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Abstract: In recent years, synthetic aperture radar (SAR) automatic target recognition has played a
crucial role in multiple fields and has received widespread attention. Compared with optical image
recognition with massive annotation data, lacking sufficient labeled images limits the performance
of the SAR automatic target recognition (ATR) method based on deep learning. It is expensive and
time-consuming to annotate the targets for SAR images, while it is difficult for unsupervised SAR
target recognition to meet the actual needs. In this situation, we propose a semi-supervised sample
mixing method for SAR target recognition, named multi-block mixed (MBM), which can effectively
utilize the unlabeled samples. During the data preprocessing stage, a multi-block mixed method
is used to interpolate a small part of the training image to generate new samples. Then, the new
samples are used to improve the recognition accuracy of the model. To verify the effectiveness of the
proposed method, experiments are carried out on the moving and stationary target acquisition and
recognition (MSTAR) data set. The experimental results fully demonstrate that the proposed MBM
semi-supervised learning method can effectively address the problem of annotation insufficiency in
SAR data sets and can learn valuable information from unlabeled samples, thereby improving the
recognition performance.

Keywords: synthetic aperture radar; automatic target recognition; semi-supervised learning; mixed
sample method

1. Introduction

Automatic target recognition (ATR) for SAR has been widely applied in mineral re-
source exploration, geographic information collection, and marine monitoring, due to
its all-weather, all-time, and long-range operation and high-resolution imaging superi-
ority ability [1–6]. Among techniques for ATR are the feature-based methods, which
extract features from SAR images to feed into the classifier for recognition [7–10]. These
methods can not only improve the accuracy of target recognition, but also can reduce
the requirement of the sample amount. Since SAR target characteristics do not conform
to the human vision system, target feature extraction has always been a hot and hard
topic in the ATR community. With the development of deep learning, convolution neural
network (CNN)-based methods for SAR ATR have been proven to be more effective than
traditional methods [11–14]. Unlike traditional machine learning methods [15], which
require handcrafted features, CNNs can automatically learn effective hierarchical image
features to achieve higher recognition accuracy [16].

At present, CNN-based supervised classification methods rely heavily on the input
images and corresponding high-quality human annotation labels [17–19]. When the la-
beled data used to train the model are insufficient, it is difficult for the model to achieve
good recognition performance, unlike natural image tasks with millions of labeled data.
Single-polarization SAR images usually have blurred edges and strong anisotropy due
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to background clutter and limited resolution, which is time- and energy-consuming for
annotation [20]. This makes it very expensive to obtain labeled SAR data; therefore, it is
difficult to obtain a large number of labeled SAR data that can train the neural network
well in actual situations [21]. To alleviate the urgent need for large amounts of manually
annotated data in supervised learning methods, semi-supervised learning methods that
use both labeled and unlabeled data during the training phase for SAR ATR have been
proposed [22,23]. The main task of semi-supervised learning is how to make full use of the
features of unlabeled data to optimize the recognition model when there is only a small
amount of labeled data. Its core idea is to optimize the model by adding different perturba-
tions to unlabeled images in the training phase and restricting the model to produce the
same classification results for different perturbations of the same image.

In recent years, efforts dedicated to semi-supervised learning methods for SAR ATR
have gained progress as well. Specially, Gao et al. [22] proposed a semi-supervised method
based on a deep convolutional generative adversarial network, which consists of two dis-
criminators. They used a deep convolutional generator to generate new images and utilized
the high quality ones for training to get better recognition performance. Wang et al. [23]
proposed a semi-supervised learning framework via self-consistent augmentation (SCA)
that uses a self-consistent augmentation rule to force the samples before and after aug-
mentation to share the same labels to utilize the unlabeled data and used the mixup-based
mixture [24] to mix the labeled, unlabeled, and augmented samples for the better involve-
ment of label information in the mixed samples, achieving amazing recognition accuracy
on SAR images.

Since mixup can help to improve the performance of the network training in semi-
supervised learning, we believe that hybrid regularization methods can bring more im-
provements to the performance of SAR ATR based on semi-supervised learning methods.
Based on SCA [23], we replaced mixup with cutmix [25]. Cutmix and mixup have similari-
ties in that both combine two samples, where the ground truth label of the new sample is
given by the linear interpolation of one-hot labels. Cutmix, which cuts and pastes patches
among training images, was inspired by mixup and cutout [26], rather than simply adding
two images together like mixup. The advantage is that the composite image still retains
most of the image area, instead of generating a specious image like mixup and not cutting
part of the area into black like cutout. However, the label of the new sample generated by
cutmix is determined based on the ratio of the two image areas of the synthesized sample,
which faces the risk of adding too much additional sample information. The model’s
recognition probability of the image is not completely proportional to the image area. At
the same time, the SAR image is a top view taken from different angles. When a new
sample is generated by mixup and cutmix, it may cause obvious ghosting in the generated
image, thereby increasing the difficulty of model learning.

