. Pre-Fire Fuel Variables

Fuel variables mainly include TCC, normalized difference vegetation index (NDVI),
live fuel moisture content (LFMC), leaf area index (LAI), and normalized difference water
index (NDWI). TCC has been proven to have a strong correlation with aboveground
biomass [54,55], so it is used as a proxy of the amount of flammable live fuels. NDVI is
sensitive to vegetation chlorophyll content and has been widely used to quantify the net
primary production of vegetation [56–59]. LFMC is commonly defined as the amount
of water per dry mass of fuel [60], which is one of the primary variables affecting the
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ignition and spread of wildfire [33]. Although LFMC has been widely used in forest fire
risk early warning [29,33,61,62], there are few studies that analyze the relationship between
LFMC and burn severity. LAI was selected because it is one of the important variables to
characterize vegetation canopy structure [63,64]. NDWI is an index related to vegetation
water content [65].

The TCC data used in this study were extracted from the Landsat Vegetation Continuous
Fields (VCF) TCC product [66]. The Landsat VCF TCC product contains estimates of the TCC
in each 30 m pixel covered by woody vegetation greater than 5 m in height [66]. The product
is derived from all seven bands of the Landsat 5 Thematic Mapper (TM) and/or Landsat 7
Enhanced Thematic Mapper Plus (ETM+) by rescaling the 250 m moderate-resolution imaging
spectroradiometer (MODIS) VCF TCC layer. The dataset was last updated in 2015; therefore,
the TCC layer of 2015 was used to describe the TCC level before the fire in this study. The
forests in the study area are natural forests with little human intervention. Moreover, by
comparing the field photos, it was found that the Landsat VCF product was consistent with
the actual TCC in the study area. The CBI estimation results in our previous study [49] also
showed that the spectral confusion error was mitigated by considering the variation of 2015
Landsat VCF TCC in the process of model simulation and inversion. Therefore, the TCC layer
in 2015 can be used to represent the situation before the fire.

The NDVI, NDWI, LFMC, and LAI were extracted from the Sentinel-2A MSI satellite
data (20 m spatial resolution) acquired on 12 March 2019. This is the image closest to
the time of fire ignition and with the least cloud coverage. The Sentinel-2A MSI data
used in this study were downloaded from the Copernicus Open Access Hub (https://
scihub.copernicus.eu/, last accessed on 18 October 2021). Before computing the vegetation
indices, Sentinel-2A MSI data were converted from top-of-atmosphere (TOA) reflectance to
bottom-of-atmosphere (BOA) reflectance using the official atmospheric correction model,
Sen2Cor (version 2.3.1) [67–70].

NDVI is a normalized ratio of the near-infrared (NIR) and the red bands (Equation (1)).
The ρNIR and ρRED represent the reflectance of the NIR and red bands, respectively.

NDVI =
ρNIR − ρSWIR

ρNIR + ρSWIR
(1)

NDWI is a normalized ratio of the near-infrared (NIR) and the Shortwave infrared
(SWIR) bands (Equation (2)). The ρNIR and ρSWIR represent the reflectance of the NIR and
SWIR bands, respectively.

NDWI =
ρNIR − ρSWIR

ρNIR + ρSWIR
(2)

LFMC and LAI of the study area were estimated by radiative transfer model retrieval,
following the method of Yebra et al. [33] adapted to Sentinel-2. The PROGeoSail model was
firstly “forward” applied to simulate reflectance and transmittance at the leaf and canopy
levels to generate the look-up table. In the backward inversion process, the spectral angle
mapper (SAM) classification algorithm was used as the merit function to simultaneously
estimate LFMC and LAI. All except the blue band, and the normalized difference infrared
index (NDII) index [71], were used as input vectors to calculate the spectral angle. The blue
band was discarded because LFMC and LAI have no effect in blue wavelengths [72]. The
NDII was also included as one of the input vectors to calculate the spectral angle. The NDII
was calculated as the normalized difference between the short-wave infrared (band 11) and
near-infrared (band 8a) bands of the Sentinel 2A MSI data. In order to ensure consistent
spatial resolution, all data were resampled to 20 m.

