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Abstract: Convolutional neural networks (CNNs) are known for their ability to learn shape and
texture descriptors useful for object detection, pattern recognition, and classification problems.
Deeper layer filters of CNN generally learn global image information vital for whole-scene or object
discrimination. In landscape pattern comparison, however, dense localized information encoded in
shallow layers can contain discriminative information for characterizing changes across image local
regions but are often lost in the deeper and non-spatial fully connected layers. Such localized features
hold potential for identifying, as well as characterizing, process–pattern change across space and
time. In this paper, we propose a simple yet effective texture-based CNN (Tex-CNN) via a feature
concatenation framework which results in capturing and learning texture descriptors. The traditional
CNN architecture was adopted as a baseline for assessing the performance of Tex-CNN. We utilized
75% and 25% of the image data for model training and validation, respectively. To test the models’
generalization, we used a separate set of imagery from the Aerial Imagery Dataset (AID) and
Sentinel-2 for model development and independent validation. The classical CNN and the Tex-CNN
classification accuracies in the AID were 91.67% and 96.33%, respectively. Tex-CNN accuracy was
either on par with or outcompeted state-of-the-art methods. Independent validation on Sentinel-2
data had good performance for most scene types but had difficulty discriminating farm scenes, likely
due to geometric generalization of discriminative features at the coarser scale. In both datasets, the
Tex-CNN outperformed the classical CNN architecture. Using the Tex-CNN, gradient-based spatial
attention maps (feature maps) which contain discriminative pattern information are extracted and
subsequently employed for mapping landscape similarity. To enhance the discriminative capacity of
the feature maps, we further perform spatial filtering, using PCA and select eigen maps with the top
eigen values. We show that CNN feature maps provide descriptors capable of characterizing and
quantifying landscape (dis)similarity. Using the feature maps histogram of oriented gradient vectors
and computing their Earth Movers Distances, our method effectively identified similar landscape
types with over 60% of target-reference scene comparisons showing smaller Earth Movers Distance
(EMD) (e.g., 0.01), while different landscape types tended to show large EMD (e.g., 0.05) in the
benchmark AID. We hope this proposal will inspire further research into the use of CNN layer feature
maps in landscape similarity assessment, as well as in change detection.

Keywords: landscape similarity; feature maps; texture features; spatial patterns

1. Introduction

Earth system and environmental data have become abundant via a variety of sources
ranging from model simulation data, citizen science, amateur drones, airborne sensors,
commercial satellites, and easily accessible data such as Landsat [1,2]. These data are
available at unprecedented spatial and temporal resolutions and are widely used for
understanding processes of environmental change across time and space. Given the
rapidity of human-induced landscape disturbances, there is increasing interest in using
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environmental data resources to not only understand but also characterize and quantify
landscape-scale disturbances, and to support decisions and policies aimed at remediating
degraded landscapes [3,4].

Identifying the underlying processes that generate spatial patterns is critical to quanti-
fying changes in patterns across space and time [5]. For instance, we ask questions like,
where are degraded landscapes common? What types of specific features are common or
different between geographical locations? Are the underlying processes driving pattern
changes similar or different across locations? How are degraded ecosystems responding
to restoration campaigns? Such questions can be addressed through landscape pattern
comparison. In urban planning and land management, for example, applications that
provide information on images similar to regions under investigation are essential for
decision-making [6]. Traditional landscape similarity analysis tools, however, rely largely
on change-detection analysis on classified landcover maps to predict or quantify process-
driven changes. While these approaches have been successful, such features are limited
in uncovering the complex and non-linear nature of process–pattern relationships [7].
Moreover, they are also dependent on the accuracy of the underlying map classification
and incur challenges associated with legend harmonization and consistency/reproducible
methods for data processing [8]. Furthermore, processes and patterns are both interdepen-
dent and affect each other in many ways, thus complicating prediction efforts [9]. As the
growing historical archive of image data is increasingly being used to develop monitoring
schemes and tools for understanding complex land-change processes [5], new tools capable
of extracting structural information from raw, unclassified land-image data are needed.

Machine learning algorithms from computer vision research are capable of learning
to extract robust descriptors from image data. Such descriptors are useful representations
of data structure, and hence hold potential for landscape research [10]. For example,
Tracewski et al. [11] demonstrated the application of deep learning for different landcover
types characterization. Grinblat et al. [12] also applied deep neural networks for plant
species identification based on vein morphological patterns. The landscape similarity
search algorithm proposed by Jasiewicz et al. [13] illustrates the potential of computer
vision approaches to discover (dis)similar landscapes across space. Recently, Buscombe
and Ritchie [14] demonstrated that deep convolutional neural networks (CNN) account for
spatial context and hence are effective for classifying spatially structured datasets. Thus,
CNN models can be considered a recent class of spatially explicit models [15].

Computer vision models, such as CNNs, contain filter banks which engage in spatial
learning, to extract spatially discriminative features of increasing complexity through
weight-sharing [16]. Lower CNN layer feature maps contain local information that cap-
tures fine-grain discriminative patterns useful for similarity mapping, while deeper-layer
features lack geometric invariance, which weakens their robustness to map finely detailed
landscape patterns across variable scenes [17]. The layers of CNNs can preserve repre-
sentative information about an input image with varying rotation and illumination [18];
consequently, pretrained CNNs can be employed to extract features for characterizing
dynamic texture and dynamic scenes [19]. CNN filters demonstrate consistent response to
useful local regions of images; based on this property, Li et al. [20] proposed a PatternNet
that utilizes deconvolution (i.e., up-sampling) to discover discriminative and representative
patterns in images. In a related study, Lettry et al. [21] introduced a model capable of
detecting repeated patterns in images. The authors provide evidence that consistent small
patterns can be strongly expressed in the shallower layers and hence are detected as major
repetitions. Given the importance of texture in landscape aerial scenes, these properties
may be particularly useful in recognizing different types of landscape scenes in aerial and
satellite image data.