To solve this problem, this paper proposes a semi-supervised learning SAR ATR
method based on a multi-block hybrid strategy. For two images that need to be mixed,
multi-block mixed (MBM) first divides the two images into multiple rectangular areas
of equal size and then randomly selects a small part in each area. Second, interpolation
calculation is used to blend selected parts of each rectangular area of the two images
at a specific ratio to obtain a new sample. Finally, according to the hybrid method, the
label of the new sample is calculated, and the new hybrid sample is used to train the
model. As we see in the experiment, the MBM method makes full use of unlabeled samples
without significantly changing the target features, thereby reducing the difficulty for the
model to identify mixed samples and further exploring the deep features of the samples.
While improving the accuracy of model recognition, it also speeds up model convergence
compared with the cutmix hybrid method. Our contribution is as follows.

1. The hybrid method cutmix is used to mix labeled samples with labeled or unlabeled
samples and is applied to the semi-supervised learning method in the SAR ATR field.

2. According to the characteristics of cutmix and mixup, a multi-block mixed strat-
egy (MBM) is designed to further extract the deep features of the SAR image and
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improve the recognition accuracy of the model obtained by the semi-supervised
learning method.

3. The experiment verifies the influence of the number of modules in the MBM method
on the results, and we compare the recognition performance of our method with main-
stream hybrid methods through ablation experiments. At the same time, compared
with other semi-supervised methods for SAR ATR, MBM achieves higher recogni-
tion accuracy on moving and stationary target acquisition and recognition (MSTAR)
datasets with different labeled samples.

The rest of this article is organized as follows. In Section 2, we briefly introduce the
SCA semi-supervised learning method. In Section 3, we introduce our proposed multi-
block mixed sample method to further improve the recognition performance of the semi-
supervised learning model. Section 4 introduces the experimental results and compares the
proposed method with state-of-the-art SAR image semi-supervised learning recognition
methods. Section 5 includes discussions of the method with further experiments. Finally,
Section 6 concludes this article.

2. SCA Semi-Supervised Learning Basics

The self-consistent augmentation (SCA) semi-supervised learning basics for SAR
target recognition unify several training strategies [23]. Since our method is a certain
improvement on the basis of SCA, in this section, we review the necessary details of SCA
to express our SAR ATR semi-supervised learning method clearly.

Given a small amount of labeled training SAR samples X = {(xi, yi)}n
i=1 and a large

set of unlabeled training SAR samples U =
{

uj
}m

j=1, where n� m, the purpose of SCA is
to train a model with excellent SAR recognition performance by usingDl andDu. Formally,
let y = fθ(x) be the predicted category after the model, where fθ represents the convolution
neural network and θ are the parameters of the network. Let xa = Aug(x) and ua = Aug(u)
denote the samples after data augmentation, where Aug() represents a data augmentation
method, such as image cropping, image rotation, and image flipping. In order to optimize
the model using unlabeled data, SCA adopts the self-consistent augmentation method.
Specifically, for an unlabeled sample using data augmentation, the data labels before and
after the augmentation should still keep the same yu = yua although the true categories are
unknown. Therefore, SCA labels unlabeled samples with:

ŷu =

(
yu + ωayua

2

)2
(1)

where ωa is a hyperparameter controlling the ratio of yu and yua .
To reduce the undesirable effects of the wrong labeling of unlabeled samples in the

initial training period on the model, SCA introduces the mixup method to mix labeled
samples with labeled or unlabeled samples and mix unlabeled samples with other unla-
beled samples.

x′ = λ′x +
(
1− λ′

)
xmix (2)

u′ = λ′u +
(
1− λ′

)
xmix (3)

where xmix is the mixed set of training samples and their augmented samples {X, Xa, U, Ua},
λ ∼ Beta(α, α), and α is a hyperparameter. λ′ = max(λ, 1− λ) makes sure the ratio of
labeled samples is higher when mixing the labeled and unlabeled samples by using mixup.
The corresponding training targets of (2) and (3) are constructed as:

y′x = λ′yx +
(
1− λ′

)
ymix (4)

y′u = λ′ŷu +
(
1− λ′

)
ymix (5)
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where ymix is the corresponding label of xmix. Finally, the mixed labeled samples X′ and
the mixed unlabeled samples U′ are used in computing separate labeled and unlabeled
loss terms.

Ls = −
1

Nx

Nx

∑
i=1

y′xi
log

(
fθ

(
x′i
))

(6)

Lu =
1

Nu

Nu

∑
i=1

∥∥∥ fθ

(
u′i
)
− y′ui

∥∥∥2

2
(7)

Loss = Ls + ωuLu (8)

where ωu is a hyperparameter to balance the supervised loss Ls and the unsupervised loss
Lu. Figure 1 shows the framework for the SCA semi-supervised learning method.

f

augment

augment

labeled

concatenate

shuffle

mixed

forward

samples labeling data processing model training

labeled samples unlabeled samples pseudo-labeled samples mixed samples

Figure 1. The framework for the self-consistent augmentation (SCA) method, where the training procedure includes three
phases: sample labeling, data processing, and model training. In particular, sample labeling is part of data processing. First,
in the early stages of data processing, SCA performs data augmentation on labeled and unlabeled samples. At this time, the
model pseudo-labels unlabeled samples. Then, there is the later stage of data processing, where the labeled samples and
pseudo-labeled samples are combined, and the combined data set and randomly shuffled combined data set are mixed to
obtain a new sample set. Finally, the new sample set is used to train the model.

