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Veronika Kopačková-Strnadová 1,* , Lucie Koucká 1 , Jan Jelének 1, Zuzana Lhotáková 2 and Filip Oulehle 1

����������
�������
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Abstract: Remote sensing is one of the modern methods that have significantly developed over the
last two decades and, nowadays, it provides a new means for forest monitoring. High spatial and
temporal resolutions are demanded for the accurate and timely monitoring of forests. In this study,
multi-spectral Unmanned Aerial Vehicle (UAV) images were used to estimate canopy parameters
(definition of crown extent, top, and height, as well as photosynthetic pigment contents). The UAV
images in Green, Red, Red-Edge, and Near infrared (NIR) bands were acquired by Parrot Sequoia
camera over selected sites in two small catchments (Czech Republic) covered dominantly by Norway
spruce monocultures. Individual tree extents, together with tree tops and heights, were derived
from the Canopy Height Model (CHM). In addition, the following were tested: (i) to what extent can
the linear relationship be established between selected vegetation indexes (Normalized Difference
Vegetation Index (NDVI) and NDVIred edge) derived for individual trees and the corresponding
ground truth (e.g., biochemically assessed needle photosynthetic pigment contents) and (ii) whether
needle age selection as a ground truth and crown light conditions affect the validity of linear models.
The results of the conducted statistical analysis show that the two vegetation indexes (NDVI and
NDVIred edge) tested here have the potential to assess photosynthetic pigments in Norway spruce
forests at a semi-quantitative level; however, the needle-age selection as a ground truth was revealed
to be a very important factor. The only usable results were obtained for linear models when using
the second year needle pigment contents as a ground truth. On the other hand, the illumination
conditions of the crown proved to have very little effect on the model’s validity. No study was found
to directly compare these results conducted on coniferous forest stands. This shows that there is a
further need for studies dealing with a quantitative estimation of the biochemical variables of nature
coniferous forests when employing spectral data that were acquired by the UAV platform at a very
high spatial resolution.

Keywords: UAV; Parrot Sequoia multispectral camera; photosynthetic pigments; Norway spruce;
forest; linear models; ground truth; needle age; crown detection

1. Introduction

Forests play a significant role in the Earth’s ecosystems and they contribute greatly
to reducing adverse climate change impacts. They provide a natural environment for
many species of animals and plants, represent a significant carbon sink, and support an
effective hydrological cycle. In addition, forests serve as an important source of timber
and other non-wood materials [1,2]. At the beginning of the 1980s forest health and the
sustainability of their ecosystems became a highly discussed topic for politicians, the public,
and scientists due to the aforementioned functions of forests and the increasing level of
damage they suffer [3].
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In Europe, temperate forests are mainly affected by climate change and air pollu-
tion [4,5]. During the 20th century, the region on the Czech, Polish, and German borders
was influenced by extensive coal mining, which was linked to large emissions of SO2
and NOx from power plants [6,7]. In order to monitor the process of ecosystem recovery
after the reduction in pollution that started in the 1980s and accelerated in the 1990s, the
Geochemical Monitoring network of small catchments (GEOMON) was initiated across
the Czech Republic. Since 1993, when the GEOMON network began, the data that were
collected from observations of these catchments have been used for many studies [7,8]
mainly corresponding to catchment biogeochemistry (e.g., [6,9–13]). The recent study that
was published by Švik et al. [7] supplied the aforementioned research that was based
on field observations using remote sensing methods that have been also employed in
this study.

Remote sensing techniques have been frequently used to study forest areas for multiple
purposes over the last decade. They have been proven to be less costly and time-consuming
alternatives to ground level research [14]. Satellite and aerial imagery have offered an
opportunity to investigate forests at the regional scale, for example, to estimate forest
biomass, monitor forest cover changes, or classify types of biome [15–18]. The use of
airborne multispectral and hyperspectral sensors has led to closer forest observation, such
as the classification of tree species, monitoring forest health, or estimating chlorophyll
content [19–24]. The newly developed Unmanned Aerial Vehicles (UAV) complement the
established remote sensing (RS) methods. UAVs have increased the number of benefits,
such as acquiring extreme high-spatial resolution data, flexibility in usage and over time,
and the capacity to carry various sensors, such as a multispectral camera, to observe
vegetation health [25,26].

Most of the studies use a combination of UAV complemented by a multispectral
sensor to analyse agriculture crops for precision farming (e.g., tomato, vineyard, or wheat
production), where they usually employ Vegetation Indices (VIs), such as the Normalized
Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index
(GNDVI), or the Soil Adjusted Vegetation Index (SAVI), to monitor crop health [27–32].
Authors monitoring vineyards described the use of multispectral and thermal sensors in
combination to obtain additional information about crop water status [33–35].

When assessing the foliage traits of forest trees, it is necessary to take the tree size,
branch geometry, and tree density, respectively, foliage clumping into account [36]. Dealing
with evergreens, particularly conifers, a higher level of complexity emerges as different
needle age generations contribute to the final signal received by the sensor. These might be
the main reasons why, despite the high potential of UAVs, not many studies have dedicated
an analysis of multispectral data for assessing forests. Recently, UAV-based multispectral
sensing has been used for high-throughput monitoring of the photosynthetic activity in a
white spruce (Picea glauca) seedling plantation [37]. A few more studies on forest health
assessment using the UAVs and multispectral cameras have been published so far. Dash
et al. [38] demonstrated the usefulness of such approaches for monitoring physiological
stress in mature plantation trees, even during the early stages of tree stress when using a
non-parametric approach for the qualitative classification. Chianucci et al. [39] used the true
colour images, together with a fixed-wing UAV, to quantify the canopy cover and leaf area
index of beech forest stands. Dash et al. [40] tested the sensitivity of the multispectral image
data time-series that were acquired by the UAV platform and satellite imagery to detect
herbicide-induced stress in a controlled experiment conducted on a mature Pinus radiata
plantation. Other successful qualitative forest classifications have been demonstrated
while using UAVs together with multispectral [41,42] and hyperspectral cameras [43,44]. A
pioneer approach for estimating tree-level attributes and multispectral indices using UAV
in a pine clonal orchard was recently published by Gallardo-Salazar and Pompa-García [45].
All of these studies listed above deal with qualitative forest classifications, so, a need for
quantitative approaches, focusing on forest biochemical variable estimations employing
UAV-based multispectral sensing, is clearly demanded.
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For such quantitative spectral-based approaches, which employ very high-spatial
resolution data, an accurate definition of the extent of individual trees is a crucial task.
The delineation of a tree crown boundary has been studied before and several approaches
to detect individual trees have been published. Lim et al. [46] applied a segmentation
method to the RGB orthoimage and the Canopy Height Model (CHM) that was obtained
by UAV. A similar approach using multispectral data instead was described in Díaz-Varela
et al. [47]. A popular technique is hydrological terrain analysis–watershed algorithm,
where the inverse CHM is delineated by the watershed algorithm, where catchment basins
represent individual trees and holes substitute tree peaks [15,48–50]. Among the recent
methods are the LiDAR point cloud segmentation [51,52], which achieves highly accurate
results [48,53–57] and also approaches that employ deep learning techniques to detect
individual trees [58,59].

