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Abstract: The monitoring and assessment of land use/land cover (LULC) change over large areas are
significantly important in numerous research areas, such as natural resource protection, sustainable
development, and climate change. However, accurately extracting LULC only using the spectral
features of satellite images is difficult owing to landscape heterogeneities over large areas. To improve
the accuracy of LULC classification, numerous studies have introduced other auxiliary features to
the classification model. The Google Earth Engine (GEE) not only provides powerful computing
capabilities, but also provides a large amount of remote sensing data and various auxiliary datasets.
However, the different effects of various auxiliary datasets in the GEE on the improvement of the
LULC classification accuracy need to be elucidated along with methods that can optimize combi-
nations of auxiliary datasets for pixel- and object-based classification. Herein, we comprehensively
analyze the performance of different auxiliary features in improving the accuracy of pixel- and
object-based LULC classification models with medium resolution. We select the Yangtze River Delta
in China as the study area and Landsat-8 OLI data as the main dataset. Six types of features, including
spectral features, remote sensing multi-indices, topographic features, soil features, distance to the
water source, and phenological features, are derived from auxiliary open-source datasets in GEE. We
then examine the effect of auxiliary datasets on the improvement of the accuracy of seven pixels-based
and seven object-based random forest classification models. The results show that regardless of the
types of auxiliary features, the overall accuracy of the classification can be improved. The results
further show that the object-based classification achieves higher overall accuracy compared to that
obtained by the pixel-based classification. The best overall accuracy from the pixel-based (object-
based) classification model is 94.20% (96.01%). The topographic features play the most important role
in improving the overall accuracy of classification in the pixel- and object-based models comprising
all features. Although a higher accuracy is achieved when the object-based method is used with
only spectral data, small objects on the ground cannot be monitored. However, combined with many
types of auxiliary features, the object-based method can identify small objects while also achieving
greater accuracy. Thus, when applying object-based classification models to mid-resolution remote
sensing images, different types of auxiliary features are required. Our research results improve the
accuracy of LULC classification in the Yangtze River Delta and further provide a benchmark for other
regions with large landscape heterogeneity.

Keywords: land use/land cover; auxiliary datasets; random forest; Google Earth Engine; Yangtze
river delta
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1. Introduction

Detailed land use/land cover (LULC) information at global and regional scales is
essential in many applications, such as natural resource protection, sustainable develop-
ment, and climate change [1–3]. Remote sensing data are widely used to obtain LULC
information [4]. However, for large areas with spatial heterogeneity, achieving high accu-
racy in LULC classifications with only satellite data is difficult [5]. With the availability
of other auxiliary datasets, researchers have attempted to improve the accuracy of LULC
classification by combining satellite data and auxiliary datasets [6].

The importance of combining auxiliary features (also known as auxiliary data or multi-
source data) with remote sensing data to improve the classification accuracy at both regional
and global scales has been a topic of interest for 40 years [7,8]. Studies have focused on the
assumption that the distribution of vegetation is directly or indirectly related to natural
factors [9,10]. Therefore, topography, soil type, and water source can be used as auxiliary
features to explain the distribution of vegetation and improve the accuracy of land use
classification [11]. In addition to natural factors, remote sensing indices and time series of
remote sensing images are also used as auxiliary features for LULC classification [12]. Due
to the complexity of the real ground surface, the accuracy of land-use types with various
remote sensing indices is highly different [13]. Therefore, multiple remote sensing indices
are often used as auxiliary features to distinguish specific LULC types [14]. A remote
sensing time series (RSTS) includes long-term repeated observations of the same area [15].
Such data can effectively explain the changes in spectral characteristics caused by different
LULC types, or plant growing cycles (phenological characteristics). Therefore, RSTS
can also effectively improve the accuracy of LULC classification [16]. Spectral-temporal
metrics, a commonly used RSTS, is often adopted as the main or auxiliary features in LULC
classification [17].

Although auxiliary features can improve the accuracy of LULC classification, there
are two main reasons that restrict the wider use of open-source spatial datasets [18]. The
availability of free and open spatial datasets is limited. These datasets must be requested
and obtained from multiple sources. Due to computing and storage limits, only a limited
number of features can be used in classification models [11]. Google Earth Engine (GEE)
provides a powerful cloud-based platform for planetary-scale geospatial analysis that can
directly call multi-petabyte satellite imagery and various types of geospatial datasets [19].
GEE is widely used for high-precision land use classification at regional, national, and even
global scales [20].

Much previous research using auxiliary features to improve classification accuracy
with medium-resolution satellite imagery has focused on pixel-based classification and less
on object-based classification [21,22]. LULC classification can be divided into two types
according to the classification objects: pixel- and object-based image analysis (OBIA) [23].
LULC types are often difficult to separate spectrally due to low inter-class separability
and high intra-class variability [24]. In such cases, the auxiliary features can improve the
accuracy of LULC classification because they can provide information beyond the spec-
trum [25]. Nevertheless, comparative analysis of the differences and similarities of different
auxiliary features to improve the classification accuracy between the pixel- and object-based
classification methods call for careful study [26]. To ensure that our experiments can be
carried out in the lacking data area, we chose open-source datasets that can be directly used
in GEE to calculate the auxiliary features, including remote sensing multi-indices, terrain
characteristics, soil characteristics, distance to the water source, and spectral–temporal
metrics. We then analyzed the performance of different auxiliary features in both pixel-
and object-based LULC classifications.