2.3.2. Topographic Variables

Topographic variables including elevation, slope, and the topographic radiation aspect
index (TRASP) [73] were derived from the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) version 2 (V2).
The ASTER GDEM V2 data were downloaded from the website of the United States

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
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Geological Survey (https://earthexplorer.usgs.gov/, last accessed on 18 October 2021)
with a 1 arc-second (approximately 30 m at the equator) grid and projected to the 1984
World Geodetic System (WGS84). TRASP is between 0 and 1, which indicates the amount
of solar radiation received, with 1 representing 30◦ south by west and 0 representing 30◦

north by east (Equation (3)). The asp represents the aspect and varies from 0 to 360◦.

TRASP =
1− cos[(π/180)× (asp− 30)]

2
(3)

2.3.3. Meteorological Variables

Meteorological variables include the cumulative precipitation in the three months
prior to the fire and the relative humidity, maximum air temperature, and maximum
wind speed on the day of the fire [4,6,16]. The meteorological data were downloaded
from the website of the Resource and Environment Science and Data Center, Institute
of Geographical Sciences and Resources, Chinese Academy of Sciences (https://www.
resdc.cn/data.aspx?DATAID=230, last accessed on 18 October 2021). In this study, all
meteorological stations within a radius of 100 km from the central point of the burn area
were considered, with a total of 28 meteorological stations. The meteorological data of
the study area were obtained from the 28 meteorological stations by the Kriging spatial
interpolation method [74].

2.4. Statistical Analysis
2.4.1. Correlation Analysis among Input Variables

Considering the multicollinearity and spatial autocorrelation between input variables,
the Person’s correlation test was conducted with |r| > 0.8 as the threshold to remove highly
correlated variables. The correlation coefficients between the pair of variables NDVI–LAI
and NDVI–NDWI were 0.84 and 0.95, respectively, and the correlation coefficient between
LAI–NDWI was 0.82. NDVI was showed to be strongly correlated with LAI and NDWI;
consequently, it was kept for further analysis while LAI and NDWI were discarded. This
way, the final input matrix was reduced to 10 variables (Figure 3).
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2.4.2. Random Forest Algorithm

The RF algorithm was used to analyze the relationship between forest fire burn severity
and its environmental drivers. RF is a machine learning algorithm that combines ensemble
learning theory with the stochastic subspace method [75–77]. RF is a classifier with multiple
decision trees, and the output category is determined by the mode (the most common
classification) of the categories output by individual trees [78]. RF uses ensemble learning
to fit multiple classifications and regression trees and combines these techniques to improve
the prediction performance. Compared with the common overfitting phenomenon in a
single classification and regression tree model, the RF algorithm training model variance is
small, which can effectively improve the generalization ability of the model [79]. The RF
algorithm has several advantages. Firstly, the operation of the RF algorithm can be highly
parallelized by combining data-parallel and task-parallel optimization, which can greatly
improve the operation efficiency while ensuring the accuracy of operation [23]. Secondly,
because the nodes of the decision tree can be selected randomly to divide the features, the
model can still be trained efficiently when the sample feature dimension is very high [76].
Thirdly, the importance of each feature relative to the output can be calculated after the
model training, which makes it very suitable for analyzing the relationship between burn
severity and environmental driving factors [78]. Fourthly, in the training process, the
model can detect the interaction between the features [76]. Fifthly, as long as there are
enough trees, the RF classifier will not overfit. However, with the increase of the number
of decision trees, the time of training the random forest model will increase, resulting in
the decrease of the running speed [80]. In general, the training speed of the RF model is
fast, and the prediction process is relatively slow. Sixthly, RF can be used for classification
and regression tasks, so it has been widely used in the field of ecological research [80–82].