This study tested, if a UAV that is equipped with a multispectral camera can be
employed for photosynthetic pigment estimation in coniferous trees. As already described,
when assessing coniferous forests, such factors as tree size and density affect the validity
of estimations of structural forest parameters [36]. Moreover, as different needle age
generations contribute to the final image pixel reflectance, it is still not clear what ground
truth should be optimally used (e.g., [60]). To fill these gaps, two small catchments (part of
the GEOMON network in Czech Republic) inhabited by mainly mature Norway spruce
monocultures were selected as test sites based on their relatively close spatial proximity,
alongside differences in parent material, which significantly influenced nutrient availability
for forest ecosystems. The images from a Multi-spectral Unmanned Aerial Vehicle (UAV)
were acquired over these two sites, and the following topics were researched:

• An accurate definition of the individual tree extents (crown delineation) and derivation
of other parameters, such as tree top and height using the UAV-based multispectral data.

• Testing if a linear relationship can be established between selected vegetation indices
(NDVI and NDVIred edge) that are derived for individual trees and the corresponding
ground truth (e.g., biochemically assessed needle photosynthetic pigment contents).

• Testing whether the needle age selection, as ground truth affects the validity of the
linear models.

• Testing if the tree crown light conditions affect the validity of the linear models.

2. Materials and Methods
2.1. Test Sites

Two test sites representing rural mountainous landscapes in the western part of Bo-
hemia were selected—Lysina (LYS) and Pluhův Bor (PLB) (Figure 1). These two catchments
have been part of the European network—GEOMON established in 1993 to assess changes
in precipitation and stream chemistry after reducing pollution in Eastern Europe. The
selected catchments were heavily affected by acid pollution during the 20th century. Nowa-
days, both sites are part of the Slavkov Forest Protected Landscape Area. The vegetation
cover mostly consists of managed Norway spruce monocultures [10], which are situated
around 800 ma.s.l. The main difference between these two sites is the lithology and soil
type as well as the forest age. Tables 1 and 2 provides detailed catchment characteristics.



Remote Sens. 2021, 13, 705 4 of 26
Remote Sens. 2021, 13, 705 4 of 28 
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Orthophoto of the Czech Republic in the background [61]. 

Table 1. Characteristics of selected catchments: Lysina and Pluhův Bor [10]. 
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Table 2. Tree ages at the two catchments selected in this study. 

Test Site Average Age Min Age Max Age 
LYS 1K 14 12 17 
LYS 2K 16 15 18 
LYS 4K 47 44 53 
PLB 2K 120 109 129 
PLB 3K 72 70 74 
PLB 5K 47 41 50 

2.2. In-situ Ground Truth 
In this study, three tree stands were selected in the LYS catchment (LYS 1K, LYS 2K, 

and LYS 4K) and three stands in the PLB catchment (PLB 2K, PLB 3K, and PLB 5K), 
these stands were the object of previous long-term research, thus the soil conditions 
were known as well as tree height information, which was measured in-situ and 
modelled using the LiDAR data [62]. 

To follow up with the previous research activities, the same trees described in 
Lhotáková et al. [60] were selected at each stand (three trees per stand, in total 18 trees). 
The branch samples were collected by a climber from the sunlit crown part one day 
before the UAV-based data were acquired (August 2018). The needle age was identified 
and three different age classes were sampled: first, second, and a mixed sample of fourth 
year and older needles (hereinafter referred to as 4th year for simplicity) [60]. The needles 
were cooled and immediately transported to the laboratory where they were kept at a 
stable temperature at −20° C until further processing. Photosynthetic 
pigments—chlorophyll a, b and total carotenoids—were extracted in 

Figure 1. Location of the test sites Pluhův Bor and Lysina in the Czech Republic, Europe: (a) the test sites displayed on a
map of the Czech Republic; (b) maps of the Lysina and Pluhův Bor catchments with tree stands highlighted; an Orthophoto
of the Czech Republic in the background [61].

Table 1. Characteristics of selected catchments: Lysina and Pluhův Bor [10].

Site Bedrock Soils Elevation
(m a. s. l.)

Forest
Age (Year

Range)

Spruce
Forest
(ha)

Broadleaf
Forest (ha)

Non-
Forested
Area (ha)

LYS Granite Cambisols, Podzols 880 12–53 27 0.0 0.4

PLB Serpentinite

Magnesic Cambisols,
Stagnic–Magnesic

Cambisols,
Magnesic Gleysols

755 41–129 18 0.0 4.0

Table 2. Tree ages at the two catchments selected in this study.

Test Site Average Age Min Age Max Age

LYS 1K 14 12 17
LYS 2K 16 15 18
LYS 4K 47 44 53
PLB 2K 120 109 129
PLB 3K 72 70 74
PLB 5K 47 41 50

2.2. In-situ Ground Truth

In this study, three tree stands were selected in the LYS catchment (LYS 1K, LYS 2K,
and LYS 4K) and three stands in the PLB catchment (PLB 2K, PLB 3K, and PLB 5K), these
stands were the object of previous long-term research, thus the soil conditions were known
as well as tree height information, which was measured in-situ and modelled using the
LiDAR data [62].

