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Abstract: The composition and distribution of wetland vegetation is critical for ecosystem diversity
and sustainable development. However, tidal flat wetland environments are complex, and obtaining
effective satellite imagery is challenging due to the high cloud coverage. Moreover, it is difficult
to acquire phenological feature data and extract species-level wetland vegetation information by
using only spectral data or individual images. To solve these limitations, statistical features, temporal
features, and phenological features of multiple Landsat 8 time-series images obtained via the Google
Earth Engine (GEE) platform were compared to extract species-level wetland vegetation information
from Chongming Island, China. The results indicated that (1) a harmonic model obtained the
phenological characteristics of wetland vegetation better than the raw vegetation index (VI) and the
Savitzky–Golay (SG) smoothing method; (2) classification based on the combination of the three
features provided the highest overall accuracy (85.54%), and the phenological features (represented
by the amplitude and phase of the harmonic model) had the greatest impact on the classification;
and (3) the classification result from the senescence period was more accurate than that from the
green period, but the annual mapping result on all seasons was the most accurate. The method
described in this study can be applied to overcome the impacts of the complex environment in tidal
flat wetlands and to effectively classify wetland vegetation species using GEE. This study could be
used as a reference for the analysis of the phenological features of other areas or vegetation types.

Keywords: tidal flat vegetation classification; Google Earth Engine; harmonic model; phenological
features; Chongming Island

1. Introduction

Vegetation is the source of primary productivity in wetland ecosystems and has im-
portant ecological functions including water conservation, regional climate regulation,
siltation promotion, biodiversity protection, and resource production [1–3]. China’s wet-
land vegetation resources are precious, and the biological invasion of Spartina alterniflora in
most coastal zones threatens the growth of local native vegetation. Therefore, accurate and
timely information on the distribution of wetland vegetation is very important in protecting
the diversity of wetland vegetation and sustainably developing wetland ecosystems.
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Satellite remote sensing images can be used to effectively monitor vegetation types
such as forests and cropland [4,5]. However, the environment of wetland vegetation is
complex due to biological invasion of S. alterniflora and the difference in the underlying
surface water level, which are known to affect the radiation transfer of the vegetation
canopy. Furthermore, the east coast of Chongming Island is more affected by sea water,
while the west coast is more affected by Yangtze River water, which leads to different
growth patterns of the same species. Thus, even the same species can show different
spectral features in different places and can have varied spectra because of the variability
in the vegetation density, water level, and soil moisture, while different types of wetland
vegetation may have similar spectra. Therefore, it is difficult to identify wetland vegetation
with spectral information alone. Many studies have focused on extraction of wetland vege-
tation information through remote sensing classification methods and data sources [6–8],
but most of these classifications have been based on single images rather than considering a
time series of images. However, vegetation classification results may vary among different
growth periods. Therefore, how to effectively extract vegetation information and obtain
reliable mapping results from remote sensing images in complex wetland environments is
a problem that remains to be solved.

Site surveys have indicated that the vegetation in tidal flat wetlands on Chongming
Island has obvious phenological characteristics such as a green period and a senescence
period. Remote sensing classification based on the growth characteristics of vegetation in
different specific phenological periods has been successfully applied to cropland, bamboo,
and forest areas [9,10]. However, the changes in wetland vegetation are different from
the regular changes observed in croplands due to harvesting as well as from the obvious
seasonal changes in deciduous forests. Wetland vegetation usually grows naturally on tidal
flats and exhibits typical perennial herbaceous vegetation features. Few studies have used
phenological characteristics to identify wetland vegetation. Lumbierres et al. [11] used the
surface phenology of wetland vegetation from the Moderate-Resolution Imaging Spectro-
radiometer (MODIS) normalized difference vegetation index (NDVI) images to estimate
the aboveground biomass of seasonal swamps and found that the stability of estimation
combined with a maximum-value approach provided the best results. Shen et al. [12] used
NDVI and climate data to study the spatiotemporal changes in the start date of vegetation
growth and discussed the climate change impacts on the start date of growth in freshwater
marshes in Northeast China. Li et al. [13] used Sentinel-2 and unmanned aerial vehicle
(UAV) images to study the distribution of mangroves in the Yellow River estuary during
the period of maximal phenological difference. At present, vegetation indices (VIs) are
commonly used to analyze wetland phenological characteristics. In these approaches, a
critical period with significant phenological differences is selected, and the feature collec-
tions of different phenology are constructed based on pixels or images to extract different
types of wetland vegetation. However, it is unclear whether phenological features can be
directly used for image classification, which requires further study of the contribution of
phenological features to wetland vegetation identification.

The studies of plant phenology often require a large number of time-series satellite im-
ages to analyze plant phenological characteristics. Traditional remote sensing methods are
considered to have poor timeliness and lack portability because it may require considerable
time, manpower, and energy to download and preprocess the image collections. However,
Google Earth Engine (GEE) is a cloud-based geospatial computing platform that includes
satellite observation images and products of all levels from the past 40 years to the present.
Moreover, GEE can flexibly establish machine learning classification algorithms at high
speed that run in parallel and can quickly eliminate the influence of clouds and shadows
in images. Some current studies have used this platform for vegetation identification. GEE
can substantially simplify preprocessing and repetitive work by efficiently integrating the
data and making full use of existing products [14]. Wang et al. [15] used various forest
classification products provided by GEE and Landsat images to monitor and evaluate
changes in forest disturbance in tropical areas over 30 years. Xie et al. [16] used GEE



Remote Sens. 2021, 13, 443 3 of 21

to analyze the changes in pasture vegetation cover over the past 30 years and provided
data for the protection of degraded land. These studies indicate that GEE has significant
advantages for regional classification with multitemporal features [17].