A variety of CNN architectures have been proposed to resolve image-classification
problems in recent years [22,23]. CNN layer depth, input size, and even training strate-
gies adopted may influence the model performance and competitiveness with traditional
machine learning techniques [24]. For instance, to learn multi-scale features which are



Remote Sens. 2021, 13, 492 3 of 25

robust to scale variation, and thus reduce misclassification rates, Liu et al. [25] proposed
a method in which randomly cropped image patches are used for model development.
Gong et al. [26] also introduced a saliency-based feature extraction framework with anti-
noise transfer network and found the approach to yield high classification accuracy on
benchmark datasets. CNNs with feature concatenation or fusion modules are simple but
effective feature extraction frameworks that have been adopted to combine local and global
image features for improving the performance of many scene classification and other
pattern recognition tasks [27–29]. Ye et al. [30] presented a multi-stage model that extracts
and fuses low-, middle-, and high-level features, and obtained 95% accuracy on the Aerial
Image Dataset (AID). Kang et al. [31] also developed a network that captures contextual
information via the fusion of deep and shallow features to improve ship-detection accu-
racy. A framework with dilated convolution and skip connections was found to learn
multiresolution discriminative features for scene classification [32]. Similarly, Gao et al. [33]
proposed a network in which feature maps generated from input images are passed on to
a concatenating layer, forming a combined feature map with richer discriminative infor-
mation. The authors concluded that their method significantly improved hyperspectral
image classification. In a related study, Huang and Xu [34] used weighted concatenation
to combine features across all CNN layers, yielding overall accuracy of 95% in AID. Sim-
ilarly, Zeng et al. [35] developed a two-branch CNN in which local and global features
are independently extracted and concatenated. With extensive experiments, the authors
demonstrated that feature concatenation resulted in over 90% accuracy for most scene
classes in AID.

Despite the state-of-the-art performance of current CNN architectures, deep learning
algorithms are generally perceived as “black-boxes” in both computer vision and across
other domains; consequently, there have been intensifying calls to interrogate and reveal the
inner workings of deep learning models in disciplines such as geography [36]. Visualizing
spatial attention maps (i.e., feature maps) is a fairly simple method of exploring how
CNNs learn and make decisions on an input image. The approach may be gradient-based
and involve computing network output changes with respect to input [37], or utilizing a
deconvolution network that projects image features over a plane [38]. Zhou et al. [39] also
proposed converting the linear decision (regression) layer into a convolutional layer for
generating class-based attention maps. To improve gradient-based feature map quality,
guided backpropagation has also been introduced [40]. As these approaches do not always
produce class-specific feature maps [41], Selvaraju et al. [42] proposed Grad-CAM, which
integrates guided backpropagation and class activation maps, and thus yielding class-
discriminative spatial attention maps. In a related research, Omeiza et al. [43] proposed
Smooth Grad-CAM++ to improve the spatial resolution and localization of patterns in
feature maps. Class-selective relevance mapping has also been proposed to derive feature
maps that contain the most discriminative regions of interest in medical images [44].

In this study, we focused on gradient-based convolutional feature maps. Gradient with
respect to an input image, is a sensitivity map measuring how changes at an input pixel
spatial location affect changes in CNN model predictions [42]. Given an input image, if
small changes to its pixels correspond to a large network output change, then it follows
that such pixels encode “significant” spatial information. The above novel approaches to
visualize and interpret CNN feature maps have been used extensively to evaluate and
improve models’ performance. However, we consider such CNN features to have potential
for image similarity matching and retrieval. For example, a global representation vector
extracted from a CNN has been shown to improve object-image retrieval on Oxford and
Paris datasets [45,46]. As demonstrated in recent studies, CNNs with feature concatena-
tion framework incorporate fine-grain textural details which encode relatively significant
discriminative patterns [27,28]. Traditional CNN architectures, on the other hand, tend
to focus largely on processing input images and feature tensors from individual layers.
Thus, traditional CNNs have the tendency to discard tangible proportions of original image
texture, as well as CNN layer features that contain discriminative information. To this
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end, we propose training and deploying a texture-encoded CNN model (Tex-CNN) to
evaluate landscape similarity. Our Tex-CNN is a simple, yet computationally efficient
feature concatenation architecture for generating discriminative feature maps. In order to
compare our proposal with existing techniques, a classical CNN was trained. Using the
trained Tex-CNN and the classical CNN, we derived feature maps, to compare different
or repeating spatial patterns across space. Given the discriminative learning behavior of
convolutional filters, feature maps are sometimes sparse; to reduce the CNN feature maps
to a compact representation that best encodes patterns in a given landscape, principal
component analysis (PCA) was further performed, and feature maps with the highest eigen
values were selected. The histogram of oriented gradients (HoG) vector was then extracted
from each map for comparison using the Earth Movers Distance (EMD) algorithm.

The contribution of this study is, therefore, two-fold. (1) A gradient-based convolu-
tional feature map approach to landscape similarity analysis was proposed. Using gradient-
based features, the proposed landscape similarity assessment utilizes significant spatial
patterns in a query and a candidate image for comparison. (2) A landscape similarity metric
capable of detecting within- and between-landscape types was developed. The proposed
metric effectively discriminates farm landscapes from mountainous, as well as forested,
landscapes. The paper is arranged as follows: We first illuminate the importance of spatial
feature maps in landscape comparison; next, the methodological pipeline is presented,
followed by results, discussion, and conclusion.

2. Related Work

Prior to the emergence of state-of-the-art of CNNs capable of detecting and classifying
objects and patterns, image texture processing was one of the earliest applications in which
CNNs were employed to extract discriminative local features [47,48].

2.1. Representing Patterns in CNN Feature Maps

Convolutional feature maps can be thought of as spatial activation features encoding
discriminative regions within a given input image [49]. A feature map can also be viewed
as detection scores resulting from the application of a filter over spatial locations in a
2D image; the activation value obtained at the i-th location quantifies the importance
of the pixel at that location [50]. Such locations may be linked, at least conceptually, to
“landscape features of interest” or those areas of the landscape that are discriminative of the
landscape scene label. The potential of a convolutional-feature-based approach in urban
landscape change detection was presented in El Amin [51]. The authors demonstrated that
CNN features can perform higher than “hand-crated features” and other state-of-the-art
techniques. In related research, Albert [52] showed that features extracted from CNNs
trained discriminatively on urban imagery effectively compare neighborhood similarity
across European cities.