To follow up with the previous research activities, the same trees described in Lhotáková
et al. [60] were selected at each stand (three trees per stand, in total 18 trees). The branch
samples were collected by a climber from the sunlit crown part one day before the UAV-
based data were acquired (August 2018). The needle age was identified and three different
age classes were sampled: first, second, and a mixed sample of fourth year and older
needles (hereinafter referred to as 4th year for simplicity) [60]. The needles were cooled and
immediately transported to the laboratory where they were kept at a stable temperature
at −20 ◦C until further processing. Photosynthetic pigments—chlorophyll a, b and total
carotenoids—were extracted in dimethylformamide following the procedures described in
detail by Porra et al. [63] and then spectrophotometrically determined [64].
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2.3. UAV Data Acquisition
2.3.1. Equipment

In this experiment, an unmanned aerial vehicle DJI Phantom 4 (SZ DJI Technology
Co., Ltd. [65]) was employed (Figure 2b). It is a widely used quadcopter weighing 1380 g
with an RGB camera in 4K (4096 × 2160 px) [66]. The UAV was complemented by a
multispectral camera Parrot Sequoia scanning system (senseFly Inc. [67]). The camera was
specially designed to support vegetation studies; therefore, besides Red and Green bands,
there is a band placed in the Red edge region as well as one band in the Near infrared (NIR)
(Table 3).
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Figure 2. Unmanned Aerial Vehicle (UAV) equipment used in this study: (a) three-dimensional
(3D) models of the mounts designed for the Parrot Sequoia multispectral camera; (b) DJI Phantom 4
quadcopter with attached Parrot Sequoia camera; and, (c) planned flight path in the flylitchi.com
web tool.

Table 3. Overview of a Parrot Sequoia spectral band setting.

Band Name Spectral Range (nm) Central Wavelength (nm)

Green 530–570 550
Red 640–680 660

Red edge (RE) 730–740 735
Near infrared (NIR) 770–810 790

The Parrot Sequoia consists of two parts—the main camera and a sunshine sensor
calibrating the measured spectral radiation by the main sensor. These two parts of the
multispectral camera were attached to the drone by mounts that were designed by the
CGS team (Figure 2a). The 3D models of mounts were created in CAD software. It was
important to make a free space for the GPS sensor to ensure good signal reception. The
holder for the sunshine sensor had to be placed in a manner, so as not to have any contact
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with the propellers (Figure 2a). The mounts were printed using the Prusa i3 3D printer
(Prusa Research a.s. [68]).

2.3.2. Data Acquisition

The RGB and Parrot Sequoia multispectral data were obtained for both test sites.
The flights were made on 6 and 7 August 2018, between 11 am and 3 pm to ensure the
multispectral camera captured the required maximum reflected sunlight and eliminate
shadows. Prior to data acquisition, a flight path was planned in the flylitchi.com web
tool (Figure 2c), which was connected to the litchi android application (VC Technology
Ltd. [69]) controlling the UAV. Areas of 40 × 40 m2 were defined to cover the tree groups
and their surroundings. All of the flight paths covering the area of interest were planned in
a north-south direction and in a way so the parallel scanning lines would reach 70% of the
side overlap in order to ensure errorless image mosaicking when creating photogrammetric
products. The flight height was set up according to the highest terrain point (40–70 m above
ground level) and it was 25–30 m above the treetops. The UAV speed was set at 3.6 km/h to
ensure well-focused images were recorded. Sequences of images were recorded every two
seconds (s) with 95% overlap in the direction of the flight. The resulting spatial resolution
of RGB imagery varied between 1.1–1.9 cm/px and 3.76–6.59 cm/px for multispectral
imagery, respectively, according to flight height.

Regarding multispectral data calibration, images of the calibrated reflectance panel
were acquired before and after each flight. The same routine was used for each flight—the
calibration target (Aironov) was placed on the ground and the UAV was held above the
panel always keeping the same position—the Sun was behind the UAV, so no reflection
and shadow were affecting the panel, as this was recommended by the manufacturer. The
same rules were applied to the other cameras (e.g., [70]).

GPS data from DJI Phantom 4 and Parrot Sequoia camera were used to reference the
resulting orthomosaics into the coordinate system (WGS 84/UTM 33N). The imaging data
(RGB and multispectral bands) were processed in Agisoft Metashape software (Agisoft
LLC [71]), which allowed for orthomosaics (RGB and multispectral) and digital surface
models (DSMs) to be created using the structure from motion method [72]. The multispec-
tral data calibration was automatically made by the Agisoft Metashape software, which
detected the images of the calibrated panel by the QR code in it as described in [73].

2.4. Tree Height, Crown and Top Detection

Tree height detection was based on the Canopy Height Model (CHM) described as
the difference between treetop elevation and the underlying ground-level elevation [74].
In this study, the 5th Digital Elevation Model (DEM) generation (DMR 5G; [61,75]) was
used as a source of ground-level information, while treetop information was obtained
from the digital surface model (DSM) that was obtained from the Parrot Sequoia camera
multispectral images (Seq DSM):

CHM = Seq DSM − DMR 5G (1)

First, the DMR 5G data (original spatial resolution 0.5 m) were resampled to a Seq
DSM spatial resolution of 16–25 cm, and Seq DSM was calibrated by DMR 5G elevation to
obtain proper results. The calibration was performed at each site by extracting the average
heights from the Seq DSM of a clearing or forest path, then it was possible to compare this
height value with the average site altitude derived from the DMR 5G. The elevation of the
Seq DSM was then corrected by this difference.

The following procedure was employed to derive tree tops. Focal statistics was
employed to the CHM raster to get rid of noisy pixels and a new dataset was created
(CHMfoc). The best results were achieved when using the maximum value and a 5 × 5-
pixel window, according to the empirical tests carried out [76]. A window with a smaller
size caused frequent double peak detection. On the other hand, a bigger window did not
identify a sufficient number of tree peaks. The tree tops were detected by identifying the
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local maxima in the CHMfoc raster. The representative pixels for the highest CHMfoc
values were then identified in the original CHM raster, as it was important to keep the
original pixel positions and values and the treetop point layer was derived [49]. Figure 3
shows the tree height detection workflow.
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Figure 3. Workflow used in this study to detect tree height, crown and top.