The objectives of this study are to identify (1) which type of auxiliary features is
most useful in pixel- and object-based model and (2) the similarities and differences in the
various auxiliary features to improve the classification accuracy of the pixel- and object-
based classification methods. To achieve our objectives, we examined the performance
of 14 random forest (RF) classification models (seven pixel-based RF models and seven
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object-based RF models) based on six common types of auxiliary features. Our results
provide insights for improving the classification accuracy in areas with strong landscape
heterogeneity (similar to the Yangtze River Delta) and advice on selecting the optimal
combination of auxiliary features to achieve high-precision LULC mapping.

2. Study Area and Materials
2.1. Study Area

The Yangtze River Delta (YRD) is located along the alluvial plain before the Yangtze
River enters the sea. The YRD includes Shanghai city, Jiangsu province, Zhejiang Province,
and Anhui Province, with a total area of 348,000 km2 (Figure 1). The YRD has a subtropical
monsoon climate, with an average yearly temperature of approximately 14–18 ◦C, and an
average yearly rainfall of approximately 1000–1400 mm [27]. This area is dominated by
plains, mainly distributed to the north and east of the YRD. Mountains and hills are mainly
distributed to the southwest of the YRD. Affected by topography and climate, the YRD has
strong landscape heterogeneity [28].
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Figure 1. Location of the Yangtze River Delta (YRD) region in China.

The YRD is one of China’s most developed economic regions consisting of the YRD
urban agglomeration, one of the six largest urban agglomerations in the world, which
plays an important role in China’s social and economic development [29]. In 2015, the
residential population of the YRD was approximately 140 million, accounting for 11.62% of
China’s total population; the Gross Domestic Product (GDP) was 1355.2 billion Chinese
Yuan, accounting for 20.02% of the national GDP [30]. With the increase in population and
rapid economic growth, the regional LULC is constantly changing, which may lead to re-
gional land degradation, land contamination, loss of biodiversity, and other environmental
and ecological issues [31]. Accurate and reliable LULC information is required for land
sustainability and environmental management in the YRD. Owing to this situation, we
chose the YRD as the research area.
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2.2. Data Collection and Pre-Processing
2.2.1. Landsat-8 Operational Land Imager (OLI) Imagery

Landsat data are some of the most widely used data in LULC classification [32]. Here,
we adopted 2015 Landsat-8 Operational Land Imager surface reflectance tier 1 (Landsat-8
OLI SR T1) data from the GEE as the primary remote sensing information for classifica-
tion. The medians of the Red, Green, Blue, Near-infrared (NIR), and Short-wave infrared
(SWIR-1 and SWIR-2) spectral bands of the Landsat-8 OLI image (denoted as B2–B7) were
considered in the analysis. Some studies have shown that the principal component (PC)
of the bands can improve the LULC classification accuracy [33]. Therefore, we used the
principal component of bands 2–7 in the analysis (see Tables 1 and 2). The administrative
boundary data of the YRD was downloaded from the ArcGIS online website, with which
the portions containing the study area were subdivided from all Landsat images.

The image synthesis and cloud mask methods were applied to generate cloud-free
composite images for the study period only during the growing season. The Landsat-8 OLI
dataset was processed with the C Function of Mask (CFMASK) model for each pixel [14].
The quality of each pixel for water, clouds, snow, and cloud shadows can be extracted from
the “pixel_qa” (pixel quality attributes) band [19]. As the annual average temperature in
the YRD is approximately 14–18 ◦C, the YRD is not characterized by permanent snow or ice
cover. Here, we mainly extracted cloud and cloud shadow information (see Supplementary
Materials: Data Preprocessing).

Table 1. Datasets used in this study.

Data Spatial Resolution Data Format Temporal Coverage Usage

Landsat 8 OLI * 30 m GeoTiff 2015 Land use classification

MODIS12Q1. 006 * 500 m GeoTiff 2008–2015 Creative land use samples

GlobCover * 300 m GeoTiff 2009 Creative land use samples

JRC Yearly Water Classification History * 30 m GeoTiff 2015 Water data

SRTM Digital Elevation Data * 30 m GeoTiff 2009 Elevation data

OpenLandMap Soil v02 * 250 m GeoTiff 2017 Soil data

Land Survey Data 1:10,000 Shapefile 2008, 2010 Creation and validation samples

Administrative boundary data 1:10,000 Shapefile 2015 Determination of the
YRD boundaries

Note that JRC: European Commission’s Joint Research Centre; SRTM: Shuttle Radar Topography Mission; * available online at https:
//earthengine.google.com.

2.2.2. LULC Reference Data

High precision reference data and an appropriate classification system are the perquisites
for LULC classification [34]. In this study, we combined both imagery observation and
field investigation to determine the training and validation samples. The training and
validation data used in LULC classification should have an extensive amount of data and
be also randomly distributed such that the ratio of the data types represents the actual
ratio of each LULC type [16]. We collected land survey data for the entire YRD in 2008
and 2010 at a scale of 1:10,000 (see Table 1). The land survey data included six types of
LULC (cropland, woodland, grassland, built-up land, water body, and bare land). As the
land survey data was in 2008 and 2010, and our study period was 2015, we generated a
training and validation sample set in 2015 (as described in Section 3.1). To construct a
training and validation sample set in 2015 for classification, we introduced several sets
of well-recognized LULC products in the YRD, including MODIS land cover products
(MCD12Q1 2008–2015) [35] and global land cover data (GlobCover 2009) [36]. These LULC
products have different LULC types; therefore, we reclassified them to the same LULC
standard. Based on the same LULC data types, we generated training and verification
points in 2015.

https://earthengine.google.com
https://earthengine.google.com
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2.2.3. Auxiliary Data

We selected the medium-resolution geospatial datasets available on GEE, which are as
close as possible to Landsat-8 OLI. The time coverage of these datasets was used to extract
auxiliary features, such as the terrain, soil, and phenology (see Table 1 and Figure 2).
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Elevation Data, (E) European Commission’s Joint Research Centre (JRC) Yearly Water Classification History, and (F)
OpenLandMap SoilGrids.