In landscape research where local-to-global changes or pattern similarity are some-
times of interest, CNN maps can be helpful. Feature maps represent local response regions
of filters and thus encapsulate valuable pattern information [41]. These local regions also
encode information pertaining to the underlying pattern-generating process. Feature maps
from convolutional layers represent local descriptors of particular image regions which can
be aggregated into global descriptors for image retrieval [53]. An image-retrieval frame-
work is also closely related to the landscape-pattern comparison problem. For instance,
CNN activations containing pronounced spatial information can be utilized for detecting
repeated patterns [21]. The challenge to detect repetitive spatial patterns is similar to land-
scape similarity analysis problem. It has been illustrated that convolutional layer activations
are local region descriptors and outperform many state-of-the-art descriptors [48,49]; thus,
if these feature maps are well-pooled, a compact representation of a given landscape can
be derived. Additionally, Zagoruyko and Komodakis [41] have shown that feature maps
represent “knowledge learned” by a given network about the underlying pattern and can
be transferred to other networks, to improve pattern detection. Furthermore, classical
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machine-learning algorithms for pattern detection or classification, such as Random Forest,
Support Vector Machine, and Maximum Likelihood being employed in landscape research,
can be coupled with deep feature extraction models to boost performance [54]. For example,
it has been shown that feeding features from CNNs to other models improve results [29].
We therefore postulate that CNN-feature-based frameworks hold the potential to enable
the detection and quantification of spatially patterned processes.

2.2. CNN-Feature-Based Image Retrieval

Image retrieval is an active research area in this era of “big data”, where the objective
is to find a set of images that are the most similar to a given query image. Content-based
image retrieval (CBIR) is a widely applied technique for retrieving images in databases.
In CBIR, low-level image descriptors (e.g., color, texture, and structure) are extracted to
form an image representation; a suitable measure is then selected to estimate similarity
between images. Several algorithms have been proposed for an improved CBIR. For
example, Unar et al. [55] combine both visual and textual features for image retrieval.
Zhang et al. [43] also developed an algorithm that segments an image into salient, non-
salient, and shadowed regions, in order to extract spatially relevant information. Earth
observation data now available in various archives could provide a wealth of information
through effective search and retrieval techniques [6].

Recent research has shifted towards the use of features extracted from deep convo-
lutional layers of CNNs for image matching and retrieval [46,56]. The use of deep con-
volutional features for image retrieval is demonstrated in a study conducted by Babenko
et al. [53]. Chen et al. [45] propose region-of-interest deep convolutional representation for
image retrieval. Their approach first identifies regions of interest and proceeds to extract
features from the fully connected layer. Shi and Qian [46] also adapted the region-of-
interest-based approach called strong-response-stack-contribution, by exploring spatial
and channel contribution, to generate a more compact global representation vector for
an object-based image retrieval challenge. Cao et al. [50] applied adaptive matching by
splitting feature maps and later spatially aggregating them into regions of interest for
comparison. Liu et al. [57] proposed extracting and pooling subarrays of feature maps
as local descriptors for visual classification task and found that the method outperforms
features from fully connected layers. The aforementioned applications hold potential for
designing resource management and decision-making applications in geography.

3. Materials and Methods
3.1. Models’ Architecture

In the context of landscape similarity mapping, global shape information present in
fully connected layers is of less significance, as landscape patterns often lack unique or sta-
ble geometry across space. Given that lower layers capture local patterns [16], we concate-
nated multi-layer features, to learn a discriminative representation of the data-generating
process. In feature fusion, feature maps from three convolutional layers (i.e., conv1, conv2,
and conv3) are concatenated followed by flattening into feature vectors to yield a dense
layer (denoted FC1). One possible approach to improving CNN features’ discriminative
potential is to apply attention pooling strategies that takes the weighted sum of different
feature maps instead of concatenating features, as this technique exponentially increases
model parameters as well. However, we adopted feature concatenation, as it has been
proven to enable the extraction of multiscale features, potentially obviating the need for
multiscale inputs during model development [58]. Moreover, attention strategies are
effective for object recognition tasks but may not tangibly improve landscape pattern dis-
crimination.

Work similar to our approach is the Andrearczyk and Whelan [59] feature concate-
nation framework. Figure 1 illustrates the architecture of a classical CNN, while Figure 2
depicts our model architecture. For model design, we build on the VGG16 model architec-
ture and filter constellation [60]. Thus, 32, 64, and 128 Filters are used in the first, second,
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and third convolutional layers of the classical CNN and the Tex-CNN models. The pro-
posed model architecture is intended to be simple with minimum parameters as possible
for field deployment. A model with fewer than three convolutional layers does not only
limit the number of feature maps available for exploration but may not be able to shatter
the training data as well. Given the data at hand, models with over four convolutional
layers could potentially pose overfitting challenges.
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3.2. Model Parameterization and Training

We opted for training our models from scratch, as this approach gives flexibility over
model architecture. Although there is potential for data limitation, as well as over-fitting,
in this framework [61], the approach facilitates feature maps comparison, as it ensures
that features are the direct result of filters learned on data presented to models, compared
to using pretrained networks in which filters learned from an entirely different domain
than the task at hand. Given that the input image size is large enough (i.e., 225 × 225), we
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selected 7 × 7 convolutional kernels and used a fixed filter size with stride 1 throughout
the convolutional layers. Filter receptive field size changes with layer depth and could
result in profound differences in feature spatial resolution between successive layers. In the
pooling layers, 2 × 2 max pooling with stride 2 is applied. The receptive field size at
the third convolutional layer, therefore, becomes 46. We utilized 75% of the sample data
for training and 25% for validation. To mitigate potential overfitting, 25% drop-out is
used in convolutional layers, while 50% is applied to the FC1 layer [62]. The rectified
linear unit (ReLU) is used as the activation function. Multiclass cross-entropy loss function
is employed, and the models are trained for 30 iterations with Adam as the optimizer.
Adam adaptively computes and updates gradients and is invariant to diagonal scaling
of gradients [63]. The Keras-Tensorflow backend was used for building and supporting
computations required to train the CNN models on a GPU with a NVIDIA-supported
graphics card. Table 1 summarizes the models’ architecture and parameters.

Table 1. A summary of models’ architecture and parameters.