In order to delineate the tree crowns, the workflow described by Jaakkola et al. [50]
was followed, which used watershed analysis to identify tree crown borders using the
CHM derived from UAV-based laser scanning. First, inverse CHM (iCHM) was created,
where trees were visualized as depressions and treetops represented the lowest points in
the digital elevation model:

iCHM = CHM * (−1) (2)

The iCHM, together with the tree peak layer representing pour points, were used to
compute watershed regions. The watershed analysis showed good results, even in the
case of splitting two or multiple nearby standing trees (Figure 4a). Tree borders in places
with no connection to another tree crown were defined using a height mask (Figure 4b),
more specifically excluding such areas where the CHM altitude was at least 3 m lower
than the actual lowest detected tree. This allowed for the space under the tree crowns to be
removed. Consequently, to only visualise sunlit crown parts convenient for the following
multispectral analyses, the shadow mask was derived by thresholding the Red band of
the multispectral mosaic (Seq Mosaic) and selecting values lower than 0.04 [77]. In the
next step, the height mask was merged with the shadow mask (Figure 4c). The final tree
crown boundaries were obtained by applying the merged mask to the watershed layer
(Figure 4d), as a result the individual tree crowns were extracted.
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Figure 4. An example of tree crown detection (tree peaks visualized by green dots): (a) watersheds
surrounding treetops (white line) split nearby trees—the borders are highlighted in red; DSM on
the background; (b) the height mask (yellow line) cuts one side of the tree crowns in a place with a
high altitude difference (red highlight); (c) the shadow mask (orange line) reduces the dark parts of
tree crowns and completes the tree crown borders; multispectral imagery from the Parrot Sequoia
sensor on the background (false-colour composition: Green, Red, Red edge); and, (d) final result of
tree crown detection.

2.5. Multispectral Data Processing

The Parrot Sequoia camera captures four-band images (Green, Red, Red edge, and Near
infrared), which were specifically designed for vegetation analysis (Table 3). These bands allow
computing, for instance, the Normalized Difference Vegetation Index (NDVI) [78], which
is a universal vegetation index, but also, more importantly, they allow the modification
of NDVI when using the Red edge band instead of the Red band. Red Edge Normalized
Difference Vegetation Index (NDVIred edge) has been used to assess vegetation stress [79],
as the stress directly affects the wavelength position of the red-edge inflexion point on the
electromagnetic spectrum [80,81]. The NDVIred edge index is defined as:

NIR − RE
NIR + RE

(3)

where NIR is the Near infrared band and RE is the Red edge band of the Parrot Sequoia camera.
This study tested whether a linear relationship can be established between these

two popular vegetation indices (VIs) and the ground truth (e.g., biochemically assessed
needle photosynthetic pigment contents). The individual tree crown pixels were delineated
in the multispectral images while using the iCHM-based approach (described in detail
in Section 2.4). Moreover, the UAV-based imaging data provided at exceptionally high
spatial resolution provided an opportunity to test whether the crown geometry and light
conditions affect the crown VI values and the estimation of the photosynthetic pigments
(the validity of the linear models), respectively. Therefore, the intention was to delineate
crown parts that receive higher and lower illumination. First, Principal Component Anal-
ysis (PCA) [82] was employed to reduce the four-band dimensionality into three bands
(PC1–PC3) and display them as an RGB composition. PC1–PC3 were then visually assessed
to check whether it is possible to classify the detected tree crowns according to different
illumination conditions. For simplicity, these three Principal Components (PC1–PC3),
which covered the majority of the information variability, were selected as the input for
the subsequent unsupervised classification employing the Iterative Self-Organizing Data
Analysis Technique (ISODATA; [83]). A preliminary ISODATA classification was initially
set to yield a maximum of four classes; these classes were then recoded into two classes
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based on the visual inspection when using the RGB ortho-photomosaics, which were
provided at the highest spatial resolution for all image products.

It was then possible to define three scenarios for further analysis of the multispectral
data (Figure 5):

• Scenario 1: all of the pixels representing the whole tree crown have been averaged
and used for further statistical analysis.

• Scenario 2: pixels representing the higher-illumination top part of the crown have
been averaged and used for further statistical analysis.

• Scenario 3: pixels that represent the lower-illumination part of the crown have been
averaged and used for further statistical analysis.
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For each scenario, a linear model between the derived VI values and corresponding
ground truth (needle photosynthetic pigment contents defined in the laboratory) was
individually constructed. Different needle age generations contribute to the final image
pixel reflectance; however, it is still not clear what the optimal ground truth age proportion
is, as already mentioned. The recommendation given by [60] was followed to include not
only current (first year) but also older needles as a ground truth and four ground truth
validation age groups were thus created:

• all needles included
• first year needles included
• second year needles included



Remote Sens. 2021, 13, 705 10 of 26

• mixed sample of fourth year and older needles (hereinafter referred to as fourth year
for simplicity)

To evaluate the linear models, the coefficient of determination (R2) was used:

R2 = 1 − SSres

SStot
(4)

where SSres represents the residual sum of squares and SStot represents total sum of
squares [84].

3. Results
3.1. Photosynthetic Pigments

Laboratory analyses of needles that were collected as a ground truth showed typical
chlorophyll and carotenoid values (Table 4) for non-stressed mature Norway spruce trees
in a similar region and at a similar altitude [60,85]. This was despite the fact that forest in
the PLB catchment showed evidence of suppressed growth due to the nutritional stress that
is caused by the extreme chemistry of the underlying bedrock [86]. This further indicated
that photosynthetic pigment content alone provided a somewhat limited indication of
stressed trees. At both of the study sites, almost all trees exhibited the usual accumulation
of chlorophyll and carotenoids in older needles in comparison with the first year needles
(Table 4) [22,85,87–90].

Table 4. Mean contents of photosynthetic pigments based on in-situ needle samples for both catchments.