3. Proposed Method

Although SCA uses the mixup method to mix samples, which improves the recognition
accuracy of the semi-supervised learning model for SAR images, the images produced by
the mixup method are ambiguous and unnatural, which could still cause some misleading
of the model during the training process.

In this section, we introduce our multi-block mixed method (MBM). The goal of
MBM is to improve the sample mixing method used in the SCA method in the model
training process to combine two training samples to generate a new sample so that the
semi-supervised learning model can obtain better recognition accuracy in SAR image
recognition tasks.



Remote Sens. 2021, 13, 361 5 of 21

3.1. Cutmix for Semi-Supervised Learning

Our goal is to use the same data as the mixup method, but different mixing operations
to generate labeled and unlabeled training samples. Based on this, in the semi-supervised
learning process, we introduce the cutmix method to replace the mixup method to generate
new mixed samples and further improve the model’s recognition performance for SAR.
The combining operation is defined as:

x′ = M� x + (1−M)� xmix (9)

y′ = λyx + (1− λ)ymix (10)

where M ∈ {0, 1}W×H denotes a binary mask indicating which part to drop out and fill
in from two images, W × H represents the size of the input image, 1 is a binary mask
filled with ones, and � is element-wise multiplication. The λ used here is the ratio of the
area outside the cropped area to the area of the entire image, and in our semi-supervised
learning method, we guarantee λ > 0.5.

The main difference with the mixup method is that cutmix replaces the image area
with a patch from another training image, and the new samples generated are locally more
natural than those generated by mixup. This can make it easier for the model to capture
the deep features of the image during training and better improve the recognition accuracy.
In order to match the mixed data with the label, the rectangle selected in M is proportional
to λ. In other words, the ratio of the area replaced in the mixed image to the total area of
the image is (1− λ). In this case, rectangular box B is defined as B =

(
rx, ry, rw, rh

)
, where

rx ∼ Unif(0, W), ru ∼ Unif(0, H), rw = W
√

1− λ, rh = H
√

1− λ. Then, we fill the area
of the rectangular box B in the matrix M with 0 and fill the other areas of M with 1, and
through Formulas (9) and (10), a new mixed sample can be obtained. For the unlabeled
samples in the training data, we use the same method to mix the samples to generate new
samples.

3.2. Multi-Block Mixed Sample for Semi-Supervised Learning

The experiment in Section 4 shows that cutmix can improve the accuracy of the
algorithm for SAR image recognition to a certain extent. In view of the feature that cutmix
completely replaces a part of the sample image with the corresponding area of other
images, we believe that this kind of mixing still brings some misleading of the model
during training. In this case, we propose a multi-block mixed sample method.

Mixup mixes the entire image, which makes the newly generated samples partially
unclear and unnatural. Although cutmix generates natural images, a continuous area
in the image is replaced with the content of other images. Considering that these two
hybrid methods have corresponding shortcomings, our MBM method integrates and
modifies them. In our proposed MBM method, matrix M is also needed, M ∈ {0, 1}W×H .
The difference with cutmix is that MBM randomly selects multiple rectangular boxes of
different sizes in the matrix M, sets the data of the rectangular boxes to 0, and sets the
remaining areas to 1. Then, the new combination operation method is:

x′ = λ′(1−M)� x + (1− λ′)(1−M)� xmix (11)

x′ = M� x + (1−M)� x′ (12)

where λ′ is the same as λ in cutmix (it is the ratio of the part outside the selected area
to the total area) and λ′ is always greater than 0.5 during training. λ′ is used to ensure
that the selected image occupies a larger proportion of the mixed result. The purpose of
Formula (11) is to use the mixup method to mix the positions corresponding to the multiple
rectangular boxes selected by M in the target image x with the selected sample xmix. Then,
Formula (12) is used to make the images of other regions not selected by the rectangle M
remain unchanged in the resulting mixed result. The ratio of the selected area to the total
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area in matrix M should be λ′, and its value cannot be greater than 0.5. Hence, the label of
the mixed sample should be defined as:

y′ = λ′(2− λ′)yx + (1− λ′)2ymix (13)

The new samples generated by this method can be regarded as selecting multiple
rectangular areas in the original image, applying a hybrid method to the selected areas,
and interpolating the corresponding areas of other images with a smaller ratio to obtain
new samples. The new sample neither looks unnatural like the sample generated by
the hybrid method, nor does it replace the continuous area in the target image like the
sample generated by the cutmix method. Figure 2 shows the operation of the three mixing
methods and examples of pictures before and after mixing, and subsequent experiments
fully prove the superiority of the proposed sample mixing method. We introduce the
code-level description of the MBM algorithm in Algorithm 1. W and H denote the size
of the input images. Since the training phase requires multi-block mixing of samples, the
overall computational complexity is O(n2).