Layer Name Convolution Max-Pooling Activation Drop-Out

Conv-1 7 × 7 × 32 2 × 2 ReLU 25%
Conv-2 7 × 7 × 64 2 × 2 ReLU 25%
Conv-3 7 × 7 × 128 2 × 2 ReLU 25%

FC1 No No SoftMax 50%

3.3. Application Context: Landscape Comparison

Unclassified imagery, which is now ubiquitous due to the availability of sensors of
varying types, offers the potential for landscape similarity queries. While land-cover classi-
fication in which pixels are labeled (classified) or objects are segmented and characterized
is a predominant use of aerial and satellite imagery [64], in this modeling framework, we
focus on characterizing whole scenes or landscapes. An implementation of this would be
helpful for automating image retrieval and potentially provide a basis for mixed scenes
and/or novel land-scene categories and/or descriptors. A conceptual representation for
comparing unclassified images (aka landscapes/scenes) is depicted in Figure 3, using three
landscapes/scenes denoted as X, Y, and Z, but the representation is expandable to multiple
landscape types. Given an image, the feature map will be extracted for comparison, using
EMD. EMD(X, X’), EMD(Y, Y’), and EMD(Z, Z’) compute within-landscape similarity, while
EMD(X, Y), EMD(Y, Z), and EMD(Z, X) estimate between-landscape similarity.

Benchmark datasets have long been used in computer vision for model development,
due to the scarcity of labeled data, and the laborious processes required for generating
such datasets, yet they remain relatively rare in geospatial research. The aerial imagery
dataset is composed of high-resolution benchmark data recommended for training scene
classification models [65]. The AID contains multi-resolution images; the pixel spatial
resolution varies from about half a meter to eight meters, providing a suitable dataset for
training classical CNN and Tex-CNN models. A common protocol in computer vision is to
split a given dataset into training, validation, and test samples. This may sometimes result
in high-accuracy reports resulting from overfitting. Owing to this caveat, and the need
to find models capable of generalizing over a range of datasets for field application, we
propose carrying out further validation by using a dataset from an entirely different sensor.
As such, we employed Sentinel data to evaluate the generalizability of the developed
models. Table 2 describes the datasets utilized in this study.
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Table 2. Data types and specific application.

Data Source Attribute How Data Is Utilized No. of Images

AID
Aerial imagery,
pixel resolution vary
between 0.5 and 8 m

Training and testing models,
and building similarity
distributions

9000 images used training (75%) and
validation (25%).
900 images used for testing
(e.g., deriving confusion matrix)

Sentinel data
Open-source satellite data;
10 m pixel
resolution

Visualizing feature maps in
medium resolution imagery
Demonstrate potential application
in Sentinel dataset

600 images used for testing and
computing confusion matrix.
Image tiles are extracted from sentinel
scenes at different spatial locations

3.4. Data Augmentation

The AID consists of diverse landscape types; however, considering only three land-
scapes reduces the sample size. CNNs are “data hungry” models; thus, training such
models from scratch by using fewer samples and classes is likely to pose data limitation
issues and overfitting. We therefore attempt to circumvent this challenge via the application
of data augmentation. To that end, we employ the Keras image data generator API to
augment our training dataset. Given that the AID is multiresolution–image pixel sizes
vary from about half a meter to eight meters, scale representation challenges are inherently
reduced such that scale transformations may not make substantial difference following
data augmentation. Bearing this in mind, horizontal flips and rotations (i.e., 45–180 degrees)



Remote Sens. 2021, 13, 492 9 of 25

were applied to generate enough training data. Three-thousand samples were generated
for each landscape type, and thus yielding 9000 samples for the three landscape types: farm,
mountain, and forest. A Sentinel dataset was used to test the potential generalizability of
the method on medium-resolution satellite imagery. Figure 4 illustrates samples of AID
landscapes used in our experiments.
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Figure 4. Selected landscape categories from the AID dataset. Row (a) forest landscape, row (b) farm landscape, and row (c)
mountain landscape.

3.5. Activation/Feature Maps Derivation

Given a trained CNN model, gradient-based activation maps can be computed to
allow for visualization of localized regions in an image that contribute significantly to a
given output pattern. Using our trained classification model, activation maps are derived
via backpropagation of filter responses to input pixel intensities [42]. ReLU is employed to
constrain the backpropagation process to propagate only positive pixel values that activate
filters; these pixel positions contain the highest weight and are therefore said to encode
“significant patterns” or represent the signatures of the underlying pattern-generating
process.

The gradient-based class activation map proposed by Selvaraju et al. [42] is derived
as follows: Let Yc denote the score for a particular landscape scene. The gradient, with
respect to Yc, is formulated as ∂Yc

∂Ak
ij

. Ak denotes a set of CNN activation maps, and (i, j)

are locations of pixels in the feature maps. Equations (1) and (2) summarize feature maps
derivation.

αc
k︸︷︷︸

Feature map weight

Global average pooling

=

︷ ︸︸ ︷
1
Z ∑

i
∑

j

∂Yc

∂Ak
ij︸ ︷︷ ︸

Backpropagation gradient

(1)
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Lc
f eature map = ReLU

(
∑
k

αc
k Ak

)
(2)

The weight term αc
k captures the “significance” of feature map k for a target landscape

type/scene. ReLU is applied to the weighted sum of feature maps, yielding heat-maps
whose local regions highlight the most discriminant patterns in images. The resultant CNN
activation maps pinpoint locations where the model focuses its attention on, since such
locations contain significant spatial patterns. Therefore, activation maps can be referred to
as “saliency maps” or “spatial attention maps”.

3.6. Extracting HoG Vector from Feature Maps

For each landscape type, 50 scenes across different locations were selected for feature
map extraction. We note that, since the number of filters in the second convolutional layer
from which the feature maps are computed is 64, each image correspondingly yields 64
feature maps. We perform spatial filtering by using PCA to reduce the number of feature
maps per image. PCA reduces feature map dimensionality, yielding a more compact image
descriptor [53]. Such a step is inevitable when CNN feature maps are being compared; due
to discriminative learning, not all filters respond to input images or pixels, and, as such,
certain feature maps may contain no features/patterns where a filter is not activated by
an input image [66–68]. Using PCA, a feature map (i.e., eigen map) that has the highest
eigen value is selected. Next, the HoG vector is extracted from each landscape type feature
map. HoG has been shown to extract effective image descriptors for pattern recognition
tasks. For example, human face recognition across standard datasets is found to improve,
using HoG descriptors [69]. In related research, different plant species were effectively
recognized from leaf patterns, using HoG descriptors [70]. Setting the spatial parameters
(i.e., cell size and cells per block) for extracting HoG features, however, requires a careful
approach. In our implementation, the HoG vector is extracted by considering cell size
24 × 24 dimension and cell-per-block = 2 × 2 of each feature map. We deploy the EMD,
a multivariate histogram distance measure, proposed by Rubner et al. [71], to compare the
resultant HoG vector representing reference and test feature maps.