Catchment All Needles 1st Year Needles 2nd Year Needles 4+ Years Needles

Total Chlorophyll
(µg·cm−2)

Lysina (LYS) 52.580 35.756 56.055 65.399
Pluhův Bor (PLB) 44.425 31.148 43.895 57.172

Chlorophyll a
(µg·cm−2)

Lysina (LYS) 37.939 26.124 40.679 46.637
Pluhův Bor (PLB) 32.071 22.810 31.989 40.672

Chlorophyll b
(µg·cm−2)

Lysina (LYS) 14.641 9.631 15.373 18.761
Pluhův Bor (PLB) 12.354 8.343 11.904 16.500

Carotenoids
(µg·cm−2)

Lysina (LYS) 6.724 4.400 7.018 8.602
Pluhův Bor (PLB) 5.596 3.451 5.284 7.591

3.2. UAV Photogrammetric Products

The UAV data were acquired over three stands in the Lysina catchment (LYS 1K, LYS
2K, and LYS 4K) and three stands in the Pluhův Bor catchment (PLB 2K, PLB 3K, and PLB
5K). At each stand, the DSM, RGB, and multispectral orthomosaics were created (Figure 6).
Table 5 shows the resulting spatial resolution and photogrammetric model errors. The total
errors of the photogrammetric products oscillated around 1 m. The calculated vertical error
of DSMs varied between 0.51 and 0.78 m, and the obtained accuracy was comparable with
the results that were published for an DJI Phantom 4 UAV [91]. The RGB data from DJI
Phantom 4 were then mainly used for a visual control, while the calibrated multispectral
data were used for further statistical assessment.
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Figure 6. Example (LYS 2K) of the UAV survey products used in this study: (a) the RGB orthomosaic obtained from the DJI
camera; (b) the multispectral mosaic derived from the Parrot Sequoia sensor (false-colour composition: Green, Red, Red
edge); and, (c) the digital surface models (DSM) derived from the Parrot Sequoia multispectral data.

Table 5. The resulting spatial resolution and photogrammetric model errors of multispectral and RGB data.

Parrot Sequoia-Multispectral Camera DJI Camera-RGB

Test Site DSM (cm/px)
(Seq DSM)

Orthomosaic
(cm/px)

(Seq Mosaic)
Vertical Error (m) Total Error

(m)
Orthomosaic

(cm/px)
Total Error

(m)

LYS 1K 23.95 5.99 0.78 1.02 2.26 0.77
LYS 2K 16.41 4.09 0.55 0.67 1.12 1.14
LYS 4K 19.64 4.91 0.65 0.94 2.17 0.79
PLB 2K 23.30 5.82 0.51 0.82 2.05 0.71
PLB 3K 24.47 6.11 0.53 0.74 2.36 1.27
PLB 5K 23.00 5.74 0.61 0.72 1.87 0.83

3.3. UAV Tree Height, Crown and Top Detection

The tree characteristics—height, crown, and top—derived from the CHM raster
(Figure 7) were compared with the in-situ measurements that were collected in 2015 [62].
Table 6 summarizes the evaluation statistics. One stand—LYS 1K—showed very high
error; for the other stands, the success rate for the tree top identification varied between
72 and 87%. When checking the in-situ data for LYS 1K, it was found that this stand is
represented by significantly younger trees with the highest trees measured around 12 m.
At this particular stand the trees were very dense and rather short, therefore tree detection
could be problematic. As this stand also obtained very high errors in all other statistics, it
was defined as an outlier and excluded from further statistics. In the case of tree crown
estimation, the comparable success rate achieved varied between 76–94% (Table 6). In two
cases, PLB 3K and PLB 5K, the tree crown detection results showed a higher number of es-
timated numbers than those that were measured in the field. This could be possibly caused
by false crown splitting when using the tree shadow mask in the detection algorithm.
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location. Green dots represent estimated tree peaks, yellow polygons delineate detected tree crowns and red-line polygons
show the three trees at each stand which were sampled for photosynthetic pigment contents. The background image is the
Multispectral Parrot Sequoia mosaic (false-colour composition: Green, Red, Red edge).

Table 6. Comparison between the number of detected tree peaks and crowns (Canopy Height Model (CHM)-estimated) and
in-situ measured data.

Test Site

No. of Trees
Measured In-Situ
(Above Set Height

Mask)

No. of Detected
Tree Peaks Based

on UAV Data

Success Rate of
Detected Tree Tops

(%) (Compared to the
Trees Measured

In-Situ)

No. of Detected
Tree Crowns

Based on UAV
Data

Success Rate of
Detected Tree
Crowns (%)

(Compared to the
Trees Measured

In-Situ)

LYS 1K 177 45 25.42 61 34.46
LYS 2K 67 49 73.13 57 85.07
LYS 4K 25 18 72.00 19 76.00
PLB 2K 34 25 73.53 31 91.18
PLB 3K 15 13 86.66 17 86.67
PLB 5K 32 26 81.25 34 93.75

The box plots showing the distributions of tree height values for all stands—CHM-
derived and in-situ—are displayed in Figure 8. Furthermore, either all trees were validated
(LYS 4K—18 trees and PLB 3K—13 trees) or a comparable yet representative number—in
this case, the 20 tallest trees—were selected to validate the bigger stands (LYS 2K, PLB 5K,
and PLB 2K). The averaged CHM-estimated tree height values were compared with the
in-situ data. It can be concluded that the tree height values that were derived for these
trees from CHM were always higher than the in-situ measurements, the differences ranged
between 1.54–2.36 m (Table 7). These differences are most probably a combination of the
vertical error of the Seq DSM (0.51–0.78 m; Table 5) and tree growth between the years 2015
and 2018. Based on a relationship between the tree diameter at breast height (DBH) and
height [62], the 2015–2018 average height increment was estimated to be 1.1 ± 0.5 m at
Lysina and 0.4 ± 0.2 m at Pluhův Bor. However, the correlation between the estimated
heights of the 20 tallest trees using CHM and in-situ measured data was high (Figure 9),
as the coefficients of determination (R2) obtained were higher than 0.90 in four out of
five cases.
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3.4. Tree Crown Illumination Classes 
The first three Principal Components (PC1–PC3) covered more than 99% of the 

crown spectral variability (Table 8), and they were used as the input for the subsequent 
unsupervised ISODATA classification. The classification results were visually validated 

Figure 8. Tree height distribution visualized by box plots. Blue boxes represent trees detected by the
automatic algorithm from UAV-based CHM data (2018) and orange boxes display the distribution of
the tree heights measured in-situ in 2015.