Using the preprocessed Landsat-8 OLI images, we obtained the maximum and median
values for ten types of spectral indices (see Table 2). Previous studies have shown that
different remote sensing indices are sensitive to different types of LULC. Therefore, there is
no general index for all LULC types [37]. Previous research has shown that the Normalized
Difference Vegetation Index (NDVI) is sensitive to vegetation characteristics [38], the
Normalized Difference Water Index (NDWI) is sensitive to water bodies [39], and the
Normalized Difference Built-up Index (NDBI) is sensitive to built-up areas [33]. Although
vegetation indices, such as NDVI, have been proposed in previous studies to discriminate
LULC types, research on forests has revealed that spectral indices including the near-
infrared wavelength, present weaker relationships with LULC than the shortwave infrared
wavelength, among others. Therefore, we also included the Normalized Burn Ratio (NBR)
and Normalized Difference Moisture Index (NDMI) spectral indices to examine their
contributions to LULC classification [40]. The Tasselled Cap component is also widely
applied to characterize vegetation conditions. These indices measure the presence and
density of green vegetation, total reflectance, soil moisture content, and vegetation density
(structure) [41]. Thus, we further added the Tasselled Cap Brightness (TCB), Tasselled Cap
Greenness (TCG), Tasselled Cap Wetness (TCW), and Tasselled Cap Angle (TCA) to the
LULC classification models.
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Table 2. Features in the land use/land cover (LULC) classification.

Features, Number of Features Description Data Source

spectral features (12) Median of bands 2–7. Median of principal
components 2–7. Landsat-8 OLI

spectral indices (20) Median and max of the NDVI, NDWI, NDBI,
NBR, NDMI, SAVI, TCB, TCG, TCW, and TCA. Landsat-8 OLI

topographic features (3) Median of the elevation, slope, and aspect. Shuttle Radar Topography Mission

distance to water bodies (1) Euclidean distance to water bodies. European Commission’s Joint Research Centre

soil features (31)

Median of a soil organic carbon stock and
content; pH of H2O, sand, silt, and clay

content; water content; bulk density of the fine
earth fraction; cation exchange capacity; and

proportion of coarse fragments.

OpenLandMap

spectral–temporal metrics (27) Max, min and median of bands 2–7, NDVI,
NDWI, and NDBI. Landsat-8 OLI

Note that NDVI: Normalized Difference Vegetation Index; NDWI: Normalized Difference Water Index; NDBI: Normalized Difference
Build-up Index; NBR: Normalized Burn Ratio; NDMI: Normalized Difference Moisture Index; SAVI: Soil Adjusted Vegetation Index; TCB:
Tasselled Cap Brightness; TCG: Tasselled Cap Greenness; TCW: Tasselled Cap Wetness; and TCA: Tasselled Cap Angle.

Topographic features are one of the important factors affecting land cover. Local
topography is an indirect gradient that moderates vegetation growth and regional climate
conditions, such as soil development, and precipitation and temperature regimes [42].
Topographic features generated from Digital Elevation Models (DEMs) include elevation
(affecting the temperature and precipitation level), slope, and aspect (affecting the solar
radiation and vegetation growth). To describe the terrain features, we used the 30 m
DEM generated from the Shuttle Radar Topography Mission (SRTM). This DEM is a
post-processed elevation dataset widely used due to its high accuracy and extensive
coverage [43]. The distance to the water source is also an essential factor in the healthy
growth of many plants [44]. We used the European Commission’s Joint Research Centre
(JRC) yearly water classification history to extract the water bodies in the study area and
calculated the Euclidean distances between the pixels and water sources [45].

In addition, the main influencing factors for land cover also include soil features [46].
For example, grassland soils have a significantly higher bulk density than soils in natural
woody vegetation, which may help in LULC classifications between grasslands and forests.
We used the soil data provided by OpenLandMap to describe the changes in the soil
characteristics. This dataset provides the soil bulk density, soil clay content, soil taxonomy
great groups, soil organic carbon content, soil PH, soil sand content, soil texture class, soil
water content, and other soil characteristics. This dataset contains seven depths (0, 5, 15,
30, 60, 100, and 200 cm) for the standard numerical soil characteristics and soil global
predictions of the category distributions. Based on the trapezoidal rule suggested by
Hengl et al. [47], we utilized the numerical integration to average the soil features of the
topsoil (0–15 cm) and subsoil (15–60 cm).

Spectral–temporal metrics are statistical aggregations of quality-screened reflectance
or spectral index time-series observations. These metrics are resilient to data gaps caused
by persistent cloud cover or system failures and inconsistent numbers of available satellite
images. In calculating the spectral–temporal metrics, we only considered the observation
results of the vegetation growth period. This is because the vegetation indices in winter are
low and it is difficult to distinguish the LULC types. The identification of the vegetative
growth period is important for large-scale areas (such as the YRD). A challenge here is to
achieve the purpose of automatic identification by performing percentile analysis on all
NDVI values during the study period. Only observations with NDVI values higher than
25% were considered to constitute the vegetative growth period; thus, a feature space with
27 spectral–temporal indicators was generated. The growth periods for different vegetation
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types are different. Therefore, we selected six months before and after 2015 for a total of
24 months to generate the spectral–temporal metrics (see Supplementary Materials Part 2).

3. Methods

Figure 3 illustrates the overall process of this experiment. First, with the support of
multi-source LULC products, following the principles of “stable state” and “consistent
classification” [9], the reference data were generated and then divided into independent
training and verification samples. We then segmented the pre-processed Landsat-8 OLI
image, generated image objects, and obtained the feature value of each object. Third, we
tested the performance and validated the classification accuracy of 14 classification models,
including seven pixel-based methods and seven object-based methods. We then assessed
the importance of different feature types for these models.
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random forest (RF) classification, classification accuracy assessment, and mechanism analysis.