3.7. Formulating the Feature Map Comparison Metric

In the literature, there are a variety of pattern similarity comparison metrics, yet it
is challenging to find robust and generic metrics to rely on when it comes to landscape
similarity comparison. In this section, we illustrate how our convolutional feature map
comparison metric was derived. Figure 5 is a depiction of our proposed convolutional
feature-based landscape similarity comparison.
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Equations (3) and (4) illustrate our formulation and computation of within- and
between-landscape similarities.

WLsim = EMD
(

HoG
(

LL1 type, locX

)
, HoG(LL1, locY)

)
(3)

BLsim = EMD
(

HoG
(

LL1 type
)
, HoG

(
LL2 type

))
(4)

where LL1 type and LL2 type represent different landscape categories from different spatial
locations. WLsim and BLsim denote within- and between-landscape type comparison, re-
spectively. For WLsim, we compare similar landscapes; example LL1 type, but from different
locations (e.g., locX vs. locY). For example, to compare farm landscapes, locX will represent
a reference landscape, while locY(1,2,3..., n) denotes farm landscapes (e.g., 225 × 225 grids)
from other locations of interest. Landscapes whose spatial extents are large could be tiled
into spatial grids of equivalent dimension as the model input size for comparison.

BLsim involves a comparison of two disparate landscape types (e.g., forest vs. farm).
HoG( . ) computes HoG feature vector, given an input feature map, while EMD( . ) es-
timates HoG feature vector similarity based on the EMD between landscapes. To test
the proposed metric, 50 images from each landscape type were taken from the AID and
randomly split into two subsets, thus yielding 25 images per subset, which are named G1
and G2 (e.g., farmG1 and farmG2 each contains 25 images belonging to farm landscapes).
Using the metric, a compact distribution based on EMD is computed for within- and
between-landscape, by comparing each scene type; for example, in farmG1, a selected
scene is compared with all other scenes in farmG2. This permutation schema is repeated
for all the 25 scenes in farmG1.

4. Experimental Results
4.1. Landscape Type Prediction Models

Figure 6a–f depicts classification accuracies for landscape types on AID and Sentinel
data. The confusion matrices are computed by deploying the models on the test images
from AID and Sentinel datasets (i.e., 900 images for AID and 600 images for Sentinel-2).
In Figure 6a,b, the Tex-CNN and the classical CNN classification accuracy reports are
similar except for mountainous scenes where Tex-CNN has higher classification accuracy.
In Figure 6c,d, the first row of the confusion matrix shows that over 90% of the farm
landscapes are misclassified as forest in Sentinel dataset. About 70% of the mountain
landscapes are correctly classified by the Tex-CNN, while the classical CNN achieves
only 25% classification accuracy. Figure 6e,f shows classification accuracies after fine-
tuning the models with a combination of AID and Sentinel data. It can be observed that
misclassification rates for farm landscapes have been substantially reduced.

Table 3 compares overall accuracy reports, as well as per-landscape type classification
accuracies for reference state-of-the-art techniques and Tex-CNN on the AID. It can be seen
that the Tex-CNN is highly competitive and, in some instances, outperforms other methods.

Table 3. Overall accuracy (OA) and selected per-scene class accuracy for reference and our proposed Tex-CNN on the AID.

Methods Farmland (%) Mountain (%) Forest (%) OA (%)

TEX-Net-LF [72] 95.5 99.9 95.75 92.96
Fine-Tuned SVM [73] 97.0 99.0 98.0 95.36

PMS [29] 98.0 99.0 99.0 95.56
CTFCNN [34] 99.0 100 99.0 94.91

GCFs + LOFs [35] 94.0 99.0 99.0 96.85
MF2Net [74] 97.0 91.0 94.0 95.93

Classical CNN 100 75.0 100 91.67
Tex-CNN 99.0 90.0 100 96.33
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4.2. Exploring CNN Layer Features Suitability for Landscape Comparison

Given that CNN layers process inputs hierarchically, feature maps spatial resolution
become coarser with layer depth: Earlier layers contain finer resolution features, while
deeper layer representation gives coarser features. We conducted visual assessment of
feature map quality, as well as the potential utilization of the second- and third-layer feature
maps. Layer-one features were not included in this analysis, as gradient-based features
cannot be computed by using input image data as the penultimate layer. Figure 7 depicts
feature maps with the highest eigen values extracted from Tex-CNN. The feature maps are
the result of applying PCA to layer two- and three-feature tensors. Notice how the spatial
resolution changes across the layers. While layer-two eigen maps are fine-grained, with
distinct patterns (e.g., farm boundaries, tree clusters), this pattern is not clearly interpretable
in layer-three eigen maps. In Figure 7, row (a), layer-two shows high-resolution features
with conspicuous farm boundaries. Contrarily, layer-three map depicts low-resolution
features; the boundaries of individual parcels are blurred out. In Figure 7, row (b), layer-
two shows fine-grained clusters of trees; layer-three, on the other hand, depicts coarse scale
patterns which are not immediately recognizable as forest.
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Figure 7. Original images and visualization of CNN feature maps reflecting their spatial resolution. Row (a) depicts Farm
landscapes, row (b) shows Forest landscapes, and row (c) represents Mountain landscapes. Column one shows input
images. Columns two and three are the corresponding feature maps extracted from our Tex-CNN layers two and three,
respectively. Note that the CNN features are eigen maps with the highest eigen values obtained after applying PCA to
feature tensors in layers two and three.
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4.3. Mountainous Terrains

We hypothesized that feature maps from within-landscape types would have lower
EMD values, while those originating from disparate classes would have higher EMD
values. We first conducted a Kolmogorov–Smirnov test to ascertain the validity of this
hypothesis. As expected, it turns out that between-class feature distributions were statisti-
cally significantly different (p < 0.001). A sample of mountain landscapes from the AID
and Sentinel datasets is depicted in Figure 8. Feature map regions that are highlighted in
warmer colors represent the most significant discriminative patterns learned by the three
filters; notice that most of these areas are predominantly less vegetated. Regions with
cooler (blue) colors are found to be less important, according to the model’s weighting
decision. Notice also that the filters sometimes perceive similar regions differently in terms
of significant patterns—pixels that are found to be significant by one filter may be seen to
have less weight by another filter, due to the discriminative learning behavior of CNNs.