Table 7. Comparison of average tree heights of the 20 tallest trees for each stand: CHM-estimated
tree heights and the situ measured data.

Test Site Average Tree Top
Height (m)-In-Situ Data

Average Tree Top
Height (m) Based on

the CHM Data

Difference of
Average Tree
Heights (m)

LYS 2K 13.33 14.87 1.54
LYS 4K 24.34 26.62 2.28
PLB 2K 27.08 29.44 2.36
PLB 3K 22.86 24.63 1.77
PLB 5K 23.95 25.70 1.75
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3.4. Tree Crown Illumination Classes

The first three Principal Components (PC1–PC3) covered more than 99% of the crown
spectral variability (Table 8), and they were used as the input for the subsequent unsuper-
vised ISODATA classification. The classification results were visually validated using the
ortho-photomosaics (RGB and multispectral), and the best results were achieved using the
following set up (maximum iterations 30, maximum class standard deviation 1, maximum
class distance 5, and change threshold 5%). It was concluded that the final classification
enabled a differentiation between the higher (Scenario 2) and lower-illuminated (Scenario 3)
parts of a crown. Figure 10a,b give an example of tree No. 22 (PLB 5K stand), showing the
distribution of the two final illumination classes within the tree crown and Figure 10c shows
the mean reflectance derived for the two illumination scenarios per watershed. Clearly,
Scenario 2 contains pixels that receive higher-illumination (overall higher reflectance, sig-
nificantly higher mean, minimum, and maximum values in the Red Edge-NIR region) and
Scenario 3 includes pixels that receive the lower illumination (overall lower reflectance,
significantly lower mean, minimum, and maximum values in the Red Edge-NIR region).
Zhang et al. [92] described the same trend at the leaf level.

Table 8. Principal Component Analysis (PCA) statistics obtained for tree crowns analysed at the two
sites: Lysina (LYS) and Pluhův Bor (PLB) catchments.

LYS

PC Component Eigenvalue Variance Cumulative Variance

1 0.01602 98.6427 98.6427
2 0.00015 0.9405 99.5832
3 0.00006 0.3733 99.9566
4 0.00001 0.0434 100

PLB

PC Component Eigenvalue Variance Cumulative variance

1 0.021 99.0774 99.0774
2 0.00014 0.6383 99.7157
3 0.00005 0.2335 99.9493
4 0.00001 0.0507 100

3.5. Relationship between Selected Vegetation Indexes and the Ground Truth

Both of the tested catchment areas were characterized by comparable NDVIred edge
values; however, a bigger difference in the NDVI values could be seen between the LYS
and PLB catchments (Table 9). In the methodological chapter (Section 2.5), three differ-
ent scenarios were defined to assess the relationship between the spectral indices and
photosynthetic pigments: Scenario 1: the whole crown (all pixels); Scenario 2: the top
and the higher-illuminated part of the tree crown; and, Scenario 3: the lower-illuminated
part of the tree crown. When comparing the results that were obtained for Scenarios 1–3
(Table 9, Figure 11), the NDVI index showed an almost negligible differences among all
three Scenarios, while the NDVIred edge index showed minimally larger differences among
the defined scenarios.

The linear models were built between the VIs (NDVI and NDVIred edge) and the
ground truth (in-situ needle chlorophyll and carotenoid contents). The LYS 1K stand was
identified as an outlier, as mentioned in Section 3.3. Besides the significant differences in
tree age (Table 2), this stand was also characterized by a much higher tree density (field
observations—LAI at LYS 1K = 4.47 in comparison to LYS 2K = 3.58 and LYS 4K = 3.70).
High tree density indicated high VIs values; however, it did not correspond with rather low
values of chlorophyll content. Therefore, LYS 1K was excluded from the further statistics.
As a result, there were nine trees in total from the PLB catchment and six trees from the
LYS catchment that were used for this statistical assessment. Three different scenarios
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were used (Figures 12 and 13), for which the VIs were correlated with the ground truth
(laboratory analysis of Chlorophyll a and b and carotenoids) using four different needle age
groups too—all needles together included, first year needles included, second year needles
included, and four year old needles included, as already described (Tables 10 and 11). A
similar pattern was identified, for both Vis. It can be concluded that the results differ
significantly depending on what needle age group was used as ground truth. The worst
results were obtained when the first year needle group was used (no correlation), followed
by the four year old needle group and all age needle group used as ground truth (very
weak correlation). On the other hand, for both VIs, the best results were obtained when the
second year needle group was used as ground truth.

Remote Sens. 2021, 13, 705 14 of 28 
 

 

using the ortho-photomosaics (RGB and multispectral), and the best results were 
achieved using the following set up (maximum iterations 30, maximum class standard 
deviation 1, maximum class distance 5, and change threshold 5%). It was concluded that 
the final classification enabled a differentiation between the higher (Scenario 2) and 
lower-illuminated (Scenario 3) parts of a crown. Figure 10a,b give an example of tree No. 
22 (PLB 5K stand), showing the distribution of the two final illumination classes within 
the tree crown and Figure 10c shows the mean reflectance derived for the two 
illumination scenarios per watershed. Clearly, Scenario 2 contains pixels that receive 
higher-illumination (overall higher reflectance, significantly higher mean, minimum, 
and maximum values in the Red Edge-NIR region) and Scenario 3 includes pixels that 
receive the lower illumination (overall lower reflectance, significantly lower mean, 
minimum, and maximum values in the Red Edge-NIR region). Zhang et al. [92] 
described the same trend at the leaf level. 

Table 8. Principal Component Analysis (PCA) statistics obtained for tree crowns analysed at the 
two sites: Lysina (LYS) and Pluhův Bor (PLB) catchments. 