Input
Image 1

Input
Image 2

Output
Image

Mixup

Cutmix

MBM

Input
Image 1

Input
Image 2

Output
Image

Mixup

Cutmix

MBM

Figure 2. Overview of mixup, cutmix, and our multi-block mixed (MBM) blending methods. The left part of the figure is an
example of the operation of the three hybrid methods. Among them, the mixup method performs interpolation operations
on the input image; the cutmix method introduces an additional matrix M (omitted in the figure) and uses element-wise
multiplication to replace part of the content in the input image; the MBM method divides the picture into N parts and
selects a small part of each part and the corresponding part of another input image for interpolation and mixing. The
input SAR images of the three methods and the new samples generated are shown on the right side of the figure, and the
generation method does not strictly correspond to the frame selection position in the left figure.
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Algorithm 1. Pseudocode for the MBM semi-supervised learning method.
Input:
batch of labeled samples {X ,Yx};
batch of unlabeled samples with pseudo-label {U ,Yu};
Output:
two batches of mixed labeled samples (input, target);

1: input, target = Concat((X ,Yx), ({U ,Yu))

2: inputm, targetm = shuffle(input, target)

3: λn = 0

4: for i = 0 to N do

5: for j = 0 to N do

6: λx = Unif(0, 1)

7: rx = Unif(i, i + 1)×W/N

8: rw = Sqrt(1− λx)×W/N

9: x1 = Round(Clip(rx − rw/2, min=i×W/N))

10: x2 = Round(Clip(rx + rw/2, max=(i + 1)×W/N))

11: λy = Unif(0, 1)

12: ry = Unif(j, j + 1)× H/N

13: rh = Sqrt(1− λy)× H/N

14: y1 = Round(Clip(ry − rh/2, min= j× H/N))

15: y2 = Round(Clip(ry + rh/2, max=(j + 1)× H/N))

16: λ′ = 1− (x2 − x1)× (y2− y1)/(W × H)

17: input[:, :,x1:x2,y1:y2 ]=λ′× input[:, :, x1:x2, y1:y2 ]+(1-λ′)×inputm[:,:,x1:x2,y1:y2]

18: if i==0 and j==0 then

19: target1 = λ′(2− λ′)× target + (1− λ′)2× targetm

20: else

21: target2 = λ′(2− λ′)× target + (1− λ′)2× targetm

22: target1 = target1 + target2

23: target = target1 /N2

24: return input, target

4. Experiments and Results

In this section, we first introduce the moving and stationary target acquisition and
recognition (MSTAR) database [27] used for the experiment. Then, we apply it to deep
CNNs and evaluate it on the recognition task. Finally, to verify the SAR ATR performance
of the MBM semi-supervised learning method, we compare our MBM semi-supervised
learning method with some state-of-the-art approaches.

4.1. MSTAR Data Set

The MSTAR data set [28] is a public data set created by the U.S. Air Force Laboratory,
which consists of SAR images of ten classes of military vehicles with ground targets and
is divided into two sub-datasets: a training data set and a testing data set. These ten
class military vehicles include 2S1, BMP2, BRDM2, BTR60, BTR70, D7, T62, T72, ZIL131,
and ZSU234, which are indexed by class labels 1, 2,. . . ,10, respectively. The SAR and the
corresponding optical images of each class are shown in Figure 3. The training images are
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obtained at a 17◦ depression angle, and the testing images are captured at a 15◦ depression
angle. Each type of target is densely captured in aspect angles, ranging from 0◦ to 360◦.
The amount of each category is shown in Table 1.

All the samples are center cropped to 64× 64 pixels. For the semi-supervised training
phase, we first divide the training set into two parts: 10, 20, 40, 60, and 80 labeled samples
per category are randomly selected, and the rest of the training images are used as unlabeled
samples. All the images in the test set are used in the test process.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3. Optical images and corresponding SAR images of ten classes of objects in the moving and stationary target
acquisition and recognition (MSTAR) database, (a) 2S1; (b) BMP2; (c) BRDM2; (d) BTR60; (e) BTR70; (f) D7; (g) T62; (h) T72;
(i) ZIL131; (j) ZSU234.

Table 1. Detailed information of the MSTAR data set used in our experiments.

Tops Class
Training Set Testing Set All Data

Depression No. of
Images Depression No. of

Images
No. of
Images

Artillery 2S1 17◦ 299 15◦ 274 573
ZSU234 17◦ 299 15◦ 274 573

Tank T62 17◦ 299 15◦ 273 572
T72 17◦ 232 15◦ 196 428

Truck

BRDM2 17◦ 298 15◦ 274 572
BTR60 17◦ 256 15◦ 195 451
BTR70 17◦ 233 15◦ 196 429
BMP2 17◦ 233 15◦ 195 428

D7 17◦ 299 15◦ 274 573
ZIL131 17◦ 299 15◦ 274 573

Total —— —— 2747 —— 2425 5172
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4.2. Implementation Details
4.2.1. Network Architecture

We use the “Wide-ResNet” model from [29] with depth 28 and width two, which
is a popular backbone structure that is widely used in image recognition tasks due to
its prominent ability of feature extraction and feature representation. It includes the
standard batch normalization [30] and leaky ReLU nonlinearities [31], and the output layer
is constructed as a 10-dimensional fully connected layer since the MSTAR data set consists
of 10 categories.

4.2.2. Training Setup

Overall, our implementation of the training procedure closely matches that of SCA [23],
except for the following differences: We used a batch of 16 images and 200 batches as an
epoch. The model was trained for 200 epochs by using the labeled and unlabeled data set,
where the Adam [32] optimizer was employed with a learning rate of 0.002 for the model.