Remote Sens. 2021, 12, x FOR PEER REVIEW 15 of 27 
 

 

4.3. Mountainous Terrains 
We hypothesized that feature maps from within-landscape types would have lower 

EMD values, while those originating from disparate classes would have higher EMD val-
ues. We first conducted a Kolmogorov–Smirnov test to ascertain the validity of this hy-
pothesis. As expected, it turns out that between-class feature distributions were statisti-
cally significantly different ( < 0.001). A sample of mountain landscapes from the AID 
and Sentinel datasets is depicted in Figure 8. Feature map regions that are highlighted in 
warmer colors represent the most significant discriminative patterns learned by the three 
filters; notice that most of these areas are predominantly less vegetated. Regions with 
cooler (blue) colors are found to be less important, according to the model’s weighting 
decision. Notice also that the filters sometimes perceive similar regions differently in 
terms of significant patterns—pixels that are found to be significant by one filter may be 
seen to have less weight by another filter, due to the discriminative learning behavior of 
CNNs. 

 
Figure 8. Mountain sample landscapes. Row (a) shows a sample mountain from Sentinel dataset. Row (b) shows a sample 
mountain from AID dataset. Feature maps are from Filters 48, 51, and 64. 

Figure 9 shows the results for comparing mountainous landscapes and farm land-
scape types. It can be seen from Figure 9a,d that feature maps from similar landscapes 
display smaller distances, and hence their distribution falls to the left, characterized by 
smaller EMD. Over 60% of features in Wclass_mount of Figure 9a,b show EMD score of 
0.01, while more than 50% of between class comparison yields EMD values higher than 
0.05. Moreover, it can be observed that aside from shape differences, there is little overlap 
in the distributions of within class (Wclass_mount, Wclass_farmG1, and Wclass_farmG2).  

HoG can also be extracted directly from the original data (i.e., raw images) for com-
parison. We demonstrate this by computing EMD over the same set of original images 
used for extracting CNN feature maps. Figure 10a,d presents within-class (i.e., 
Wclass_mount), between-class (i.e., (mountain vs. farm) and (mountain vs. forest) EMD 
distributions. As can be seen in the derived CNN features, the mountain vs. forest com-
parison poses challenges for real image comparison as well. 

Figure 8. Mountain sample landscapes. Row (a) shows a sample mountain from Sentinel dataset. Row (b) shows a sample
mountain from AID dataset. Feature maps are from Filters 48, 51, and 64.

Figure 9 shows the results for comparing mountainous landscapes and farm landscape
types. It can be seen from Figure 9a,d that feature maps from similar landscapes display
smaller distances, and hence their distribution falls to the left, characterized by smaller
EMD. Over 60% of features in Wclass_mount of Figure 9a,b show EMD score of 0.01,
while more than 50% of between class comparison yields EMD values higher than 0.05.
Moreover, it can be observed that aside from shape differences, there is little overlap in the
distributions of within class (Wclass_mount, Wclass_farmG1, and Wclass_farmG2).

HoG can also be extracted directly from the original data (i.e., raw images) for compar-
ison. We demonstrate this by computing EMD over the same set of original images used
for extracting CNN feature maps. Figure 10a,d presents within-class (i.e., Wclass_mount),
between-class (i.e., (mountain vs. farm) and (mountain vs. forest) EMD distributions.
As can be seen in the derived CNN features, the mountain vs. forest comparison poses
challenges for real image comparison as well.

4.4. Farm Landscapes

Figure 11 presents farm landscape samples and their corresponding feature maps.
Convolutional filters are randomly selected to illustrate patterns learned on farm land-
scape types. It can be observed that the filters specialize in detecting different features.
For example, Filter 43 recognizes farm boundaries to be significant patterns, while Filter 8
weights blocks of vegetated areas higher. As shown in Figure 11a,b, the filters appear to
assign significance to similar features in both AID and Sentinel datasets.
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Figure 12a–d depicts within-landscape feature maps’ similarity (Wclass_farm) and
between-class similarity (Bclass_mountG1 and Bclass_mountG2, for mountains; Bclass_
forestG1 and Bclass_forestG2, for forests). The Wclass_farm distribution shows most
feature maps with EMD values close to zero, and over 65% of the feature maps show EMD
values of 0.01. Conversely, Bclass_forestG1 and Bclass_mountG1 distributions tend to fall
towards higher distances, with over 50% of feature maps having EMD value of 0.05.

4.5. Forested Landscapes

Forest landscapes from the AID dataset and their feature maps are depicted in
Figure 13a,b. Filters 11, 15, and 53 depict features at varying grain sizes, yet they rep-
resent discriminative features from an identical forest landscape.
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Figure 14a,b illustrates the similarity distributions for within forest landscape (Wclass_
forest) and forest vs. farm landscapes (Bclass_farmG1 and Bclass_farmG2). The two land-
scape types show distinct EMD similarity distribution with very little overlap. Moreover,
high variance is noticeable in the between-landscape comparison. Feature maps in within-
landscape comparison depict lower EMD scores, with over 60% of features showing
EMD values of 0.00–0.01, while over 70% feature maps in between-landscape comparison
show 0.05 EMD similarity scores. Figure 14c,d compares forest landscapes with moun-
tains. Within-class distribution (i.e., Wclass_forest) shows lower variance and relatively
shorter EMD scores. However, though the distributions depict different shapes, there
tend to be substantial overlap in within-class and between-class (Bclass_mountG1 and
Bclass_mountG2) distributions.
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5. Discussion