3.1. Field Data Collection and Sampling

A set number of training samples and verification samples are required for RF clas-
sification. The accuracy of the sample points directly affects the accuracy of the LULC
classification results. Our existing land use survey data only included data from 2008 and
2010; there was also a lack of field survey data. Therefore, we collected new land use survey
data. Current methods to increase the number of training data points mainly include field
surveys and manual–visual interpretation. However, the use of both field surveys and
manual–visual interpretation over large areas with large landscape heterogeneities requires
manpower and is therefore highly expensive [48]. To overcome these issues and generate
highly reliable reference datasets, we improved the Yunfeng Hu sample point generation
method [49] and proposed a new scheme to obtain high-precision sample points. The
proposed scheme has the following steps:

(1) Reclassify all LULC products, such as MCD12Q1, GlobCover2009, and Land survey
data, of the study area into nine types (see Table S1).

(2) Overlay the MCD12Q1 products of the study area from 2008 to 2015, and extract
the relatively stable areas where the LULC types have not changed (see Supplementary
Materials Part 3).

(3) In a relatively stable area, 10,000 points are randomly generated for each LULC type.
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(4) Overlay the analysis of the randomly generated points with the GlobCover2009
and Land survey data from 2008 to remove the points that are inconsistent in classification,
and obtain consistent points under multi-source LULC products.

(5) The consistent points of multi-source LULC products are selected at 1500-m in-
tervals for each LULC type to avoid spatial autocorrelation between sampling points.
These selected points are applied for visual comparison and verification with Google Earth
images and Land survey data from 2010. Finally, there are 18,878 sample points retained.
We randomly select 70% of the sample points as the training samples, and use the rest of
the sample points as the verification samples.

3.2. LULC Classification Methods

Random forest is a machine learning method proposed by Breiman [50], which is
a classifier based on a decision tree in which each tree contributes one vote, and the
final classification or prediction results are obtained by voting [51]. A large number of
studies have shown that RF produces relatively high classification accuracy in LULC
classification [33,52,53]. At the same time, the RF method has the advantages of easy
parameterization, as well as the ability to manage collinear features and high-dimensional
data [54]. We used the RF classification algorithm because it can be applied to both pixel-
and object-based LULC classification, as well as being highly robust against overfitting and
outliers [55].

For the object-based classification model, in contrast to previous studies, we did not
use texture features. The main reasons are as follows. First, our main remote sensing
images for classification were Landsat-8 OLI data, which have medium-spatial resolution
and texture features that are not observable at this spatial scale. Second, one of our
research objectives was to determine the performance of auxiliary features in pixel- and
object-based classification. In pixel-based classifications, texture features are not used.
Therefore, for consistency, we also did not consider texture features in the object-based
classification models.

To compare the pixel- and object-based classifications, we designed 14 RF classification
models (M1–M7 are pixel-based RF classification methods, and M1’–M7’ are object-based
RF classification methods) (see Table 3). Models M1 and M1’ only include spectral features
while M2 and M2’ include spectral features combined with multiple remote sensing indices.
Models M3 and M3’ include spectral features combined with terrain features while M4
and M4’ combine the spectral features with the distance to the water source. Models M5
and M5’ also combine the spectral features with the soil characteristics while M6 and M6’
combine the spectral features with the phenological features. Finally, models M7 and M7’
include all of the features.

Table 3. Models used in this study for LULC classification.

Models Description Auxiliary Features Used

M1 Pixel-based spectral features classification model Spectral features
M1’ Object-based spectral features classification model Spectral features
M2 Pixel-based spectral features + spectral index classification model Spectral indices
M2’ Object-based spectral features + spectral index classification model Spectral indices
M3 Pixel-based spectral features + topographic features classification model Topographic features
M3’ Object-based spectral features + topographic features classification model Topographic features
M4 Pixel-based spectral features + distance to water body classification model Distance to water bodies
M4’ Object-based spectral features + distance to water body classification model Distance to water bodies
M5 Pixel-based spectral features + soil features classification model Soil features
M5’ Object-based spectral features + soil features classification model Soil features
M6 Pixel-based spectral features + spectral–temporal metrics classification model Spectral–temporal metrics
M6’ Object-based spectral features + spectral–temporal metrics classification model Spectral–temporal metrics
M7 Pixel-based all features classification model All features
M7’ Object-based all features classification model All features
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3.2.1. Pixel-Based RF Classification

The RF classification algorithm was implemented in the GEE platform. The training
data were used for the RF classifier training, and verification data were used to evaluate
the classification error. When using the RF models in GEE, two parameters must be set:
the number of decision trees to create per class (numberoftrees) and the minimum size
of a terminal (minleaf). The LULC classification was carried out using different values of
numberoftrees and minleaf. The optimum parameters were decided based on the overall
classification accuracy. For the numberoftrees parameter, we first began with 10 and
increased it to 100 in steps of 10; starting from 100, we increased it to 1000 in steps of 100.
For the minleaf parameter, we began with 5; in each step, we increased its value by 1 to
reach 25. Finally, through repeated comparative experiments, we set numberoftrees to 100
and minleaf to 10 in all models.

The RF classification model is robust against high-dimensional and collinear data.
However, feature reduction for removing redundant information can further improve the
LULC classification accuracy of the RF model [56]. Here, we used the Recursive Feature
Elimination (RFE) method to remove redundant features and repeat the iterations for each
group of features to obtain more stable results. The RFE method ranks the importance of
all of the elements in the classification model. In each iteration, the highest-ranked element
was retained and the least important element was eliminated. Then, the model was
reconstructed and re-evaluated. As there is no direct RFE function in GEE, we developed
an independent REF method, and, through manual trial and error, we obtained the optimal
feature combination for each model (see Supplementary Materials Part 5).