To quantitatively evaluate the proposed MBM method, we used the recognition accu-
racy as the performance metrics. Finally, we conducted five independent experiments on
each data set and recorded the average of the best accuracy of these five independent ex-
periments as the final recognition accuracy of the MBM semi-supervised learning method.

The proposed method was tested and evaluated on a computer with Intel Core
i7-10070 at 3.80 GHz CPU, GeForce GTX 2080 Ti GPU with 11 GB memory, and 16 GB
computer memory. The proposed method was implemented using the open-source Pytorch
framework [33].

4.3. Experiments with the Original Training Set under Different Labeled Samples

In the first experiment, we evaluated the performance of the proposed method under
different amounts of labeled samples, which were set as 10, 20, 40, 60, and 80 labeled
samples per category for the MSTAR data set, and obtained the multi-block mixed semi-
supervised recognition accuracy (MBM SSRA). As mentioned above, all these samples were
randomly selected, and the samples selected by the five independent experiments were not
the same. We also utilized the labeled samples for supervised training by using the same
budget of hyperparameter optimization trials and obtained the supervised recognition
accuracy (SRA). Table 2 shows the recognition accuracies. As can be seen from Table 2,
compared with the model obtained by supervised learning using only labeled samples,
the model obtained by using the semi-supervised method can significantly improve the
recognition accuracy. When the number of labeled samples was the least, compared
with the recognition accuracy of the supervised learning model, the semi-supervised
learning model had the best improvement effect in the recognition accuracy, and the
relative accuracy was increased to 14.53%. When the number of labeled samples was
the largest, the improvement in recognition accuracy was 0.66%. This is also because the
accuracy of the supervised learning model reached 99% when there were 80 samples in
each category. In other words, the zero-point-six-eight percent improvement was not much
better. Specifically, the average relative accuracy improvement was 4.99%. This shows that
semi-supervised learning combined with unlabeled data can enable the model to learn
more data features and improve recognition accuracy.

Table 2. Recognition accuracies of the proposed semi-supervised learning method and the corresponding supervised method
under different amounts of labeled samples per category on the MSTAR data set. SSRA, semi-supervised recognition
accuracy.

Number of Labeled Samples Per Category

10 20 40 60 80 Full

MBM SSRA 97.21 ± 2.441 99.56 ± 0.155 99.58 ± 0.074 99.65 ± 0.062 99.67 ± 0.034 -
SRA 82.67 ± 3.236 93.23 ± 1.339 97.27 ± 0.467 98.516 ± 0.262 99.01 ± 0.121 99.53 ± 0.074
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From Table 2, we can also know that as the number of labeled data increases, the
recognition accuracy of the semi-supervised learning model gradually improves. With
only 20 labeled data in each category, the recognition accuracy of the model trained by
our semi-supervised learning method completely exceeded the recognition accuracy of all
supervised learning models.

In order to show the improvement of our method on the accuracy of different kinds of
object recognition, Figure 4 shows the predicted confusion matrix obtained by the model
trained by our method and the model trained by the supervised learning method under
10 labeled samples per category. The recognition accuracy comparison of each category of
our method and supervised method when there are 10 labeled samples for each category is
shown in Figure 5, which details the improvement of our method relative to the accuracy
of the corresponding supervised method in each category.

0 1 2 3 4 5 6 7 8 9
(a)

2S1

BMP2

BRDM2

BTR60

BTR70

D7

T62

T72

ZIL131

ZSU234

0.99 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00

0.00 0.92 0.00 0.00 0.07 0.00 0.00 0.01 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.02 0.97 0.00 0.00 0.00 0.00 0.00 0.01

0.00 0.00 0.00 0.03 0.97 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.94 0.06 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.93 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0 1 2 3 4 5 6 7 8 9
(b)

0.75 0.03 0.01 0.02 0.05 0.01 0.08 0.01 0.03 0.01

0.01 0.82 0.03 0.01 0.05 0.00 0.01 0.07 0.00 0.01

0.00 0.03 0.93 0.01 0.00 0.00 0.00 0.00 0.02 0.00

0.01 0.01 0.01 0.82 0.06 0.00 0.05 0.02 0.01 0.01

0.07 0.02 0.04 0.07 0.77 0.00 0.00 0.00 0.03 0.00
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Figure 4. Confusion matrices of the proposed method and the corresponding supervised method under 10 labeled samples
per category: (a) MBM; (b) supervised method.
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Figure 5. Precision comparison for each class of the MBM and the corresponding supervised method,
where the Y-axis denotes per class classification accuracy improvement of the MBM relative to the
corresponding supervised method, and the X-axis denotes the class index of each category.

In the confusion matrices of Figure 4, their entries in the ith row and jth column indicate
the proportion of samples in which the true label is the ith type and the predicted label is
the jth type. From the confusion matrix in Figure 4, we can see that our MBM method can
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achieve 100% prediction recognition accuracy for four categories (i.e., BMRDM2, D7, T72,
ZSU234). For the remaining categories, the recognition accuracy rate exceeded 90%, and
the recognition accuracy of all categories was generally higher than that of the supervised
learning method.