A comparison of the Tex-CNN accuracy reports on the test data, as shown in the
confusion matrix (Figure 6), emphasizes the promising potential of textural information in
capturing discriminative patterns. Although the performance of both models is virtually
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similar for farm and forested landscapes, we noticed a dramatic difference in the models’
classification accuracies for mountainous terrain types. Our observation implies that the
higher accuracy for the Tex-CNN prediction is partly attributable to the model’s architec-
ture, which encodes representative features with textural information. The incorporation
of texture features enhances model performance, especially for complex patterns and
datasets [59,75]. As seen in Figure 13, the feature maps display multi-resolution patterns
in the forest landscape types. The feature concatenation method introduced may have
encouraged the CNN to learn both fine and coarse grain spatial patterns [75]. A comparison
of the Tex-CNN classification results (e.g., OA) and that of the state-of-the-art models in
AID is presented in Table 3. The model is highly competitive with existing high-performing
techniques. Per-landscape accuracy shows that our method is either at par or outcom-
petes other methods. It should be emphasized that the model is simple (i.e., small in size)
and computationally efficient compared to other models (e.g., References [34,72]). Thus,
Tex-CNN can be used to extract feature maps with minimum overheard cost.

In Figure 6c,d, it can be observed that classifying landscapes in Sentinel data is
challenging for both models, as they did not perform up to expectation in the first row
of the confusion matrix. Over 90% of the farm landscapes tend to be classified as forest
(i.e., false positive); contrarily, 92% and 79% of forest landscapes are correctly classified by
the Tex-CNN and the classical CNN, respectively. This is partly explained by the relatively
low spatial resolution of Sentinel’s dataset, as well as the data not being part of the training
sample. Visual exploration of feature maps in Sentinel data shows most farm boundaries
disappearing completely in higher layers of the CNN, thus making farm samples appear
as if they contain only vegetation patterns. The absence of boundary-like patterns likely
triggers filter responses, leading to the misclassification of farms as forest. A profound
reduction in misclassification rates, especially for farm landscapes, was achieved by adding
Sentinel data (Figure 6e,f). Thus, presenting models with multimodal data at training time
is likely to improve discriminative learning, while reducing misclassification errors.

The use of feature maps in pattern recognition is borne from the notion that the human
visual system extracts the most relevant structural information from visual scenes in order
to make decisions or characterize them semantically [76]. There is a great deal of analogy
between landscape similarity comparison and assessment of feature maps (dis) similarity
common in computer vision research [10]. CNN feature maps are continuous-valued
data which can avoid classification problems that arise in landscape research owing to
landcover type discretization and artificial boundaries generation [77]. We adopted a
novel approach to compare landscapes via the extraction of feature maps from specific
landscape types. This framework leads to the availability sufficient feature templates
describing a particular landscape and thus enabling robust similarity mapping. The PCA
method resulted in objective selection of feature maps that best represent a given landscape.
Feature map dimensionality reduction through PCA has been proven to not degrade but
further improve the discriminative potential of convolutional features [53]. Figure 7 shows
samples of original images and their corresponding eigen maps. For landscape similarity
comparison, layer-two feature maps were utilized. As can be seen in the figure, layer-two
yields compact and high-resolution feature representations than layer-three. This suggests
that layer-two features may be suitable for similarity assessment, hence our adoption of
the layer’s feature maps.

In Figure 9a,b, mountainous landscapes show distinct differences with farm landscape
types. The EMD values for the within class comparison (Wclass_mount) falls largely on the
left, pointing to shorter distances and hence higher similarity. More than 60% of the feature
maps show EMD values of 0.01. Over 50%, the feature maps between class comparison
EMD values are as high as 0.05. This suggests that there exist significant discriminative
features between these two distinct landscape types. Song et al. [78] provide evidence that,
by using feature map distances, it is possible to select the most discriminative patterns to
represent mountainous terrains. The feature maps within the similar landscape also tend
to depict higher EDM densities, which is an indicator of feature maps clustering [39], and
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high-density (frequency) values imply that a large proportion of feature maps are similar.
Figure 10a–d compares HoG features extracted directly from the original images. The EDM
distributions are somewhat similar to the CNN feature maps, but it can be observed that
the CNN features appear to be slightly sensitive; for example, fewer images in the between-
class comparison fall in EDM of 0–0.01. Moreover, compared to the original image HoG
features, it can be seen that EMD values’ distribution tends to be peakier for within-class
and a little flatter for between-class in the CNN feature comparison. This suggests that our
Tex-CNN features may possess more image descriptors compared to raw image pixels.

When comparing mountains versus forested landscapes, EMD distributions appear to
overlap. This challenge is not unexpected, given the diverse morphology of mountains
in some images, especially given that some mountains contain forest. Furthermore, re-
calling that the model’s performance at predicting mountainous terrains is low, it follows
that feature maps derived for certain input images that record poor scores may be of
lower quality for landscape comparison. This suggests that, if a model is optimized to
predict a particular landscape type with high accuracy, its corresponding feature maps
will be of better discriminative quality and hence can be suitable for mapping landscape
similarity [41].

Farm landscapes turn out to be the most easily discriminated patterns using the
CNN model’s feature maps (see Figure 12a,b). As expected, the within-landscape type
comparison shows smaller EMD values for farm feature maps, with between-landscape
distributions falling towards the right. Additionally, there is very little overlap in the distri-
butions of within- and between-feature map distributions. Higher EMD values suggest
lower similarity scores for landscapes being compared. Moreover, within-class feature
maps exhibit somewhat low variance in EMD values. Over 65% of the Wclass_farm shows
0.01 EMD. This shows higher similarity compared to the farm vs. forest comparison, where
EMD values as large as 0.05 are recorded. The unique vertical and horizontal boundary
features may be among the discriminative patterns the model learns in farm landscapes.
Lower layers of CNN are superior in learning edges, blobs, curves, and fine-grained textu-
ral patterns [12]. This observation emphasizes the high prediction accuracy recorded for
the farm-landscapes type, as shown in the confusion matrix (Figure 6). Murabito et al. [76]
study found that saliency maps, a variant of gradient-based attention maps (i.e., feature
maps), improve pattern detection.