In summary, due to the growth differences of wetland vegetation and the complexity
of wetland environments, several limitations such as the difficulty of quickly and effi-
ciently extracting combined wetland vegetation phenology features for mapping cannot
be overcome by solely using spectral information for vegetation identification. Therefore,
in this study, the GEE platform with Landsat 8 surface reflectance products was used to
analyze the phenological features of wetland vegetation, and the phenological features
were added as bands to the image for classification. In addition, the phenological features
were compared and combined with the statistical and temporal features and obtained
annual vegetation maps. Next, the optimal combination of features was used to extract
wetland vegetation information from the green period and the senescence period and to
estimate the area of wetland vegetation. Finally, the contribution of each feature type to
the classifications and the influence of phenological features on the extraction of wetland
vegetation were analyzed. The purposes of this study were to (1) determine and analyze
the phenological characteristics of the VIs of wetland vegetation; (2) use phenological
features to identify wetland vegetation and select the optimal feature combination for
annual mapping by comparing and combining phenological features with statistical and
temporal features; and (3) assess the classifications obtained by including phenological
features and the classifications from the seasonal phenological periods and analyze the
differences among the seasonal mapping results.

2. Materials and Methods
2.1. Study Area

Chongming Island is located on the northeastern side of Shanghai, between
31◦27′00′ ′ N to 31◦51′15′ ′ N and 121◦09′30′ ′ E to 121◦54′00′ ′ E, as shown in Figure 1.
It is surrounded by a river on three sides and borders the East China Sea. It is the largest
alluvial estuary island in the world [18], at 80 km in length from east to west and 18 km
wide from north to south, and covers a total area of 1411 km2. Chongming Island has an
average annual temperature of approximately 15.3 ◦C and an average annual precipitation
of approximately 1003.7 mm. The climate is a mild and humid northern subtropical mon-
soon climate. Climate disasters such as drought, heavy rains, and typhoons are common in
the area [19].

Chongming Island is the most well-developed tidal flat wetland in the Yangtze River
estuary. The vegetation is distributed mainly in Xisha, Beiliuyao, Niupenggang, and
Dongtan, and the rest is distributed in intermittently connected patches along the dam
roundabout. The development of the coastal wetlands across the island varies by area.
The tidal flat wetlands on the north bank are generally lower-quality than those on the
south bank and exhibit low plant diversity. There are more reclamation areas on the
northern narrow tidal flats, while the distribution of vegetation on the south part of the
island is continuous and interrupted only by several docks, locks, and shipyards [20]. The
tidal flat wetland vegetation on Chongming Island mainly comprises Scirpus mariqueter,
S. alterniflora, Phragmites australis, trees, and cropland. Most of the trees are planted trees
and are present mainly on the south part of Chongming Island including Metasequoia
glyptostroboides, Taxodium distichum, Salix babylonica, and Taxodium ascendens.
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Figure 1. Distribution of the study area. The base map in Figure 1 is from a Landsat 8 Operational
Land Imager (OLI) image obtained on 17 December 2018, and displayed in false color with near-
infrared, red, and green bands. The subfigures are zoomed-in images and prominently show the
main distribution area of the tidal flat wetland vegetation of Chongming Island. Subfigure (a) shows
the Xisha and Niupenggang areas, subfigure (b) shows the Beiliuyao area, and subfigure (c) shows
the Dongtan area. The triangular points in the legend represent the sample points of various types
of vegetation selected in the study, and the blue circular points represent the locations of the field
survey sites.
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2.2. Data and Methods

The Landsat 8 OLI atmospherically corrected surface reflectance (SR) product provided
by GEE was used in this study. The experimental process is shown in Figure 2. It is
difficult to use VI to directly reflect phenological changes in vegetation because of the
complex environment and the different vegetation growth conditions. Therefore, this
study selected five specific VIs, namely, the NDVI, ratio vegetation index (RVI), 1640 nm
shortwave infrared vegetation index (NDWI1640), 2310 nm shortwave infrared vegetation
index (NDWI2310), and soil normalized vegetation index (SAVI), and used harmonic
analysis to extract the phenological differences in wetland vegetation. Then, the green
period (from 30 May to 15 October) and senescence period (15 November to 30 April)
were determined according to the vegetation phenological characteristics. The images
used in this study are shown in Table 1. GEE was used for pixel-based annual image
analysis, and the images were composed of the pixels with the lowest cloud coverage
for the period. Next, the amplitude and phase information of the VIs were used as the
phenological features for identifying wetland vegetation. Furthermore, the classifications
by phenological features, statistical features, temporal features, and their combinations
were compared to select the best features for classification. Then, a random forest (RF)
classifier was used for classification, and a confusion matrix was established to verify
the wetland vegetation classification. Finally, the classifications for the two periods as
determined with the harmonic model were compared with the classification for all seasons,
and the impact of phenology on the classification was analyzed.
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Table 1. Characteristics of the Landsat 8 Operational Land Imager (OLI) images used in the experiment.