3.2.2. Object-Based Random Forest Classification

For object-based classification, we first performed remote sensing image segmentation.
The purpose of image segmentation is to extract the image objects. These objects are as ho-
mogeneous as possible, such as contiguous cropland, lakes, and rivers. When segmenting
images, we mainly emphasized the homogeneity of the spectrum. GEE mainly supports
three remote sensing image segmentation algorithms, including K-means, G-means, and
Simple Non-Iterative Clustering (SNIC) [14]. We separately analyzed these three remote
sensing image algorithms. The segmentation algorithm conducts the preliminary com-
parison experiments and initially calculates the accuracy of the LULC classification based
on different image segmentation algorithms [57]. The SNIC algorithm has the best LULC
classification results because it can be controlled by user parameters. Finally, we selected
the SNIC method as our research image segmentation algorithm. The SNIC algorithm is a
superpixel (i.e., simplifies an image into small clusters of connected pixels called superpix-
els) boundary and image segmentation algorithm. The SNIC algorithm is non-iterative and
enforces connectivity at the beginning of the algorithm. SNIC is also less memory-intensive,
and faster than the other two algorithms while its segmentation accuracy can be easily
controlled via setting its parameters.

The SNIC algorithm must be controlled by four user-defined parameters: compact-
ness, connectivity, neighborhoodSize, and seeds [58]. The parameter settings are based on
repeated iterations and combined with visual evaluation. An initial value for the parameter
seeds is provided by GEE [59]. The seedGrid function generates the initial seeds. Then,
it calculates the standard deviation and maximum spectral distance between the average
value of the generated object and original image on the initial seeds. Finally, the seedGrid
function reinserts the object with a larger spectral standard deviation or a larger maximum
spectral distance. The seeds are superimposed with the original seeds to generate the final
seeds and regenerate the image objects. The parameters of the SNIC were determined
by repeated iterations. The compactness, connectivity and neighborhoodSize were set to
1, 8 and 256, respectively. Finally, 1,349,374 image objects were generated. The spectral
standard deviation of all image objects and the original image were less than 0.25; the
maximum spectral distance was less than 1 pixel (see Supplementary Material Table S4).
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After completing SNIC, we then obtained the spectral features of all segmented
objects in the study area and the average value of all other auxiliary features. We then
used the average value within the object combined with the sample points to generate
a training model. Similar to parameter settings of pixel-based RF models, we also used
the stepwise increment method for parameter settings of object-based RF models with
the numberOfTrees were set to be 100 and the minLeafPopulation was set to be 10. The
RFE method was used to obtain the optimal feature combination for all object-based
classification models.

3.2.3. Classification Accuracy Assessment and Statistical Comparison

Existing studies show that slightly different classification results are produced if the
same RF model is iterated using the same classification parameters and input data [34]. To
overcome the instability in the LULC classification results, we carried out each classification
model 49 times, and then merged the classification results according to the “minority obeys
the majority” principle to generate the final LULC classification results.

Here, we applied the training sample points and verification sample points to calculate
the corresponding confusion matrix. To quantitatively analyze the accuracy of the LULC
classification, we then obtained the producer’s accuracy (PA), user’s accuracy (UA), overall
accuracy (OA), and kappa coefficient (by calculating the confusion matrix).

In the pixel-based classification methods, the confusion matrices were calculated based
on the number of pixels. In the object-based classification methods, the confusion matrix
can be obtained based on either the number of objects [60] or the area of the object [61]. To
compare and analyze the difference in the performance of the auxiliary features between
the pixel- and object-based classification methods, we selected methods that are as similar
as possible to generate a confusion matrix. To be consistent with pixel-based classification,
each object was treated as an element in the object-based method and a confusion matrix
was generated according to the number of the elements.

3.3. Feature Importance Comparison

In this study, the feature importance measurement of the RF classification models
mainly included the following two aspects: Statistical Machine Intelligence and Learning
Engine (SMILE) and Mean Decrease in Accuracy (MDA) [62]. SMILE, as a feature impor-
tance measurement method, can be directly used on GEE. However, previous studies have
shown that the application of SMILE to measure the importance of elements in the RF
model requires a more balanced distribution among the reference data [63]. In generating
the reference data, we considered the actual situation between the LULC types. As a result,
our reference data were more unbalanced. Therefore, using SMILE may lead to incorrect
results. MDA quantifies the importance of a variable by measuring the change in the
prediction accuracy when the values of the variable are randomly permuted compared to
the original observations [62]. To ensure the accuracy of the features importance analysis,
we used the MDA method as its accuracy is not affected by the reference data [64]. First,
we applied the RFE method to remove the least important features according to the OA.
The classification was then continuously performed until its OA reached the highest value.
Second, we analyzed the importance of each feature for every classification model based on
SMILE. Finally, we applied the MDA method to further calculate the feature importance of
each model after optimization. Some features did not show important features at the model
level because these features may only have a substantial impact on specific LULC types. To
achieve the highest overall classification accuracy, we further tested all of the features to
ensure that the final selected features obtained the highest OA for all LULC types.