Figure 14a–d depicts within-forest landscape and between landscapes, which consist
of forest vs. farm (e.g., Bclass_farmG1), and forest vs. mountain (e.g., Bclass_mountG1).
Figure 14a,b emphasizes the existence of distinct discriminative features between forest
and farm landscapes, as these two distributions show very little overlap. More importantly,
within-forest landscape (Wclass_forest) distribution shows lower EMD values, suggesting
higher similarity scores. More than 60% of the feature maps have EMD values of 0.00–0.01,
while over 70% of the between-landscape comparison shows 0.05 EMD similarity scores.
However, the Wclass_forest vs. Bclass_mount distributions show overlaps (Figure 14c,d),
though the shape of the distributions suggest that the two landscapes belong to distinctively
different class types. The Kolmogorov–Smirnov test further confirmed that the distributions
are statistically significantly different (p − value < 0.001).

The remote-sensing and spatial-analysis literature has many metrics for comparing
spatial patterns, yet this domain is largely fractured, and sometimes lacks generic toolsets
for comparing continuous valued (i.e., unclassified) image data [7]. Amirshahi [79] pro-
posed extracting HoG and applying histogram intersection kernel to compare feature maps.
Liu et al. [80] also introduced a similarity distribution learning framework, using a CNN
ensemble to incorporate feature uncertainty similarity at training time. The extracted fea-
tures from the trained model are then employed in image retrieval and scene classification.
Given that CNN feature maps are inherently discriminative and can potentially handle
similarity uncertainties, we propose a metric to compare CNN feature maps’ similarity
via the computation of feature EMD. Our approach applies gradient-based computation
to extract discriminative spatial patterns given an input image. The extracted feature
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maps contain local descriptors which are essential for pattern recognition. Utilizing EMD
resolves the problem of histograms’ bin size on similarity scores.

Our proposed metric effectively distinguishes farm landscape types from non-farm
landscapes. Mountainous terrains and forested landscapes are discriminated, as their
distributions are significantly different. A highly sensitive spatial pattern domain metric
may be able to overcome the overlaps seen in forested and mountainous landscapes
distributions. We tested structural similarity and the complex-wavelet structural similarity
metrics which capture spatial information but did not realize impressive results. We point
out that our findings demonstrate the challenging nature of the AID dataset and its potential
suitability for training models; despite containing fewer samples per scene categories,
the images can be described as multi-scale (i.e., mountain features’ size vary within the
same landscape type). Such data can present challenges to CNNs without explicit multi-
resolution encoding [81]. To surmount such a limitation, Li et al. [20] suggested utilizing the
last convolutional layer filters, since these enable the discovery of locally consistent spatial
patterns. However, we chose not to apply these features, since they lack full geometric
invariance, as well as fine-grain textural details [17]. Figure 8 further emphasizes our
claim, as it illustrates the lower spatial resolution of layer-three feature maps. The last layer
(i.e., FC1) encodes structure and global information (e.g., shape). As pointed out earlier,
unlike object recognition, landscape patterns lack definite shapes; hence, features from
this layer may not improve mountain vs. forest discrimination substantially. Furthermore,
given that the FC1 features are 1D vectors, the approach to computing the HoG adopted
cannot be applied. The bag-of-words approach widely used in CBIR [82] could improve
mountain vs. forest distinction, but this approach was not considered in this work, as it is
out of scope.

The low classification accuracy of the models on Sentinel data (see Figure 6c,d) em-
phasizes the potential effects of spatial resolution on models’ performance. Interestingly,
however, the Tex-CNN outperforms the classical CNN, as it shows high classification
accuracy for mountains. The inclusion of texture information may have improved the
model’s performance across scales.

6. Conclusions

The landscape-similarity mapping problem can be formulated as a challenge to detect
repeated patterns, in other words, similar patterns across different locations, as shown in a
study conducted by Lettry et al. [21]. The problem of comparing landscapes can also be
considered in the context of image-retrieval tasks, as demonstrated by Yandex and Lem-
pitsky [53], using convolutional feature maps. Landscape similarity or change-detection
problems may further be cast as image-quality assessment challenges, as demonstrated in
Reference [79]. In this study, we showed that CNN-based features (aka spatial attention
maps) contain discriminative descriptors of image quality and, hence, computing similarity
over feature maps can be an effective and generic way to compare landscapes. Our ap-
proach provides evidence that a generic pattern-comparison metric can be developed from
highly discriminative feature maps capable of mapping diverse landscape types.

The challenge encountered in the mixing of forest and mountain similarity distribu-
tions points to the potential occurrence of false positives when attempting to make search
queries between forests and mountains. The models’ performance being consistently
low for mountains in AID and Sentinel data further emphasizes that scaling of features
represented in feature maps might work for farms and forests but not for mountains.
As mentioned previously, the morphology of the mountain class is highly variable; more-
over, the presence of forest on mountains further complicates discrimination between the
landscapes. In this context, a priori knowledge may help decrease false positives at the time
of query. Moreover, the relatively low CNN classification accuracy for the mountain land-
scapes likely influenced the quality of feature maps derived from convolutional layer filters;
hence, a higher-performing model would be crucial for deriving highly discriminative
patterns relevant for landscape similarity comparison.
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One potential limitation of the proposal stems from the fact that mixed landscape
samples were not considered in model development; widening the sample size to include
scenes that contain a mixture of two or more landcover types could improve the metric’s
performance, especially in discriminating mountains and forests. Such a fuzzy definition
of landscape classes may be more useful for landscape-similarity and/or scene-retrieval ap-
plications in the future, as they more closely align with the complexity of landscapes in the
real world. Moreover, the nested framework (i.e., PCA and HoG, and EMD) computations
may increase the complexity of the proposed metric. Given that what constitutes the best
approach to feature map selection approach remains an open question [57], an innovative
and objective framework to select feature maps to enhance (dis)similarity detection, as
shown by Rui et al. [83] by utilizing feature map separability index, needs future consider-
ation. Additionally, further research needs to consider expanding the number of landscape
types so as to test the robustness and generalizability of the proposed metric. Independent
validation datasets from different sensors, such as Sentinel-2, can be challenging for models
trained on high-resolution aerial imagery; thus, it is essential that future research considers
combining samples of multi-modal datasets for model development. The utilization of
gradient-based CNN feature maps for landscape-change detection also warrants future
research.
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