Year Path Row Cloud Cover (%) Season Year Path Row Cloud Cover (%) Season

2018-01-15 118 38 6.63 A,S 2019-01-18 118 38 0.61 A,S
2018-03-04 118 38 41.44 A,S 2019-03-07 118 38 41.75 A,S
2018-04-21 118 38 77.97 A,S 2019-03-23 118 38 15.99 A,S
2018-05-23 118 38 18.66 A 2019-04-08 118 38 41.30 A,S
2018-06-08 118 38 87.86 A,G 2019-05-10 118 38 6.97 A
2018-06-24 118 38 61.50 A,G 2019-06-11 118 38 55.17 A,G
2018-07-10 118 38 66.41 A,G 2019-06-27 118 38 93.79 A,G
2018-07-26 118 38 5.89 A,G 2019-07-29 118 38 10.87 A,G
2018-08-11 118 38 9.25 A,G 2019-08-14 118 38 3.30 A,G
2018-08-27 118 38 27.05 A,G 2019-08-30 118 38 7.94 A,G
2018-09-28 118 38 16.82 A,G 2019-10-17 118 38 54.22 A
2018-10-30 118 38 7.32 A 2019-11-02 118 38 15.12 A,S
2018-12-01 118 38 20.58 A,S 2019-12-04 118 38 6.38 A,S
2018-12-17 118 38 0.77 A,S 2019-01-25 119 38 65.95 A,S
2018-01-06 119 38 37.59 A,S 2019-02-26 119 38 42.47 A,S
2018-01-22 119 38 42.16 A,S 2019-03-14 119 38 96.98 A,S
2018-02-07 119 38 58.59 A,S 2019-03-30 119 38 99.99 A,S
2018-02-23 119 38 0.99 A,S 2019-04-15 119 38 6.15 A,S
2018-03-11 119 38 46.00 A,S 2019-05-01 119 38 28.89 A
2018-03-27 119 38 8.95 A,S 2019-06-02 119 38 38.03 A,G
2018-04-28 119 38 3.00 A,S 2019-07-04 119 38 99.98 A,G
2018-05-14 119 38 41.22 A 2019-08-05 119 38 42.03 A,G
2018-05-30 119 38 96.37 A,G 2019-08-21 119 38 5.85 A,G
2018-06-15 119 38 21.57 A,G 2019-09-06 119 38 76.00 A,G
2018-07-17 119 38 43.71 A,G 2019-09-22 119 38 74.05 A,G
2018-08-02 119 38 47.29 A,G 2019-10-24 119 38 16.52 A
2018-08-18 119 38 69.70 A,G 2019-11-09 119 38 0.15 A
2018-09-03 119 38 70.83 A,G 2019-12-11 119 38 0.20 A,S
2018-09-19 119 38 60.92 A,G 2019-12-27 119 38 5.12 A,S
2018-10-05 119 38 64.28 A,G
2018-10-21 119 38 70.36 A
2018-11-22 119 38 4.60 A,S
2018-12-24 119 38 2.44 A,S

Note: In the table, A represents all seasons, G represents the green period, and S represents the senescence period. The time of the green
period is from 30 May to 15 October, and the senescence period is from 15 November to 30 April.

2.2.1. Data

Two field surveys were carried out from December 17 to 25 in 2018 and from Novem-
ber 12 to 17 2019 on Chongming Island. A total of 123 field survey sites were selected (as
shown in Figure 1). The size of each site was at least 120 × 120 m and the distance between
any two sites were set to far more than 30 m to ensure that there were at least four pixels in
an OLI image falling in one site. The species at each site were recognized and recorded,
and the locations of the sites were measured by a handheld positioning device with an
accuracy of less than 0.5 m.

The identification of vegetation species of the sample data was based on either the
field survey or the visual interpretation of Gaofen-2 PMS images with a spatial resolution
of 4 m. All of the sample data were divided into two separate sets: one for the analyzing of
the phenological differences between vegetation species, and the other for the classification.
The first set consisted of a total of 465 sample pixels with good internal homogeneity that
did not change within the study period including P. australis (145 pixels), S. alterniflora
(110 pixels), S. mariqueter (79 pixels), trees (60 pixels), and cropland (71 pixels). All the
pixels in the first set were located in the field survey sites. The second set for classification
contained water bodies (178 pixels), tide flats (124 pixels), P. australis (272 pixels), S. alterni-
flora (135 pixels), S. mariqueter (71 pixels), trees (52 pixels), and croplands (17 pixels), which
were randomly selected around Chongming Island.
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Landsat 8 OLI atmospherically corrected SR product images with a spatial resolution
of 30 m obtained through GEE were selected for this study. These images needed to be
quality-filtered before analysis. The pixel quality and radiant saturation properties were
used to remove cloud cover areas and cloud shadows [21,22]. The original reflectance value
was divided by 10,000 and converted to a value between 0 and 1. Images of Chongming
Island from January 1, 2018 to December 31, 2019, were used in this study. A total of
62 images met the requirements of this study, as shown in Table 1. The experiment
used five main VIs (Table 2) including NDVI [23–25], which is sensitive to vegetation
information; SAVI [25–27], which is sensitive to soil information and can be used to
distinguish vegetation from other ground objects; RVI [28], which is sensitive to green
vegetation; and NDWI1640 and NDWI2310 [27,29], which are sensitive to leaf water content
and can reflect the differences between different vegetation types.

Table 2. Vegetation index (VI) calculation formulas and associated Google Earth Engine (GEE) code.

VIs Calculation Formula GEE Code

NDVI [30] (NIR-RED)/(NIR + RED) normalizedDifference([‘B5’,’B4’])
NDWI2130 [29] (NIR-SWIR2130)/(NIR + SWIR2130) normalizedDifference([‘B5’,’B6’])
NDWI1640 [29] (NIR-SWIR1640)/(NIR + SWIR1640) normalizedDifference([‘B5’,’B7’]

SAVI [26] 1.5 × (NIR-RED)/(NIR + RED + 0.5) Code equation ‘1.5 × (nir-red)/(nir + red + 0.5)’
RVI [28] NIR/RED Code equation ‘nir/red’

2.2.2. Phenological Analysis Method

The VI data had many data gaps in the time series due to the influence of clouds.
It is difficult to use VIs to directly reflect the phenological differences among various
vegetation types due to their fluctuation and interference caused by growth differences
and the environment in the time series. This study first used the mean NDVI as an
example to compare the capacity of two filtering methods, namely, a harmonic analysis
of the time series (Hants) and the Savitzky–Golay (SG) smoothing method, in terms of
the phenological characters extracted and to compare the fitting value with the real value
using correlation analysis.