It can be clearly seen from Figure 5 that our MBM method improved the recognition
accuracy of all categories by more than 5%. The improvement of BMP2 and ZSU234
was less than 10%, while the improvement of other categories was more than 10%. The
improved recognition accuracy of 2S1 and ZIL131 exceeded 20%. In addition, the reason
why ZSU234 was not much improved was that the recognition accuracy of the model
obtained by the supervised method in the category exceeded 90%, while the improved
recognition accuracy was 100%.

4.4. Experiments Comparing Different Mixed Methods

In this section, we conduct ablation experiments. To prove the effectiveness of the
MBM method, we used different sample mixing methods, mixup methods, and cutmix
methods to prove the recognition performance of our proposed method. To prove the
effectiveness of the hybrid method, we also conducted experiments to remove the hybrid
method. Table 3 shows the recognition accuracy results of different mixed methods under
different numbers of labeled samples.

Table 3. Recognition accuracies of the proposed semi-supervised learning method, cutmix semi-
supervised learning method, mixup semi-supervised learning method, and unmixed semi-supervised
learning method under different amounts of labeled samples per category on the MSTAR data set.
The bold numbers represent the optimal value in each column.

Number of Labeled Samples Per Category

10 20 40 60 80

MBM SSRA 97.21 ± 2.441 99.56 ± 0.155 99.58 ± 0.074 99.65 ± 0.062 99.67 ± 0.034
cutmix SSRA 96.74 ± 2.011 99.28 ± 0.638 99.66 ± 0.074 99.71 ± 0.133 99.71 ± 0.065
mixup SSRA 94.92 ± 4.359 98.86 ± 0.447 99.14 ± 0.259 99.11 ± 0.255 99.40 ± 0.150
unmix SSRA 93.75 ± 3.602 98.82 ± 0.313 98.99 ± 0.340 99.20 ± 0.147 99.36 ± 0.135

From Table 3, we can see that our MBM hybrid method provided the best recognition
results when the number of labeled samples was small (only 10 labeled samples and 20
labeled samples per class). The cutmix method had the best recognition effect when the
number of marked samples was large (the number of samples in each category exceeded
40). It can also be seen from Table 3 that compared to the mixup method, our method
can significantly improve the recognition accuracy, especially when the number of labeled
samples was very small.

In semi-supervised learning, an important issue is to balance the training of labeled
data and unlabeled data, where labeled data and unlabeled data should participate in the
entire training process. Mixup generates mixed data to solve the problem of misleading
predictions of under-trained classification networks in the early stages of training [23].
Compared with the way that does not use mixed data, mixup can improve classification
performance to a certain extent. However, it can be seen from Figure 2 that the image
generated by the mixup had certain artifacts, and the image generated by the cutmix was
very different from the original image in a large range. To this end, we used the MBM
method, which has the advantages of the mixup method, and the new image generated
greatly increased the data capacity in the sample space. The most important thing is that
the generated image was closer to the original image, so that the model can extract more
feature information during the training process. The results in Table 3 fully prove that
MBM can improve the recognition performance of the model.

The same as the previous section, to show the improvement of our method on the
accuracy of different kinds of object recognition, Figure 6 shows the predicted confusion
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matrix obtained by the model trained by our method, the model trained by the cutmix semi-
supervised learning method, the model trained by the mixup semi-supervised learning
method, and the model trained without any hybrid method under 10 labeled samples per
category. The recognition accuracy comparison of each category of our method with the
cutmix semi-supervised learning method, the mixup semi-supervised learning method,
and the non-hybrid semi-supervised method when there were 10 labeled samples for each
category is shown in Figure 7, which details the improvement of our method relative to
the accuracy of other corresponding mixed semi-supervised learning methods in each
category.

From Figures 6 and 7, it can be found that the recognition accuracy of our method and
the cutmix method in each category had a small increase compared with the mixup method,
and only a certain decrease on BTR70 and T62. Figure 6 shows that the main reason was
that the BTR70 target was misidentified as BTR60 and the T62 target was misidentified
as T72. In general, our method can bring a certain performance improvement for the
semi-supervised learning method based on mixup mixed samples in the recognition task
of SAR images.

To directly compare the experimental results, we plot the recognition accuracy curves
of the MBM, cutmix, mixup, and unmixed methods corresponding to 10 labeled samples
per category, as shown in Figure 8. It is observed that the accuracy curve of the mixup
method increases the fastest in the initial stage; the MBM method is relatively slow; and
the cutmix method increases the slowest. The four kinds of curves are relatively stable after
60 epochs, and MBM obtains the highest recognition accuracy. This indicates that the three
hybrid methods can improve the recognition accuracy of the model to a certain extent, and
the mixup method can quickly improve the recognition rate in the initial stage. However,
as the training process progresses, the training model can better extract the features of the
mixed samples provided by the MBM and cutmix methods and achieve higher recognition
accuracy. Compared with cutmix, MBM can obtain higher recognition accuracy.
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Figure 6. Confusion matrices of the proposed method and other mixed semi-supervised learning methods under 10 labeled
samples per category (a) MBM; (b) cutmix; (c) mixup; (d) unmixed. The average performance per method is 97.21%, 96.75%,
94.92%, and 93.75%.
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Figure 7. Cont.
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Figure 7. Precision comparisons for each class of the MBM and other mixed semi-supervised methods,
where the Y-axis denotes the per class classification accuracy improvement of the MBM relative to
another mixed semi-supervised method, and the X-axis denotes the class index of each category.
(a) MBM and cutmix; (b) MBM and mixup; (c) MBM and unmixed.
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Figure 8. Recognition accuracy curves of the MBM, cutmix, mixup, and unmixed methods under
10 labeled samples per category.