2.4.3. Importance Analysis of Driving Factors

Since each tree is grown from a bagged sample set, it is grown with two-thirds of the
data to train the RF model, called in-bag samples, and the remaining one-third of the data is
left out and these samples are called out-of-bag (OOB) samples, which are used to estimate
the prediction error. In the process of model calibration, the RF algorithm calculates the
importance of each input feature by comparing the increase of OOB error when randomly
arranging variables while keeping all other variables unchanged [22,36,83]. The OOB
importance of each variable is determined by the average of the precision differences
obtained from the modified OOB subset and the original OOB subset. RF needs to define
two parameters: the number of trees and the number of input variables [78]. The number
of input variables was 10 (EL, SL, TRASP, TCC, NDVI, LFMC, WS, T, RH, and P). In order
to obtain a stable algorithm in which predictions do not change much when the training
data are modified, we set the number of trees to 1000, we ran the model 100 times, and took
the average variable importance value as the final result. The correlation coefficient (R),
root mean square error (RMSE), and fitted line slope between the observed and estimated
CBI were used for accuracy valuation.

We further explored the relative importance of the environmental drivers under
different flammability scenarios. The TCC was used as a proxy of flammable live fuels
of the forest in our study area and used to split the modeling database into areas with
limited and relatively sufficient flammable live fuels. The threshold of 40% was used
because TCC higher than 40% is usually considered to be a high tree coverage level [84].
Previous studies have shown that when the LFMC of forest is lower than 150%, the
probability of fire ignition increases, and when LFMC is lower than 120%, it is more
prone to severe burn [31,85]. Consequently, the statistical analysis were conducted using
(i) all environmental drivers as input to predict the CBI and calculate the importance
of each driver; (ii) fuel, topographic, and meteorological variables separately to analyze
the importance of each type of environmental driver on CBI prediction; (iii) different
flammability scenarios (TCC ≤ 40% and TCC > 40%) to analyze the key environmental
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driver of burn severity; and (iv) the distribution percentage of three burn severity levels
under low LFMC (LFMC < 120%) and different TCC ranges (TCC ≤ 40% and TCC > 40%).

3. Results
3.1. Model Performance and Predictor Variables Importance: All Environmental Variables

When all environmental factors were input into the training of the RF model (Figure 4),
the R, RMSE, and slope between the predicted CBI and the observed CBI were 0.76, 0.16,
and 0.64, respectively. The three most important predictors were NDVI, TCC, and LFMC,
which are all fuel-related variables (Figure 5). Among the topographic factors, elevation
was the most important predictor of burn severity, whereas slope and TRASP had smaller
effects. This is also consistent with the landscape photos taken in the field (Figure 6), where
the forest on the top of the mountain was burned at a higher severity than the forest on
lower elevations. Among the meteorological variables, relative humidity was relatively
important, but on the whole, meteorological variables did not have a clear driving effect
on the burn severity in this fire when compared to the fuel and topographic drivers.
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Subsequently, the three types of environmental drivers were separately used as input
variables to predict CBI. When only fuel variables were used as inputs (Table 2), the
resulting R, RMSE, and slope between the observed CBI and the estimated CBI were 0.7,
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0.18, and 0.59, respectively. The worst results (R = 0.62, RMSE = 0.23, and slope = 0.3)
were obtained when only topographic variables were input into the RF model. Finally,
the model performance further degraded when only meteorological variables were input
(R = 0.58, RMSE = 0.25, and slope = 0.27). When only remote sensing data-based (fuel and
topographic) variables were used as input, the prediction accuracy (R = 0.72, RMSE = 0.18,
and slope = 0.61) of CBI was second only to the all-variables prediction model.
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Figure 6. Two field photos demonstrate that the forest on the top of the mountain burned at a
higher severity.