4. Results
4.1. Pixel- and Object-Based Feature Importance Comparison

Figures 4 and 5 show the top ten most important features of each model. As the main
goal was the performance of the different auxiliary data types in the pixel- and object-based
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classification models, the most important features of the base models (M1 and M1’) were
not relevant and are not provided here. Furthermore, our spectral–temporal metrics were
considered as a whole, such that the most important features of the M6 and M6’ models
were also not relevant and are not provided here.
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In M2, except for NIR_MD (median of NIR) and PC3_MD (median of the third
principal components), the rest of the features were remote sensing indices. In M3, the
median elevation was considered the most important, and the median slope and aspect
ranked 7th and 8th in the importance list, respectively. In M4, the distance to the water
source was ranked 7th, i.e., not particularly important. In M5, the median of the topsoil
pH (2nd, rank of the feature importance), the median of the topsoil sand content (8th),
and the soil texture class (10th) were all in the top ten. Finally, in M7, including all of the
features, the auxiliary features dominated the top ten. Among them, the median elevation
was the most important, closely followed by the maximum of the TCA (TCA_Max) and
Soil Bulk Density.

Different from M2, the remote sensing index in the M2’ model only included the
median of the TCB (4th), the median of the TCW (7th), the maximum value of the NBR
(8th), and the maximum value of the TCG (10th). Similar to M3, the median elevation
was also considered the most important feature in M3’ while the median slope and aspect
were respectively the 5th and 4th most important features. The difference between M4 and
M4’ was that the distance to the water source was considered the most important in M4’.
Similar to M5, the median of the topsoil pH (1st), the median of the soil texture class (5th),
and the median of the topsoil sand content (9th) were in the top ten for M5′. Finally, in M7’,
the auxiliary features dominated the top ten. Among them, the maximum of the TCA was
the most important while the elevation was only the 4th most important.
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Comparing Figures 4 and 5, we can observe that the importance of the same auxiliary
features in the pixel- and object-based classification models is not the same. The pixel-
and object-based classification models are still highly similar. Except for the differences in
the top ten important features for the multiple remote sensing index features, the top ten
important features for the other models are highly similar.

4.2. Different Types of Auxiliary Features Improve Classification Accuracy
Assessment Comparison

To analyze the performance of the different auxiliary features both in the pixel- and
object-based classification, the optimum feature composition classification model was used
and applied in the study area. On this basis, Table 4 lists the pixel-based classification
confusion matrix and Table 5 lists that for the object-based method. Tables S2 and S3 listed
the detailed confusion matrices.

From Table 4, we can observe that the introduction of any type of auxiliary features
improves the OAs. The classification model using the spectral features (M1) was used
as the baseline model, and the OA value was the lowest at 91.51%. The OA of the pixel-
based model (M7) by integrating all of the features was the highest, improving the OA
by approximately 2.45%. For a single type of auxiliary feature, the soil features (M5)
had the greatest improvement in the OA, i.e., more than 2%. The phenological features
(M6), multi-remote sensing index features (M2), and topographic features (M4) had similar
improvement effects, where the OA increased by approximately 1.2%. The distance to
water bodies (M2) had the smallest effect, where the OA increased by less than 1%.

Table 4. Accuracy results for the pixel-based classification models.

M1 M2 M3 M4 M5 M6 M7

Kappa 0.87 0.89 0.89 0.89 0.90 0.89 0.91
Overall accuracy (%) 91.51 92.73 92.36 92.62 93.53 92.73 94.20
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Similar to the pixel-based method, we analyzed the performance of the different
auxiliary features in the object-based models. Table 5 lists the OAs of the object-based
models (see Table S3 for details). This clearly shows that all of the auxiliary features can
improve the classification accuracy in the object-based classification models. The spectral
features model (M1′), as the baseline model, was the lowest with a classification accuracy of
94.03%. The model (M7′) that combines all of the auxiliary features was the best, achieving
96.01%. The OA of M7′ increased by approximately 2%. The main reason why the OA
(M7’) did not improve as much as the pixel-based models (M7) is that the baseline model
(M1’) has a higher classification accuracy. The classification model based on the terrain
features (M3’) was the second-best, where the OA increased by approximately 1.7%. The
OA of the soil features (M5’) and phenological features (M6’) increased by approximately
1%. The other auxiliary features had a small improvement in the OA by less than 1%.

Table 5. Accuracy results for the object-based classification models.

M1’ M2’ M3’ M4’ M5’ M6’ M7’

Kappa 0.91 0.92 0.94 0.92 0.93 0.93 0.94
Overall accuracy (%) 94.03 94.67 95.73 94.91 95.27 94.95 96.01

In general, our results indicate that the use of free open-access global-scale auxiliary
features in GEE can obviously improve the overall classification accuracy of areas with
high landscape heterogeneity in both pixel- and object-based models.

4.3. Pixel-Based and Object-Based Classification Results Comparison in Different Terrain Area

To compare the details of the pixel- and object-based classification maps, we selected
two typical regions as case areas (see Figures 6–8). The typical region in Figures 6 and 7 is
located in Jiangsu Province. The main landform in this region is plain and the main LULC
types include cropland, built-up land, water bodies, and some forestland. This region
contains a large number of mixed LULC types, resulting in unclear image segmentation
boundaries. This also results in different spectral characteristics for the same LULC type.
Therefore, we also performed a visual comparison analysis for this region. The case area
selected in Figure 8 is located in Zhejiang province, which is dominated by mountainous
terrain. The main LULC types include forest and croplands, as well as some built-up land
and water bodies.