4.5. Experiments Compare with Other Methods

In this part, we compare the performance of our method with several other semi-
supervised learning-based SAR ATR methods, including linear neighborhood propagation
(LNP) [34], progressive semi-supervised SVM (PSS-SVM) [35], triple-GAN [36], improved-
GAN [37], Gao et al.’s method [22], MGAN-CNN [38], and SCA [23] on the MSTAR data
set. LNP [34] is a semi-supervised learning approach that establishes a similar matrix
and propagates the labels of the labeled samples to the neighborhood unlabeled samples.
PSS-SVM [35] expands the original labeled training set by integrating active learning
methods, that is selecting reliable unlabeled samples for labeling, thereby increasing labeled
samples to optimize the model. Triple-GAN [36] consists of three players, a generator, a
discriminator, and a classifier. The generator and the classifier characterize the conditional
distributions between images and labels, and the discriminator solely focuses on identifying
fake image-label pairs. Improved-GAN [37] utilizes a variety of new architectural features
and training procedures, which enables the discriminator to recognize multiple object types.
Gao et al. [22] used two discriminators in DCGANto ensure the stable training of GAN
by means of joint training and then trained the classifier with samples generated by the
generator to improve the recognition performance. SCA [23] trains the recognition model
based on consistent regularization and hybrid regularization combined with unlabeled
samples using a semi-supervised learning method. In addition to the above methods, we
also compared our method with the comparison methods in the above article, such as
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PCA + SVM [15], AdaBoost [39], SRC [40], K-SVD [41], LCKSVD [42], IGT [43], the Gauss
model [44], and DNN-based methods, including DNN1 [45] and DNN2 [46].

Since our method is an improvement based on the SCA method, for a fair comparison,
we used the same labeled samples and the same neural network as the recognition model.
We conducted five independent experiments by using different labeled samples and se-
lected the average of the five experimental results as the final result. The results of other
comparison methods mainly come from articles published for SCA and corresponding
methods. Table 4 shows the comparison results.

From Table 4, we see that our MBM method can obtain a higher recognition accuracy
with a lower amount of labeled samples. The recognition accuracy is higher than all the
other semi-supervised learning methods. Moreover, the recognition accuracy using only
10 labeled samples per category surpassed all other methods except the SCA method.
This shows that our method has lower requirements for labeled samples than other semi-
supervised learning methods and is more efficient in using unlabeled samples.

To better compare the performance of our proposed semi-supervised learning method
and the methods for comparison with different amounts of labeled training data, we show
the recognition accuracies of different methods with different amounts of labeled training
data in Figure 9. Compared with Table 4, Figure 9 clearly shows that our method can
obtain good recognition results with very few labeled samples. The recognition accuracy
rate increases slightly as the number of samples increases. Moreover, compared with
other semi-supervised learning methods, only 20 labeled samples per category are enough
to achieve the state-of-the-art, which is far less than the other methods based on semi-
supervised learning.
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Figure 9. Recognition accuracies of the proposed semi-supervised learning method and the methods
for comparison on the MSTAR data set.
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Table 4. Recognition accuracies of the proposed semi-supervised learning method and other semi-supervised methods
under different amounts of labeled samples per category on the MSTAR data set. The bold numbers represent the optimal
value in each column. Hyphens indicate that accuracy is not present in the published article.

Number of Labeled Samples Per Category

10 20 40 55 80

LNP - - - 92.04 -
PSS-SVM - - - 95.01 -

Triple-GAN - - - 95.70 -
Improved-GAN - - - 87.52 -

Gao et al. - - - 95.72 -
PCA+SVM - 76.43 87.92 - 92.48
AdaBoost - 75.68 87.45 - 91.95

SRC - 79.61 88.07 - 93.16
K-SVD - 78.52 87.14 - 93.57

LC-KSVD - 78.83 87.39 - 93.23
DGM - 81.11 88.14 - 92.85
Gauss - 80.55 87.51 - 94.10
DNN1 - 77.86 86.98 - 93.04
DNN2 - 79.63 87.73 - 93.76
CNN - 81.80 88.35 - 93.88

GAN-CNN - 84.39 90.13 - 94.29
MGAN-CNN - 85.23 90.82 - 94.91

SCA 94.92 ± 4.359 98.86 ± 1.242 99.14 ± 0.259 99.12 ± 0.345 99.40 ± 0.150
MBM (our proposal) 97.21 ± 2.441 99.56 ± 0.155 99.58 ± 0.074 99.63 ± 0.067 99.67 ± 0.034

5. Discussion
5.1. Choice of Parameter N

In this section, we further discuss the choice of parameter N. The value of N plays
a role in adjusting the degree of image fusion. In addition, the higher the N, the more
segmented regions of the picture there are and the more mixed blocks of the mixed image
there are. Therefore, in this method, the choice of N is very important. We discuss the
impact of the N value on the recognition accuracy under different labeled sample sizes.