LYS 
PC Component Eigenvalue Variance Cumulative Variance 

1 0.01602 98.6427 98.6427 
2 0.00015 0.9405 99.5832 
3 0.00006 0.3733 99.9566 
4 0.00001 0.0434 100 

PLB 
PC Component Eigenvalue Variance Cumulative variance 

1 0.021 99.0774 99.0774 
2 0.00014 0.6383 99.7157 
3 0.00005 0.2335 99.9493 
4 0.00001 0.0507 100 

 
Figure 10. Scheme of Tree No. 22 at the PLB 5K stand showing (a) Parrot Sequoia multispectral 
data in band combination 4-2-1 (NIR, Red, Green) corresponding to Scenario 1; (b) two classes 

Figure 10. Scheme of Tree No. 22 at the PLB 5K stand showing (a) Parrot Sequoia multispectral data
in band combination 4-2-1 (NIR, Red, Green) corresponding to Scenario 1; (b) two classes representing
Scenario 2 (the top higher-illumination part of the crown) and Scenario 3 (the lower-illumination
part of the crown); and, (c) mean reflectance per two illumination scenarios. Vertical bars represent
minimum and maximum values for each band and scenario.

Table 9. Mean values/Standard deviations of vegetation indices based on Sequoia optical data per
evaluated Scenarios for both catchments.

Catchment Scenario 1 Scenario 2 Scenario 3

NDVI
Lysina (LYS) 0.831/0.022 0.832/0.022 0.829/0.023

Pluhův Bor (PLB) 0.782/0.056 0.772/0.055 0.770/0.059

NDVIred edge
Lysina (LYS) 0.138/0.022 0.130/0.019 0.149/0.025

Pluhův Bor (PLB) 0.140/0.019 0.121/0.018 0.146/0.020
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Table 10. Coefficients of determination (R2) for NDVI index and the four ground truth needle
age groups.

Ground Truth Age
Group Parameter Scenario 1 Scenario 2 Scenario 3

All needles

Total chlorophyll 0.33284 0.3132 0.34764
Chlorophyll a 0.31794 0.30137 0.33012
Chlorophyll b 0.36924 0.34138 0.39117
Carotenoids 0.31854 0.2931 0.33969

1st year needles

Total chlorophyll 0.03731 0.04066 0.03605
Chlorophyll a 0.03489 0.03854 0.03333
Chlorophyll b 0.04373 0.04618 0.04336
Carotenoids 0.07389 0.0579 0.08686

2nd year needles

Total chlorophyll 0.4801 0.44667 0.49043
Chlorophyll A 0.47219 0.44141 0.48051
Chlorophyll B 0.49659 0.45638 0.51224
Carotenoids 0.48543 0.44873 0.50073

4th year needles

Total chlorophyll 0.21125 0.19238 0.23391
Chlorophyll a 0.19768 0.18171 0.21753
Chlorophyll b 0.24389 0.21744 0.27382
Carotenoids 0.18607 0.16277 0.21334

Legend:
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Assessing the different illumination crown conditions (Scenarios 1–3) in the case that the
second year needle group was selected as ground truth (Tables 10 and 11, Figures 12 and 13),
the worst results were surprisingly obtained for Scenario 2, where the top crown part
receiving the higher-illumination was assessed, followed by Scenario 1—the whole crown
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case; the best results were obtained for Scenario 3—where the lower illumination part
of the crown was assessed. For the NDVI index, the differences between Scenarios 1–3
are very small, slightly bigger differences could be found for the NDVIred edge index. It
can be concluded that the best results were achieved when the second year needle group
was used as ground truth together with Scenario 3 for both VIs. Using this setting for
the NDVI index, the following R2 were obtained for photosynthetic pigments (Table 10):
total chlorophyll—R2 = 0.49, Chlorophyll a—R2 = 0.48, Chlorophyll b—R2 = 0.51, and
Carotenoids—R2 = 0.50. Comparable results were then also obtained for the NDVIred edge

index (Table 11): total chlorophyll—R2 = 0.46, Chlorophyll a—R2 = 0.45, Chlorophyll
b—R2 = 0.48, and Carotenoids—R2 = 0.52. The NDVI index achieved a slightly higher R2

for Total chlorophyll, Chlorophyll a and b contents, while NDVIred edge showed slightly
better results for Carotenoids.

4. Discussion

Regarding the first part of this analysis—tree height, crown, and top detection—it
can be concluded that the obtained results satisfy the requirements of this study, which
was basically aimed at identifying individual tree crowns and masking the background
and shades. A relatively quick method was employed using Seq DSM and high resolution
DEM (DMR 5G), and reliable results were obtained achieving R2 = 0.90 and higher between
CHM-estimated heights and the in-situ tree measurements for most of the stands, with
the exception of PLB 2K (R2 = 0.7) (Figure 9). The accuracy of tree-height estimation was
comparable or even higher than in the case of Pinus ponderosa forest (R2 = 0.71; [36]), where
the same multispectral camera was used, although with a different type of UAV. The lower
accuracy that was obtained for PLB 2K can be explained by changes happening between
the time the in-situ data were collected (2015) and the UAV data acquisition (2018). In the
field. it was observed that tree cuts were common in this particular forest stand. It will be
interesting to test in the future, if this approach can be further employed or adjusted for
estimating the forest aboveground biomass in a similar way as airborne laser scanning has
been employed [62].

For both VIs a similar R2 was obtained between the index values and the laboratory
analysis of photosynthetic pigments, NDVI showed a slightly higher R2 for chlorophyll
content. while NDVIred edge had the highest R2 for carotenoid content. The Red edge is
commonly used for detecting vegetation stress [93] and, in this study, it was also a slightly
better index to estimate carotenoids—the vegetation stress indicators. The biggest influence
on linear models for both was the selection of the needle age group used as a ground truth.
As summarized in Tables 10 and 11, basically the only usable results were obtained when
using the second year needle pigment contents. The age-dependence of correlation strength
between vegetation indices and measured pigment contents were expectable. However, the
absence of a NDVI and NDVIred edge correlation to chlorophyll and carotenoids for the first
year needles was highly surprising. Such needles were already fully developed at the date
of sampling (August 4-5th), thus the immaturity of needles as a likely reason was excluded.
Moreover, first year needles are routinely and successfully used for taking ground truth for
a broad range of spectroscopic and remote sensing studies at various scales from leaf- to
stand level [89,93–97].