Figure 6 shows the results of the LULC maps generated by the pixel-based models.
The LULC results using the pixel-based models achieved similar results for the plain
areas. However, the LULC maps generated by the pixel-based classification models have
some “salt-pepper noise”. Furthermore, these pixel-based models are often misclassified
in mountainous areas and their shadow areas, or areas where water bodies are mixed
with other LULC types. First, the M7 model applied all of the features, showing the best
accuracy. Second, M2 and M6 applied the phenological features and multiple remote
sensing index features, respectively; the accuracy of these two models was relatively lower
than M7. Third, the accuracy of M5, which considered soil features, was lower than M2,
M6, and M7. The low accuracy may be caused by the low spatial resolution of the soil
features. Finally, M3, based on topographical features, had the worst performance. The
selected typical region was plain, with small changes in the topography. Therefore, M3
cannot easily improve its classification accuracy significantly.
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Figure 7 shows the object-based classification results. The object-based classification
methods can reduce the “salt-pepper noise,” thus yielding higher OAs. In general, the
object-based classification models achieved better classification results. First, similar to the
pixel-based classification result, the best classification result was still based on all of the
features. The effect of the phenological characteristics and the multi-remote sensing index
was second. Moreover, the effect of terrain and soil characteristics is unclear.

Although the OA of M1’ is better than that of M1, this model was unable to clearly
express the correct spatial distribution details of the ground objects. In cases where
only spectral features are used for medium-resolution remote sensing images, an object-
based classification model may not be suitable. This is because, based only on spectral
features, the average value of the image object is used instead of each pixel value, which
results in a decrease in the features’ differences. With the addition of other features, the
difference between the features then increases and fine classification can be effectively
carried out. Therefore, other types of auxiliary features should be added to the object-based
classification at a medium-resolution. This not only improves the overall classification
accuracy, but also shows the true spatial details.
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In the plain areas, the results of the pixel- and object-based classification models were
relatively similar. To highlight the differences in the classification results, we selected
mountainous regions as a typical area for comparison (see Figures S1 and S2 for the
complete classification results). Figure 8 compares selections of the classification results for
models M7 (pixel-based) and M7’ (object-based) with the highest OAs. The classification
result of M7 includes partial “salt-pepper noise”. Furthermore, M7’ effectively reduces
the impact of the “salt-pepper noise”. Therefore, the object-based classification results are
generally better than pixel-based classification results.

Figure 8 shows that the pixel-based classification result is similar to the object-based
classification result. The A1 region in Figure 8 is a transition area from mountain to plain,
and A2 is a typical mountainous area. The classification results of these two positions reveal
that the pixel-based classification result contains some image spots while the object-based
classification result contains fewer spots. In the A1 region, the pixel-based classification
result contains many small forests while the object-based classification result contains
relatively few. In the A2 region, the pixel-based classification result contains abundant
croplands while the object-based classification results contain significantly less cropland. In
the A1 (A2) region, cropland counted for 81.39% (20.37%) and 90.75% (9.8%) by pixel- and
object-based models, respectively. In general, different from the pixel-based classification
method, the object-based classification method generates a cleaner LULC map. The object-
based classification method result is more similar to the reference data, although it does
not detect small objects, such as croplands in the A1 region. The object-based classification
results are generally satisfactory, but the main disadvantage is that the boundaries of the
image objects affect the classification results. There is also no clear difference between the
boundaries of the ground objects, which limits the fineness of the classification results.
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the object-based model.

5. Discussion
5.1. Image Segmentation

Different segmentation parameters further control the size and number of the satellite
image objects, which may directly affect the classification results [8]. Therefore, our
parameterization method, through visual comparison, may affect our classification results.
Previous studies have shown that the uniform segmentation parameters are not the best
for all LULC types [65]. To obtain the best segmentation results [23], we must attempt to
separate the experiments on different LULC types. Here, this study proves that, due to the
strong landscape heterogeneity, obtaining the best set of parameters suitable for all LULC
types is impossible. To overcome this issue, we used the spectral standard deviation (STD)
and maximum spectral distance from the original image to control the size of the generated
image objects (Figure 9).

Based on Figure 9, when the STD is less than or equal to 0.25, the SNIC image
segmentation algorithm can accurately detect the edges of ground objects. As shown in
Figure 9a, when the STD is 0.15, some small pieces often appear in the image segmentation
results. When the STD is 0.20, the small pieces are obviously reduced. However, in some
mountainous area, there some small pieces still exist. In contrast, when the STD is greater
than 0.25, the edges of the ground objects in the mixed region cannot be appropriately
detected. Therefore, we uniformly set the STD to 0.25 in the image segmentation process.
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As shown in Table 6, different STD settings result in different OAs. When no or few
auxiliary features are added, the larger the value of the STD is set, the higher OA will be
obtained. For the object-based models that only use spectral features, the highest OA is
obtained when the STD is set to 0.35. With more auxiliary features added, the smaller
the STD value the higher OA will be obtained. For the object-based models that use all
auxiliary features, the OA is the highest when the STD is set to 0.15, but the classification
result contains many small pieces. When the STD is set to 0.35, small ground objects cannot
be classified. From the perspective of balancing OA and the fineness of classification results,
the STD set to 0.25 is an optimal choice.

Table 6. The object-based classification overall accuracies by different spectral standard deviation.

Auxiliary Features Used
Spectral Standard Deviation

0.15 0.20 0.25 0.30 0.35

spectral features 94.26 94.09 94.03 94.14 94.49
spectral indices 94.61 95.26 94.67 95.08 94.48

topographic features 95.57 95.82 95.73 95.61 95.90
distance to water bodies 94.73 95.07 94.91 94.65 94.96

soil features 95.40 95.17 95.27 94.77 94.72
spectral–temporal metrics 95.37 95.14 94.95 94.72 95.31

ALL 96.23 95.92 96.01 95.74 95.91

In the image segmentation process, we found that, except for grassland, the image
segmentation results for cropland, forest, built-up land, and water body were satisfactory.
The main reason for the poor image segmentation results for grassland is that the spectral
characteristics of grassland are similar to cropland or forest. Therefore, distinguishing
the boundaries of grassland with the spectral standard deviation is difficult. The optimal
parameter settings for modeling different ground objects are usually not constant. However,
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the spectral standard deviation was set to 0.25, which yields the best ground object image
segmentation results.