The fitted values of the Hants and SG filtering methods for the NDVI of the three
types of wetland vegetation are shown in Figure 3. Both Hants and SG filtering performed
well on P. australis, and the Pearson correlation coefficients reached 0.9659 and 0.9442,
respectively, as shown in Figure 3a. However, the SG filter had a poor fitting effect for
the S. alterniflora time-series images, with many data gaps. In Figure 3b, the SG method
overestimated the NDVI in the lower-NDVI regions where the NDVI value was less than
0.5 and underestimated NDVI in the higher-NDVI (0.5–0.9) regions. Figure 3c shows that
the two methods estimated the NDVI of S. mariqueter well, but that the fitting effect of
the SG filtering method was slightly lower than that of Hants. Remote sensing images of
Chongming Island are affected by its local microclimate; most areas are covered by high
clouds throughout the year, resulting in few clear images. Therefore, there were many gaps
in the time series. In general, Hants does not require high data integrity, but SG has strict
data requirements. On Chongming Island, where time-series gaps are prone to occur, the
fitting effect of Hants for the NDVI was better than that of the SG method. The four other
vegetation indices were compared in this study, and similar results were obtained.

The wetland vegetation phenological characteristics extracted by the Hants and SG
filtering methods were compared. The SG filter was found to simulate the NDVI value
of wetland vegetation well, but was susceptible to the raw value distribution and had
multiple inflection points (Figure 4), which affected the distinction of vegetation phenology
periods. The Hants method combines Fourier transform with least-squares fitting. It can
decompose the time spectrum of the vegetation index into several sine and cosine curves of
different frequencies and superimpose the curves that can reflect the characteristics of the
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time series. The fitting of sequences of different time intervals can be effectively applied to
the extraction of the phenological features of vegetation [31].
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Figure 4. Comparison of Hants and SG filtering methods used to extract wetland vegetation phenol-
ogy based on the average NDVI value across each vegetation type at the time of each Landsat image.

In summary, the Hants filtering method was used in this study to extract the phe-
nological characteristics of wetland vegetation, and follow-up research was conducted
based on the results. Harmonic models were used to determine the changes in the mean
value of five VIs (in Table 2) in the Landsat time-series images and to analyze the pheno-
logical features of vegetation. Then, the periodic fluctuations of the VIs were simulated,
and the amplitude and phase of the harmonic models were obtained to effectively reflect
phenological differences among vegetation. The calculation formula is as follows:

Y = a0 + b1cos
(

2πt
T

)
+ b2sin

(
2πt
T

)
+ c1t (1)

Amplitude =
(

b1
2 + b2

2
)

(2)

Phase = atan(b1/b2) (3)

Note: a0 is the coefficient of the overall value for the VI; b1,b2 are the intra-annual
changes of the VI; c1 is the inter-annual changes of the VI; t is time; Y is the fitted value
corresponding to t; T is the frequency (365 days). The experiment used the amplitude and
phase of the harmonic model to represent the phenological features of vegetation.
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2.2.3. Feature Selection

Multitemporal Landsat images are often used to extract the phenological characteris-
tics of different vegetation growth periods. Previous studies have shown that the use of
multiseason images based on vegetation phenological information can effectively increase
the differentiation between vegetation types with similar spectra, thereby improving the
classification accuracy for various wetland vegetation types [32]. Three groups of features
were used in this study including three statistical variables (median, maximum, minimum),
five temporal variables (25% and 75% of the time-series quantile [33] and average inter-
vals of the time series at 25–50%, 50–75% and 25–75%), and two phenological variables
(amplitude and phase). These three groups of features and their combinations were used
to analyze the impact of each feature group on classifying wetland vegetation. At most,
10 feature variables were selected for each VI, and a total of 50 feature variables were tested.
The feature variables and their codes in GEE are shown in Table 3.

Table 3. Selection of vegetation index (VI) features.

Group Name Description GEE Code

Statistical
features

Median Median of time-series ee.Reducer.median()
Max Maximum of time-series ee.Reducer.max()
Min Minimum of time-series ee.Reducer.min()

Temporal
features

Percentile 25 The value at the 25% quartile of the time series ee.Reducer.percentile(25, 75)Percentile 75 The value at the 75% quartile of the time series
Mean Interval (25,75) The mean value of the time series from 25% to 75% ee.Reducer.intervalMean(25, 75)
Mean Interval (25,50) The mean value of the time series from 25% to 50% ee.Reducer.intervalMean(25, 50)
Mean Interval (50,75) The mean value of the time series from 50% to 75% ee.Reducer.intervalMean(25, 75)

Phenological
features

Amplitude Amplitude of VI time series filtered by Hants over a period of time Code equation based on (2)
Phase Phase of VI time series filtered by Hants over a period of time Code equation based on (3)

2.2.4. Classification and Validation

The RF classifier is an ensemble of multiple decision trees. For the input images,
n trees will have n classification results. The classification of the RF classifier is determined
by the mode value of classifications from decision trees. Since the results of multiple
decision trees are integrated, an RF classifier can accept high-dimensional sample input
and can evaluate the importance of each feature in the classification with better accuracy
than other methods [34]. The number of decision trees needs to be set according to the
actual situation when using the RF method for classification. The use of more decision trees
provides higher classification accuracy, but also requires more calculations and a longer
calculation time [35,36]. This study used a RF classifier constructed with 500 trees.

In total, 849 sample points were used for classification, of which 70% of the data
by stratified sampling were used for calibration and 30% for verification [37]. Then,
the accuracy of the classifications was evaluated. Classification accuracy refers to the
proportion of pixels in the classified image that are correctly classified. This experiment
used the confusion matrix method to verify the classification accuracy including the overall
accuracy (OA), producer’s accuracy (PA), and user’s accuracy (UA).