We chose different values, 1, 2, 4, and 8, for N to discuss the influence on the MSTAR
data set. We conducted experiments under the conditions that the number of labeled
samples in each category were 10, 20, 40, and 60. At the same time, we strictly ensured that
other parameters remained unchanged when conducting the experiments. The experimen-
tal results are shown in Table 5, and the boxplots of the recognition accuracy with different
labeled samples per category are shown in Figure 10.

Table 5. Recognition accuracies of the proposed semi-supervised learning method for different N
values under different amounts of labeled samples per category on the MSTAR data set. The bold
numbers represent the optimal value in each column.

Value of N
Number of Labeled Samples Per Category

10 20 40 60

1 96.17 ± 2.652 98.85 ± 0.711 99.29 ± 0.525 99.48 ± 0.046
2 96.84 ± 3.091 99.51 ± 0.107 99.55 ± 0.073 99.60 ± 0.094
4 97.21 ± 2.441 99.56 ± 0.155 99.58 ± 0.074 99.65 ± 0.067
8 95.51 ± 2.002 98.28 ± 1.828 99.56 ± 0.094 99.57 ± 0.102

From Table 5, we can see that the performance is robust to the chosen hyperparameters.
The recognition accuracies of different N (1, 2, 4, and 8) for 10 labeled samples per category
are 96.17%, 96.84%, 97.21%, and 95.51%, respectively, and for 20 labeled samples per
category are 98.85%, 99.51%, 99.56%, and 98.28%, respectively. The trend of the recognition
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accuracy of 40 labeled samples and 60 labeled samples for each category is also roughly
the same. For the same number of labeled samples, i.e., 10, 20, 40, and 60, the maximum
improvement is 1.7%, 1.3%, 0.3% and 0.2%, for N values ranging from 1–8. We can see that
as the number of labeled samples increases, the maximum improvement effect gradually
decreases. This is the same as the trend in Table 2 and is also in line with the general law
of semi-supervised learning, that is as the number of samples increases, the recognition
effect of the model will also improve. From the results, we can conclude that the method is
robust to N in a reasonable range, and the best value for N is four, where the method can
obtain the best results for all numbers of labeled samples.
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Figure 10. Cont.
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Figure 10. Boxplots of the recognition accuracy of different N values under different labeled samples
in each category on the MSTAR data set. (a) 10; (b) 20; (c) 40; (d) 80.

5.2. Time Analysis

Table 6 shows the average running time of MBM, cutmix, mixup, unmixed, and
supervised learning without any mixed method in the experiments. In terms of training
time, the supervised learning method takes the least training time, and each epoch in the
training process takes 7.04 s. The training time of the remaining four semi-supervised
learning methods is not much different. Among the semi-supervised learning methods,
the unmixed method takes the least time, each epoch taking 17.29 s, and the mixup mixed-
method takes the most time, each epoch taking 23.09 s. We believe that mixup mixes
the entire picture, making its training time slightly longer than the cutmix and MBM
semi-supervised learning methods. Overall, our method can slightly reduce the training
time.

Table 6. Time analysis of the proposed method, cutmix, mixup, unmixed, and the supervised learning
method.

Training Time Per Epoch Testing Time Per Image

MBM 17.28 s 0.512 ms
cutmix 17.57 s 0.531 ms
mixup 23.09 s 0.511 ms

unmixed 17.29 s 0.522 ms
supervised method 7.04 s 0.518 ms

The time worth paying attention to is the test time of the model. Mixed samples
belong to a data processing method, and this operation is only performed on the training
data during the training phase. Whether it is a semi-supervised learning method with
mixed data, a semi-supervised learning method without mixing, or a supervised learning
method, the Widresnet-28-2 network was used when recognizing SAR images in this article.
The processing time for a single image was almost the same for all five methods, and the
testing time per image for MBM was 0.512 ms.

6. Conclusions

In this paper, a new sample mixed semi-supervised learning method named MBM
is proposed for SAR automatic target recognition. Instead of directly adding two images
(i.e., mixup) or covering a whole patch area of another image (i.e., cutmix), our proposed
MBM divides the image into multiple blocks and selects a rectangular area in each block to
interpolate the corresponding area of another image. In this way, our MBM can add more
information without affecting the original image in a large area. Therefore, using the data
processed by the MBM method to train a convolution neural network can further improve
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the recognition accuracy of the model. Experiments on the MSTAR data set confirmed that
the MBM method outperforms the current state-of-the-art semi-supervised learning-based
methods under different amounts of labeled samples per category. At the same time, when
the number of labeled samples is small, compared with supervised learning, the overall
recognition accuracy of the model improves more obviously. Using only 10 labeled samples
for each category, the model recognition accuracy of our MBM method is improved by
14.54% compared with supervised learning. Under the condition of 20 labeled samples in
each category, the recognition accuracy obtained by our MBM method is 99.56%, which is
better than the full-sample supervised learning method and all existing semi-supervised
learning methods. In future research, we will explore the decisive role of different positions
in the same image for identifying labels, so as to change the calculation method of new
sample labels, increase the number of samples for generating mixed images, and further
improve the recognition performance of semi-supervised learning.
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