Table 2. Comparison of validation accuracy when fuel, topographic, and meteorological variables
are input as the RF model, respectively. RS data-based variables represent the fuel and topographic
variables together, which are calculated based on remote sensing data.

Environmental Drivers R RMSE Slope

Fuel variables 0.7 0.18 0.59
Topographic variables 0.62 0.23 0.3
Meteorological variables 0.58 0.25 0.27
RS data-based variables 0.72 0.18 0.61
All variables 0.76 0.16 0.64

3.2. Model Performance and Predictor Variables Importance: Different Flammability Scenarios

When the RF model was calibrated with data from areas where the tree canopy is
sparse (TCC less than or equal to 40%; 181 samples in total), the R, RMSE, and slope
between the observed CBI and the estimated CBI were 0.75, 0.19, and 0.61, respectively
(Figure 7). TCC became the most important fuel-related driver while the order of variable
importance of the topographic and meteorological drivers did not change in comparison
with the RF model using all data (Figure 8).
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TCC less than or equal to 40% were considered.

When the RF model was calibrated with data from areas where the tree canopy was
dense (TCC greater than 40%; 319 samples in total), the R, RMSE, and slope between the
observed CBI and the estimated CBI were 0.57, 0.13, and 0.28, respectively (Figure 9). The
importance of TCC was sharply reduced compared with that of the scenario of TCC less
than or equal to 40% (Figure 10). The first two most important factors were NDVI and
LFMC, which were related to vegetation greenness and moisture content, respectively. The
results also indicated that when TCC is greater than 40%, the fire severity is higher (as
shown by CBI > 2.5 in Figure 11).

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 20 
 

 

When the RF model was calibrated with data from areas where the tree canopy was 
dense (TCC greater than 40%; 319 samples in total), the R, RMSE, and slope between the 
observed CBI and the estimated CBI were 0.57, 0.13, and 0.28, respectively (Figure 9). The 
importance of TCC was sharply reduced compared with that of the scenario of TCC less 
than or equal to 40% (Figure 10). The first two most important factors were NDVI and 
LFMC, which were related to vegetation greenness and moisture content, respectively. 
The results also indicated that when TCC is greater than 40%, the fire severity is higher 
(as shown by CBI > 2.5 in Figure 11). 

 
Figure 9. RF model performance to predict CBI when only data corresponding to locations with TCC greater than 40% 
were considered (319 samples in total). The three subplots represent (a) training, (b) validation, and (c) overall accuracy. 

 
Figure 10. Importance of the environmental drivers when only data corresponding to locations with 
TCC greater than 40% were considered. 

Figure 9. RF model performance to predict CBI when only data corresponding to locations with TCC greater than 40% were
considered (319 samples in total). The three subplots represent (a) training, (b) validation, and (c) overall accuracy.

The results also showed that the LFMC values of 99% of the samples were lower
than 150%, and 80% of the samples were lower than 120% (Figure 12a). Among the
400 samples with LFMC lower than 120%, there were 150 samples with TCC ≤ 40%
(Figure 12b) and 250 samples with TCC > 40% (Figure 12c). Among the 150 samples with
LFMC lower than 120% and TCC ≤ 40%, the distribution of moderate, moderate to high,
and high burn severity level was relatively uniform, at 30%, 48%, and 22%, respectively.
Among the 250 samples with LFMC lower than 120% and TCC > 40%, the distribution of
moderate, moderate to high, and high burn severity level was extreme, at 2%, 18%, and
80%, respectively.
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4. Discussion
4.1. Environmental Drivers of Burn Severity