3. Results
3.1. Analysis of Wetland Vegetation Phenological Characteristics

The predicted values of the wetland vegetation harmonic model from 2018 to 2020
were compared with the actual average values of the vegetation index, as shown in Figure 5,
and indicated that the changes of phenology in croplands were weak, and its amplitude
was the smallest. Compared with those of wetland vegetation and trees, the periodic
changes in cropland phenology were slight. Thus, with suitable phenological features,
cropland can be rapidly distinguished from wetland vegetation. The VI fluctuation trends
of P. australis and trees were similar, but the VI values of trees were larger than those of
P. australis. Comparing S. mariqueter and S. alterniflora revealed that the NDVI and SAVI
values of S. alterniflora were always higher than those of S. mariqueter, while the fluctuation
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ranges of the NDWI1640, NDWI2310, and RVI values of S. alterniflora were always greater
than those of S. mariqueter. Therefore, phenological information can be used to distinguish
these two types of vegetation. Considering the similarity in amplitude between P. australis
and trees and between S. alterniflora and S. mariqueter, the differences in the VIs of each pair
were compared, and the phases were found to be obviously different, as shown in Figure 5.
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3.2. Potential Separability of the Classes Using the Derived Variables

The above analysis indicated that there are obvious phenological differences between
different types of vegetation. Thus, the amplitude and phase extracted from the harmonic
model were used to represent the phenology of the vegetation, and they were added as a
group of features for classification. The NDVI was used as an example for comparing the
distribution characteristics of the vegetation samples in terms of the three feature groups
(10 variables). Heterogeneous statistical and temporal features were observed within the
same vegetation type in different areas of Chongming Island due to the complex environ-
ment, as shown in Figure 6. However, the phenological features reflected the differences
between the different vegetation types well, reduced the influence of environmental inter-
ference, and overcame the issues caused by the complex wetland environment. In terms
of statistical features and temporal features, the values of P. australis and S. mariqueter in
the 25% and 75% quartiles overlapped greatly, but these two types of vegetation could be
clearly distinguished by their phenological features. Although there was some overlap
in the phenological features of P. australis and those of trees, the statistical and temporal
features of P. australis and trees were clearly different. These results indicate that combining
phenological features can help to distinguish vegetation types outside the dam.
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3.3. Classifications under Different Feature Combinations Considering Phenological Features

This study found that when the three groups of features were separately added to the
image, the best classification with the least number of features was obtained with phenolog-
ical features (Table 4). When phenological features were used for classification, the PA and
UA of P. australis, S. alterniflora, and S. mariqueter were high, and the wetland vegetation
could be identified well. However, using only phenological information for classification
was insufficient to distinguish between P. australis and trees, and the distinction between
water and tidal flats was poor. Therefore, the study further combined features to extract the
wetland vegetation. In this study, combining only statistical features and temporal features
helped distinguish between croplands and tidal flats, but did not improve the accuracy
of wetland vegetation identification. When phenological features were combined with
statistical features, S. alterniflora, S. mariqueter, and cropland could be better identified than
when only statistical features were used, and the ability to distinguish between vegetation
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types was effectively improved. Compared with using only phenological features, using
statistical features with phenological features could more effectively distinguish water
bodies and tidal flats. When temporal features and phenological features were both used
for classification, the OA, PA, and UA for the five types of vegetation were improved
compared to those using only temporal features. Moreover, including temporal features
also overcame the limitations of identifying tidal flats and water bodies only by phenologi-
cal features. When the three feature types were combined for mapping in this study, the
highest OA was achieved. With this combination, the phenological information obtained
from the harmonics could be used to effectively distinguish wetland vegetation types, and
statistical features and the temporal features could be used to distinguish between tidal
flats and water. When combined, the three kinds of features could effectively distinguish
wetland vegetation from trees and cropland and increase the distinction between trees
and cropland.

Table 4. Classifications under three kinds of features and their combinations.

Accuracy SF TF PF SF + TF SF + PF TF + PF SF + TF +PF

Number of features 18 25 10 43 28 35 53
OA (%) 79.78 73.62 80.32 79.22 82.84 83.94 85.54

P. australis PA (%) 85.18 85.71 90.91 90.18 83.81 95.04 88.46
P. australis UA (%) 78.63 68.29 81.48 73.19 82.24 80.99 82.14

S. alterniflora PA (%) 79.31 82.35 89.29 76.79 85.71 86.79 83.64
S. alterniflora UA (%) 80.70 66.67 83.33 91.49 90.57 90.20 92.00
S. mariqueter PA (%) 57.58 32.26 77.14 25.00 66.67 60.71 60.00
S. mariqueter UA (%) 61.29 50.00 77.14 37.50 66.67 65.38 66.67

Tree PA (%) 54.17 23.08 38.09 27.78 56.52 47.62 86.67
Tree UA (%) 76.47 54.54 100.00 55.56 61.90 76.92 81.25

Cropland PA (%) 62.50 11.11 100.00 75.00 100.00 100.00 83.33
Cropland UA (%) 100.00 50.00 66.67 100.00 100.00 100.00 100.00
Mudflat PA (%) 86.87 82.69 61.54 89.13 80.00 83.64 92.68
Mudflat UA (%) 73.58 78.18 76.19 78.85 83.02 80.70 79.17

Water PA (%) 87.50 87.18 81.71 88.89 94.03 81.69 89.19
Water UA (%) 92.10 95.77 78.82 95.52 87.50 96.67 98.51

Note: In the table, SF represents statistical features, TF represents temporal features, and PF represents phenological features.