Except for the qualitative evaluation, we did not use quantitative methods to objec-
tively evaluate our segmentation. Good image segmentation results are the prerequisite for
efficient LULC classification because the objects and their attributes should be related to
meaningful and coherent landscape features [13]. However, in our study area, for mixed
and fuzzy LULC, delineating the boundaries between the objects is difficult, which may
then affect the classification results.

Based on Figure 10, the overall results for image segmentation reflect the boundaries
of the ground objects. However, as in Figure 10a,d, over-segmentation results exist in lakes
and cultivated lands. Over-segmentation can generate a large number of image objects.
When these small objects are classified, the object-based models take more computation
time but there is no difference in classification accuracy. Therefore, although excessive
segmentation exists in our image segmentation results, it has little effect on our research
objectives and conclusions. In general, more image objects indicate ground object segmen-
tation at a finer level, which leads to higher classification accuracy. However, more image
objects require a stronger computation ability. In this study, we applied GEE, which can
provide a powerful analysis platform for classification. Overall, over-segmentation in this
study can improve the classification accuracy.
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5.2. Pixel- versus Object-Based Methods for Landsat OLI Classification

Here, we compared the accuracy of the object- and pixel-based methods in LULC
classification. Our results demonstrated that using the object-based method to classify
Landsat OLI data can effectively improve the classification accuracy. Only using satellite
data in the object-based RF classification methods yielded an OA of 94.04%. Combining
spectral data with other types of auxiliary features under the object-based RF method can
further improve the OA up to 96.01% (see Table 5).

We used Classification and Regression Trees (CART) to verify the generality and
reliability of our conclusions [66]. In the comparative experiment, the features used in
CART models were the same as RF models. The overall accuracy of CART classification is
shown in Table 7. Results obtained from the CART models show that the OA is improved
with the increase in the number of auxiliary features and the OAs of the object-based
models are higher than those of the pixel-based models when the same features are used,
which are consistent with the conclusions of the RF models.

Table 7. Overall accuracy results of the Classification and Regression Trees (CART) models.

Auxiliary Features Used Pixel-Based Object-Based

spectral features 86.55 90.96
spectral indices 87.79 91.40

topographic features 88.34 93.07
distance to water bodies 88.09 91.50

soil features 90.12 92.24
spectral–temporal metrics 88.01 92.55

ALL 91.26 93.37

The object-based method requires a significant amount of user processing, as well as
increased computational capacity [67]. Therefore, considering a variety of auxiliary data for
object-based classification in a large area is relatively time-consuming. Moreover, whether
the object-based classification is useful for Landsat OLI data classification depends on the
characteristics of the “object” in the study area. The object-based classification method
requires more computing resources, especially when combined with multiple types of
auxiliary features. However, the emergence of cloud computing platforms, such as GEE,
enables access to powerful computing environments.

5.3. Uncertainties

Some studies have suggested that the training dataset should be as large as possible,
especially when using machine learning classifiers (e.g., RF classifier) [68]. This is because
the classification results are highly sensitive to the number, type ratio, and spatial auto-
correlation of the training data [34]. Here, we generated the training data based on the
multi-source LULC reference datasets. Therefore, the generated LULC types have certain
ecological significance because they can be similar to the actual proportion of objects.
Relative to the proportion of the ground truth, land types with few representations in the
study area are usually underestimated. This may be because the classification tends to be
biased towards the “most” available type in the training data [69]. We attempted to ensure
that each LULC type had a sufficiently large sample size, and allocated samples according
to the number of samples. Ensuring that all LULC types are represented by a sufficient
number of samples is, however, still difficult due to the proportion of the ground truth.
For instance, when generating the wetland and bare land sampling points, only 18 and
14 sample points were generated, respectively, which was too few for the overall number
of sample points (18,878). We adjusted the sample distance from 1500 to 500 m, and the
sample point number of wetlands and bare land were only 21 and 67, respectively, which
is still too few for all of the sample points. Finally, we decided to exclude wetland and bare
land types. Although reducing the number of LULC types may have an impact on the OA,
the main LULC types in the study area still had a reasonably high OA.
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6. Conclusions

In this study, we examined the effect that six auxiliary features in GEE had on accuracy
improvements of 14 RF classification models (seven pixel-based RF models and seven
object-based RF models); the main conclusions are:

(1) Auxiliary features, such as multiple remote sensing indices, topographic features,
soil features, distance to the water sources, and phenological features, can improve the OA
in heterogeneous landscapes. Landsat-8 OLI remote sensing image data were combined
with the various auxiliary features used in this study, and we showed that they effectively
improve the accuracy of LULC classification. The OA of the pixel-based (object-based)
method increased from 91.51 to 94.20% (94.03 to 96.01%).

(2) The performance of the auxiliary features was not the same between pixel- and
object-based models. In pixel-based models, soil features had the best effect on improv-
ing the classification accuracy. However, in object-based models, topographic features
performed best. In the classification model combining all of the features, the topographic
features had the greatest effect on improving the classification accuracy in both the pixel-
and object-based models.

(3) We further found that when only using spectral data, the object-based classification
method achieved higher OA and was unable to show small objects. Therefore, when
object-based classification models are applied to medium resolution remote sensing images
(such as Landsat data), other types of auxiliary features should be used.

The auxiliary data used in GEE in this study reflects a significant potential for im-
proving the accuracy of LULC classifications in large areas with highly heterogeneous
landscapes. However, we note that the main factors vary in different terrain areas. In the
study, we used the YRD as a whole, and did not subdivide the YRD based on the terrain.
In future studies, we will further investigate the similarities and differences in the optimal
combination of auxiliary features under different topographic conditions.
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