The focus of this study was to assess the relative importance of three sets of variables
(pre-fire fuel, topographic, and meteorological variables) in controlling spatial patterns of
burn severity expressed as CBI and as observed through satellite imagery. In the single
scenario simulation, all environmental factors were input into the training model. Among
the 10 input variables, the 3 most important variables were all fuel-related variables,
which indicated that in the Qinyuan fire, the total amount of flammable live fuels and its
moisture content were the most critical factors determining burn severity. Since October
2018, Qinyuan county has been suffering from continuous drought, which leads to the
decline of vegetation moisture content and the associated higher probability of fuels to
be ignited and burn at a higher intensity given an ignition source. This is also one of the
reasons why LFMC is the third most important environmental driver of burn severity.
Previous studies have shown that when the LFMC of the forest is lower than 150%, the
probability of fire ignition increases, and when LFMC is lower than 120%, it is more prone
to severe burn [31,85]. In this study, the LFMC of 99% of the samples was lower than 150%,
indicating that the study area has been in a high-risk state of fire ignition. The LFMC of 80%
of the samples was lower than 120%, indicating that most areas would be accompanied
by severe burn, which was consistent with the distribution characteristics of randomly
extracted CBI. More than 60% of the 500 samples were within a high burn severity level.
When LFMC was lower than 120% and TCC ≤ 40%, it indicated that the plant leaves were
under water stress, and the flammable fuels were insufficient. In this case, TCC was the
main driver of burn severity, so the distribution of moderate, moderate to high, and high
burn severity levels was relatively uniform (Figure 12b). When LFMC was lower than
120% and TCC > 40%, it indicated that the vegetation leaves were under water stress and
there were sufficient flammable fuels, which were more prone to severe burn. This was the
reason 80% of the samples were prone to the high burn severity level (Figure 12c) under
this criterion. Generally, the lower the LFMC, the greater the risk of forest fire [30,86].
If there are sufficient flammable fuels at the time of ignition, the probability of the fire
burning at a high severity is greater. However, when there are few flammable fuels, even
a low LFMC will not result in a severe burn, that is, LFMC and flammable fuels control
the combustion intensity together. The studies in Mediterranean pine forests confirmed
that that burn severity was mostly influenced by pre-fire vegetation greenness, represented
by NDWI and NDVI [16]. Similar to LFMC, NDVI and NDWI can also reflect whether the
vegetation is under water stress. Among all topographic variables, elevation is the most
important. The forest fire was ignited at noon, so anabatic wind was formed due to the
temperature and pressure difference between the top of the mountain and the valley, which
was very advantageous to the fire spreading to the mountain top with a relatively high
elevation. As a result, forest burning on the top of the mountain results in more severe
burns. This was also observed in the field sites inspected for this study (Figure 6).

When TCC was less than or equal to 40%, the flammable live fuels were insufficient
to drive a high severity burn, so TCC became the most important factor driving the burn
severity. However, when TCC was greater than 40%, the pine stands were burned via
crown fire if there was a continuity of canopy dryness. Consequently, the burn severity
was mainly driven by LFMC, and the importance of TCC decreased sharply. The results
also indicated that whether the flammable live fuels were sufficient for severe burn or not,
the importance of NDVI remained high. This is because NDVI is an index that integrates
vegetation load and moisture content simultaneously.

Accurate prediction of the spatial distribution of potential burn severity will provide
important information for managers and scientists who are tasked with managing fuel and
wildland fires. Remote sensing data have been widely used in the study of burn severity
estimation because of its high temporal and spatial resolution. However, predicting burn
severity maps may be more useful to enable forest managers to predict key areas where high
burn severity may occur, giving priority to fuel treatment strategies in these areas [87,88].
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In this study, when only remote sensing data (fuel and topographic variables) were used as
input variables, the model achieved a good prediction accuracy (R = 0.72, RMSE = 0.18,
slope = 0.61). The results of this study also confirmed that the forest fire burn severity can
be predicted by satellite remote sensing data with high spatiotemporal resolution.