In summary, classification with all three kinds of features exhibited the best perfor-
mance in the identification of wetland vegetation outside the dam on Chongming Island.
Thus, the vegetation distribution of Chongming Island was analyzed according to this
result (Figure 7). Considering the administrative regions of Chongming Island, P. australis
was found to be distributed throughout the tidal flats and wetlands outside the Chongming
Island dam; it is mainly concentrated in Niupenggang, as shown in Figure 7a. The wetland
vegetation in this area is mainly P. australis and has not been disturbed by the invasive
species S. alterniflora. However, in the middle area of Niupenggang, croplands have been
formed by artificial reclamation. There are rows of trees along the dam, distributed below
the area of Figure 7a in Xisha, that are mainly mangroves planted to block winds and
stabilize the bank. S. alterniflora is distributed mainly at Beiliuyao on Chongming Island,
as shown in Figure 7b. S. alterniflora is distributed mainly near the coast at the middle
and low tide levels. P. australis is distributed mainly at the edge of the dam at the high
tide level and exhibits a banded distribution. In this area, there is ecological competition
between the native species P. australis and the invasive species S. alterniflora. Another major
distribution area of P. australis on Chongming Island is located at southwestern Dongtan
on Chongming and extends to central Dongtan along the dam. S. mariqueter is concentrated
mainly in the southeast corner of Dongtan. Most of the northern part of Dongtan is an
ecological restoration area dominated by S. alterniflora that has been flooded for a long time.
The distribution of vegetation communities at Dongtan is shown in Figure 7c.
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shows the Dongtan area.

3.4. Features That Contribute to Wetland Vegetation Identification

Table 4 shows that the classification accuracy of wetland vegetation identification was
the highest when a combination of statistical variables, temporal variables, and phenolog-
ical variables was used. Then, the influence of each VI and each kind of feature on the
classification as well as the importance of each component were analyzed. This study was
divided into two parts. In the first part, the five VIs were unchanged, and the feature types
were removed from the variables one at a time to analyze the influence of each feature
type on the classification, which is shown in Table 4. In the second part, the three kinds of
features were unchanged, and the VIs were removed from the variables one at a time to
analyze the influence of each VI on the result (Figure 8). The results of the first part of the
analyses indicated that the OA of the classifications decreased when any one of the three
kinds of features was removed, and the phenological features had the greatest impact on
OA among the three kinds of features with the greatest decreases in accuracy. The removal
of phenological features had the greatest impact on S. mariqueter classification, as its PA
and UA were significantly reduced. When phenological features were removed, the PA
and UA of S. alterniflora decreased; although the PA of P. australis slightly increased, the UA
of P. australis was significantly reduced. When statistical features or temporal features were
excluded, the PAs of the three types of wetland vegetation were slightly increased, but the
corresponding UAs and OAs decreased. Therefore, the PA and UA of ground objects will
be negatively impacted if temporal or statistical features are not included for classification.

The OA of the classification decreased when any kind of VI was excluded, and the
removal of SAVI had the greatest impact on the classifications, followed by the removal
of NDVI and NDWI2310. In this study, removing any VI reduced the PA of P. australis;
although the UA of P. australis was improved by removing VIs, the reliability of the results
decreased due to the reduced PA. Therefore, reducing the number of VIs used will lead to a
reduction in the accuracy of vegetation classification. Analyzing the changes in S. alterniflora
and S. mariqueter classification when VIs were removed revealed that their UAs decreased.
Although their PAs increased when certain VIs were removed, their OAs decreased. Of the



Remote Sens. 2021, 13, 443 14 of 21

vegetation types, P. australis was the most sensitive to SAVI and NDVI. When SAVI and
NDVI were removed, the PA and UA of P. australis decreased. S. alterniflora was sensitive
to NDVI, which means that NDVI is critical for identifying S. alterniflora. When NDVI
was removed, the PA and UA of S. alterniflora were significantly reduced. S. mariqueter
was sensitive to SAVI, NDVI, and NDWI2310. When SAVI, NDVI, and NDWI2310 were
removed, the PA of S. mariqueter increased slightly, while its UA decreased significantly.
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Figure 8. The percentage changes in classifications accuracy when each kind of VI (NDVI, ratio vege-
tation index (RVI), soil normalized vegetation index (SAVI), 1640 nm shortwave infrared vegetation
index (NDWI1640), and 2310 nm shortwave infrared vegetation index (NDWI2310)) is removed from
variable combinations.

3.5. Classification of the Green Period and Senescence Period with the Optimal
Feature Combination

According to the phenological information obtained with the harmonic model and the
vegetation growth characteristics (Figure 5), the images in this study were divided into two
characteristic periods: the green period and the senescence period. The optimal feature
combination was used to identify the vegetation types. The differences between the green
period, senescence period, and all-season classifications were compared in Table 5, and the
reasons for these differences were analyzed. Compared with those for the senescence period
and the green period, the all-season classification was better, and the OA of the senescence
period was higher than that of the green period. The PA for P. australis increased slightly,
but the PAs for S. alterniflora and S. mariqueter both decreased. Therefore, the reliability
of mapping S. alterniflora and S. mariqueter in the senescence period and the green period
would be lower than that in all seasons. Although the PA for P. australis increased, its UA
declined in the senescence and green periods. Therefore, the classifications of P. australis in
the senescence and green periods were not as good as all seasons on the whole.
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Table 5. Comparison of classifications among all seasons, the senescence period and the green period.

Accuracy All Seasons Senescence Period Green Period

Number of images 63 24 26
OA (%) 85.54 81.57 78.59

P. australis PA (%) 88.46 88.99 93.41
P. australis UA (%) 82.14 78.86 72.03

S. alterniflora PA (%) 83.64 72.92 76.00
S. alterniflora UA (%) 92.00 87.50 90.48
S. mariqueter PA (%) 60.00 50.00 51.43
S. mariqueter UA (%) 66.67 75.00 75.00

Comparing the classifications in the senescence period (Figure 9) and the green pe-
riod (Figure 10) with that in all seasons (Figure 7) revealed that the classifications were
different when they were performed in different periods. Considering the accuracy of the
classifications shown in Table 5 revealed that the classification in the senescence period was
similar to that in all seasons, but classification in all season could better distinguish wetland
vegetation from trees and cropland. Moreover, the error of the senescence period lay mainly
in the identification of areas of S. alterniflora close to the beach as P. australis. Analyzing
the phenological difference between P. australis and S. alterniflora showed that P. australis
mostly turned yellow during the senescence period, while S. alterniflora mostly remained
green. This characteristic can be used to distinguish P. australis from S. alterniflora; however,
S. alterniflora near the coast (at the low tide level) was affected by tidal water stress, and its
senescence period was earlier than that of S. alterniflora at the mid-tide level. Therefore, the
characteristics of images of S. alterniflora near the coast were close to those of P. australis
during the senescence period, which led to some misclassifications. The classification error
for the green period was due mainly to misclassification between S. alterniflora and trees.
The main reason for these misclassifications was that S. alterniflora and trees in the greening
season both appeared as saturated bright green in the image and their VI characteristics
were similar. The harmonic model could effectively distinguish between the phenological
features of S. alterniflora and trees. However, in some areas, S. alterniflora remained green
during the green period, similar to the phenological characteristics of the tree canopy, so
there were some partial misclassifications.
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Figure 9. The classification of the senescence period under the proper feature combination. Subfigure
(a) shows the Xisha and Niupenggang areas, subfigure (b) shows the Beiliuyao area, and subfigure
(c) shows the Dongtan area.
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Figure 10. The classification of the green period under the proper feature combination. Subfigure (a)
shows the Xisha and Niupenggang areas, subfigure (b) shows the Beiliuyao area, and subfigure (c)
shows the Dongtan area.

The areas of vegetation were further analyzed based on the classification of vegetation
outside the Chongming Island dam in different periods in this study. Table 6 indicates
that the all-season classification effectively avoided underestimating the area of vegetation
better than the classifications in the green and senescence periods. The areas of P. australis,
trees, and cropland during the senescence period were estimated to be higher than those in
the all-season classification, while the areas of S. alterniflora and S. mariqueter were estimated
to be lower. The total area of vegetation in the green period was estimated to be lower than
that in the all-season classification.

Table 6. Comparison of vegetation-type areas outside the Chongming Island dam extracted for all
seasons, the senescence period, and the green period.

Type All Seasons (km2) Senescence Period (km2) Green Period (km2)

P. australis 55.30 57.47 50.10
S. alterniflora 61.95 52.68 57.81
S. mariqueter 20.51 10.85 18.16

Tree 5.09 8.84 2.55
Cropland 1.56 2.07 1.53

Total 144.41 131.91 130.15

3.6. Comparisons with Other Methods

The results from mapping the annual wetland vegetation by using phenological
features in this study were compared with the results from other related studies that
used phenology to structure feature collections in the study area. Tian et al. [38] recently
published a method for mapping S. alterniflora using spectral-phenological characteristics
for comparison. They proposed a new method for annual S. alterniflora mapping based on
the phenological characteristics of the pixels and compared it with classifications based
on a single image and a composite image of pixels in the green period or the senescence
period. The results showed that the method based on the phenological composition of
the pixels was the best method to reflect the characteristics of S. alterniflora over a year.
Therefore, the feature combination method considering phenology proposed in this paper
was compared with the optimal pixel-based phenological composition method described
by Tian et al. [38] to extract wetland vegetation for a certain year. The two phenological



Remote Sens. 2021, 13, 443 17 of 21

methods were applied to the samples from the study area in this article, and a RF classifier
was used to classify the wetland vegetation. The benefits and drawbacks of the compared
wetland vegetation mapping methods were then analyzed.

Considering the classification accuracy data in Table 7, the method of combining
phenological features studied in this paper was better able to extract the wetland vege-
tation types outside the Chongming Island dam than the method of Tian et al. [38]. The
classification differences can be observed by comparing Figures 7 and 11. Although the
method of Tian et al. [38] was sensitive to S. mariqueter and could distinguish S. mariqueter
from P. australis well, the method in this paper resulted in higher OA, UA, and PA for S. al-
terniflora and P. australis. With regard to the biological invasion of S. alterniflora, the method
in this paper could better distinguish S. alterniflora from the native vegetation P. australis
and S. mariqueter. Tian’s method was mainly designed on the basis of the phenological
period of S. alterniflora and did not consider other vegetation types. The phenological char-
acteristics of S. alterniflora may partially overlap those of other vegetation types, resulting
in low discriminations between P. australis and S. alterniflora and flourishing S. alterniflora
vegetation may be classified as trees in some areas. Moreover, the differentiation between
cropland and P. australis also needs to be improved in Tian’s method.

Table 7. Comparison of wetland vegetation extraction by the feature combination method considering
phenology and Tian et al.’s method based on pixel phenological composition.

Accuracy The Result of Tian et al. The Result of the Feature Combination

OA 78.26 85.54
P. australis PA (%) 84.91 88.46
P. australis UA (%) 77.59 82.14

S. alterniflora PA (%) 73.85 83.64
S. alterniflora UA (%) 88.89 92.00
S. mariqueter PA (%) 80.00 60.00
S. mariqueter UA (%) 80.00 66.67
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4. Discussion
4.1. Advantages of the Harmonic Model in Extracting Vegetation Phenological Features

S. alterniflora exhibited a significant difference in VI between the green period and
the senescence period according to the study by Zhang et al. [39]. In the appropriate
phenological period, S. alterniflora in the tidal flat wetland could be identified well with the
VI. However, the phenological periods in this study could only be approximated by pheno-
logical analysis because the raw time series data lacked some of the VI information [40,41].
The SG filtering method is commonly used to fill in missing values and improve images
for analysis, but it encounters difficulty in reflecting the phenological information about
vegetation and does not reveal the periodic characteristics of vegetation growth. To solve
these problems and analyze the phenological differences in wetland vegetation on Chong-
ming Island, this paper used the harmonic model to effectively complete and simulate the
phenological information in the time series.