Meteorological data did not show an obvious driving effect on the burn severity in
this study, but meteorological data interacted with other environmental factors. Therefore,
we further analyzed the daily precipitation, relative humidity, and average air temperature
data from October 2018 to March 2019 and October 2017 to March 2018 (Figure 13). The
meteorological data were extracted from the Qinyuan meteorological station (longitude:
112.35◦E, latitude: 36.52◦N,) which is the nearest (18 km) station to the edge of the fire.
The data show that there was almost no precipitation in six months (October 2018 to
March 2019) before the fire (day 180 in Figure 13). However, from October 2017 to March
2018, there was significantly more precipitation. The relative humidity closely tracked
precipitation, showing lower values in March 2019 than in March 2018. Before the fire,
the average air temperature continued to rise for three months and the relative humidity
gradually decreased for ~40 days, creating good weather conditions for the fire ignition.
Although the meteorological data had no obvious driving effect on the burn severity, they
created conditions for fire ignition. Therefore, the possible reason why the meteorological
data did not show an obvious driving effect on the burn severity is that meteorological
conditions are expected to indirectly impact burn severity by influencing fuel moisture
conditions and fuel accumulation [17,89].
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4.2. Pre-Fire Forest Management Suggestions

The results of this study indicated that dense live fuel accumulations and LFMC
are important factors influencing burn severity. This is consistent with the local forest
management policy. In recent years, in order to better protect the forest and prevent
potential ignitions and deforestation, the forestry management department of Qinyuan
county has implemented the policy of “Closing Hillsides”. This policy supports the
conservation and sustainable management of forest via afforestation and restrictive human
access by closing many roads to the mountain. Due to the lack of human interference, the
local pine forest is growing very well, accumulating a large amount of flammable fuels.
Therefore, pre-fire forest management strategies should seek to reduce burn severity levels
by reducing the accumulation of fuels and increasing the moisture content of vegetation.
Forest thinning and prescribed fire were the two most commonly used methods to reduce
fuel accumulation [90,91]. However, there is still no unified conclusion regarding how
to use these two methods to reduce burn severity, whether they are used separately or
combined [90,92]. By analyzing the meteorological data, we also found that under the
arid climate background, areas with higher flammable fuels are more prone to severe fire.
Therefore, we suggest that in addition to conducting fuel reduction activities, the forestry
management department also needs to plan the landscapes (e.g., “Green firebreaks”) with
fire-resistant plants with higher LFMC. This is indispensable to reducing wildfire spread
and burn severity. The effectiveness of these forest management suggestions needs to be
further verified.

5. Conclusions

Better understanding of the relationship between environmental drivers and burn
severity is of importance to forest managers and has been studied in several fire-prone
regions around the world. However, the mechanism of environmental drivers controlling
burn severity in the temperate coniferous forest of northern China is still limited. In this
study, 500 samples were selected from the CBI spatial distribution map to analyze the
relationship between burn severity and environmental drivers based on an RF machine
learning algorithm. A total of 10 spatial variables related to fuel, topographic, and mete-
orological drivers were used as input to predict CBI. The findings of this study indicate
that (i) the most important environmental driving factor for the burn severity (CBI) in
the temperate coniferous forest of northern China are the fuel condition-related variables.
More specifically, the burn severity is mainly determined by the amount of flammable live
fuels (expressed as TCC) and the LFMC. Although the meteorological data played a less
determining role, fire weather conditions (low RH and precipitation, high temperature)
create conditions for fire ignition. (ii) When the flammable live fuels are insufficient to
drive a high severity burn, TCC is the most important factor driving the burn severity,
while when TCC is greater than 40%, the burn severity is mainly driven by LFMC. (iii) In
the pre-fire forestry management, the department should conduct strategic fuel reduction
management activities and plan the landscapes with vegetation made up of plants with
higher LFMC when possible (e.g., “Green firebreaks”) to lower the burn severity caused by
potential wildfires in the temperate coniferous forests of northern China. Future work will
focus on understanding how fuel types, forest heterogeneity, and stand age may influence
burn severity in temperate coniferous forests in northern China.
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