The harmonic model not only effectively obtained periodic signals from time series
data despite noise interference, but also identified some critical time points in the pheno-
logical period such as the beginning of the green period, the beginning of the senescence
period, and the duration of the green period. Harmonic models can comprehensively
and effectively reflect the phenological characteristics of wetland vegetation during the
growth period of a year, and they can also be used in croplands and bamboo forests [42,43].
Li et al. [36] used VIs and harmonic models to extract mangroves and many kinds of herbs
and found that harmonic models could extract phenological information for vegetation
well and that mangroves and herbs had significantly different phenology. The length of the
time series for building a harmonic model in this study was selected as two years. This
choice was made because when different time lengths were tried, the harmonic model
that was based on a long time length (the longest was from 2014 to 2019) caused greatly
increased amplitude and phase variations in the training pixels of the same species. The
reasons include both natural and non-natural aspects such as the complex tidal environ-
ment, interspecies competition, land cover changes due to human activities and ecological
governance of invasive species. After several comparisons, a 2-year time length was chosen
in this study. This rationale addresses a trade-off between building a harmonic model and
decreasing the complex impacts on the same pixel.

4.2. The Features Combined with Phenological Features for Wetland Vegetation Identification

Although many studies have revealed that during a suitable phenological period, VI
data could effectively differentiate wetland vegetation such as mangroves and S. alterni-
flora [13,17], there are few studies that have conveyed how to apply phenological features
to images for classification and investigate their impacts. In this study, the amplitude
and phase obtained by the harmonic model were used to represent phenological features
and analyze their influence on the classification. Compared with statistical features and
temporal features, this approach indicated that phenological features provided the highest
accuracy when only one kind of feature was used to classify wetland vegetation, and they
contributed the most to improving classification accuracy when combined classification
was used.

Furthermore, according to the results of the harmonic analysis and the phenological
characteristics of vegetation, wetland vegetation phenology was divided into two periods:
the green period and the senescence period. The vegetation canopy characteristics in
remote sensing images from the green period and the senescence period were different.
Zhang et al. [39] showed that identifying suitable seasonal phases according to the phe-
nological differences in vegetation was conducive to the extraction of different types of
vegetation. In that study, analyzing the classifications from the two periods revealed that
the different types of wetland vegetation were distinguished more effectively in the senes-
cence period than in the green period. Therefore, performing classification with images
from the senescence period could be useful for distinguishing and identifying wetland
vegetation. The results of this study are consistent with the above conclusions. Moreover,
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the classification based on all seasons was superior to that based only on the senescence
and green periods. The classification method in this paper was also compared with the
method of Tian et al. [38] and found that the OAs for the classification and identification
of P. australis and S. alterniflora were better than those obtained with the method of Tian
et al. [38]. The reliable annual mapping results obtained from this study are of great
significance for the development of long-term annual wetland vegetation mapping.

4.3. A Typical Useful Method for Identifying Wetland Vegetation Based on Google Earth
Engine (GEE)

GEE can perform pixel-based calculations, and using high-density GEE remote sensing
images for mapping can allow for the full utilization of the high-quality pixels in the image
through cloud detection codes, which greatly increase the utilization of data [44]. This
study used GEE to flexibly and effectively calculate the features of Landsat images [45]
and mapped the wetland vegetation outside the Chongming Island dam. GEE can extract
the time series features of wetland vegetation through simple codes and obtain Landsat
images for any time and region with the removal of clouds. GEE’s code and methods are
easy to share and can effectively reduce work duplication. Moreover, the open-source
Python interface can be connected to GEE, which is conducive to applying open-source
methods [46]. The GEE platform includes a variety of classification methods. In future
research, GEE image data will be used on the cloud platform with deep learning methods
to perform classification. However, GEE use also has some limitations such as the limit
on the number of user calculations. A calculation number that is too large will exceed the
permissible calculation scope in GEE.

5. Conclusions

Wetland vegetation is easily affected by the complexity of the wetland environment,
and it is difficult to directly use raw spectral data and VIs to classify wetland vegetation.
However, the harmonic model can be used to extract changes in the VI over time and can
effectively analyze the phenological changes in wetland vegetation. In this study, the GEE
platform was used to analyze three feature types: statistical features, temporal features, and
phenological features. The combination of the three features provided the best classification
of wetland vegetation, reaching a classification accuracy of 85.54%. Including phenological
features in the classification combinations resulted in the most obvious improvement in
classification accuracy, with the overall accuracy increasing by 6.32%. The phenological
characteristics after harmonic transformation can be used to effectively distinguish wetland
vegetation from croplands and trees and to improve discrimination between P. australis
and S. alterniflora. In this study, the harmonic model was used to analyze the characteristics
of wetland vegetation in two periods. The growth period of wetland vegetation was
divided into a green period and a senescence period, and the optimal feature combination
method was used to extract the wetland vegetation in the two periods separately. The
senescence period classification was more accurate than the green period classification,
and the all-season classification was better than that from either period alone. Analyzing
changes in vegetation phenology can help to better distinguish wetland vegetation. This
study provides an accurate reference for the development of remote sensing inversions in
different phenological periods and an accurate method for the annual mapping of wetland
vegetation. This phenological method can also be used in other areas to extract other
vegetation types that exhibit phenological characteristics.
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