However, in some studies, second year needles, similarly as in this study, also proved
to be the best option for predicting needle traits [60,98], although the physiological and
optical causes have not been elucidated. The second year needles were also successfully
used as ground truth for pigment content estimation from multispectral UAV data in
mature Scots spine (Pinus sylvestris) [96]. The authors justified the selection of the second
year needles, literally as “avoiding non-representative outliers in current and mature nee-
dles” [96]. The absence of correlation between chlorophyll content in first year needles and
vegetation indices could be partly related to other interfering needle traits than chlorophyll
content itself. Although water has absorption features in near- and shortwave infrared
region, it sometimes shows an intercorrelation with chlorophyll content [99] and may
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influence its prediction from leaf spectral signal. The sampling year 2018 was rather dry
and the water content in needles exhibited the opposite (increasing) trend towards older
needles in comparison to previous season 2017 (Appendix A: Figure A2). We hypothesize
that lower water content in 1st year needles could also negatively influence chlorophyll
prediction from NDVI and NDVIred edge. The effect of leaf water content on relationship
among vegetation indices and leaf-level functional traits was observed in crops [100,101],
however not yet confirmed for conifers.

In addition, this study’s results showed that first year needles exhibited the lowest
chlorophyll contents (31–35 ug.cm2, Table 4), and it can be hypothesized that such values,
in combination with coniferous canopy structure, may be below the detection limit of
the Parrot Sequoia multispectral camera. In a maize field case study [102], the authors
concluded that hemispherical-conical reflectance factors, NDVI, and the chlorophyll red-
edge index derived from the Sequoia sensor exhibit bias for high and low reflective surfaces.
In comparison to broadleaf trees, conifer canopy NIR reflectance is generally lower [103]
due to needle clustering within shoots and self-shading [104,105], and it is speculated that
the needle photosynthetic pigment contents of the first year needles were, in this case, too
low to be resolved by the Parrot Sequoia multispectral camera, which has limited spectral
resolution and sensitivity as compared to hyperspectral sensors.

In this study, the crown light condition showed to be much less important than the
needle age selection as a ground truth. Surprisingly the highest R2 for both VIs was
achieved when using the less sunlit, lower part of the crown (Scenario 3), followed by
Scenario 1 (full crown) and then Scenario 2 (the more sun-lit top part of the crown). It
seems that, at such a high spatial resolution, which was achieved when using the UAV
platform, the tree structure and needle/branch position can cause these differences. The
tree branches of the more sun-lit top part of the crown have a different position; they are
shorter and more pointed up, while the less sunlit lower part of the crown has wider and
flatter branches, thus the needles have a better position regarding the Sun, flight, and sensor
geometry, as shown in Figure A3 (Appendix A). Additionally, the more sunlit top part of
the crown is presented by a higher percentage of the first year needles, which were found to
be problematic for the reasons that are discussed above. To date, the effect of heterogeneous
light conditions within the crown on UAV-based leaf traits modelling was tested on broad
leaved apple and pear trees with similar result to those in this study: the full canopy spectra
provided, in some cases, more accurate models than only sunlit pixels [106]. The authors
suggest that including the signal from the whole crown results in a bigger sample size,
which may lead to model improvement. However, it can be concluded that very little
is known about this issue and a complex study on reflectance variations regarding the
tree/crown structure, needle configuration, and light conditions is still needed. It is also
important to emphasize that no study was found to directly compare these results that were
conducted on coniferous forest stands. This shows that building quantitative approaches
employing Multi-spectral Unmanned Aerial Vehicle (UAV) images is still challenging for
coniferous forests, in particular, those of natural origin. The number of the trees studied
in this research was limited (18 trees). Follow up research is needed that would allow for
extending the number of sampled trees to obtain generalizable results, especially for the
regression models.

5. Conclusions

The results show that there is a big potential in using UAVs together with affordable
multispectral cameras as a platform for monitoring forest status at a local scale, however,
at high resolution. Tree crown delineation and derivation of other parameters, such as
tree top and height, which was based on the Canopy Height Model (CHM) obtained
from two data sources—digital surface model derived from the Parrot Sequoia camera
multispectral images (Seq DSM) and high resolution Digital Elevation Model (DEM: DMR
5G), corresponded well with the in-situ data and it was satisfactory for the purposes of this
study. The results of the conducted statistical analysis show that the two tested VIs (NDVI
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and NDVIred edge) have the potential to assess photosynthetic pigments in Norway spruce
forests at a semi-quantitative level; however, the selection of needle-age as a ground truth
was revealed to be a very important factor. The only usable results were obtained for linear
models when using the second year needle pigment contents as a ground truth.

On the other hand, the illumination conditions of the crown showed to have very
little effect on the model’s validity, whereas slightly better results were obtained when
assessing the less sunlit lower part of the crown, which is characterized by wider and more
flat branches. When compared to the whole crown Scenario, the improvement was very
small, and it is proposed that the whole part of the crown be used for simplicity. However,
this effect might have a bigger impact on data with a very high spectral resolution (e.g.,
hyperspectral data), and further systematic research on reflectance variations regarding
the tree/crown structure, needle configuration, and light conditions is still needed. No
study was found, in which it was possible to directly compare these results conducted on
coniferous (Norway spruce) forest stands; this shows that there is also a further need for
studies dealing with a quantitative estimation of the biochemical variables of coniferous
forests when employing spectral data that were acquired at the UAV platform at a very
high spatial resolution.
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Figure A2. Selected biophysical traits of needles at LYS and PLB sites in 2017 (year before sampling) and 2018 (year of 
sampling and UAV data acquisition). (a,b) Leaf mass per area; (c,d) Needle chlorophyll content; (e,f) Needle water content 
per area basis. NAC = needle age class: 1—first year needles, 2—second year needles, 4—four years and older needles. 

 

Figure A3. 3D representation of a solitary growing coniferous tree with a Norway spruce-like 
crown architecture. Side (a) and nadir view (b). 
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60. Lhotáková, Z.; Kopačková-Strnadová, V.; Oulehle, F.; Homolová, L.; Neuwirthová, E.; Švik, M.; Janoutová, R.; Albrechtová, J.
Foliage Biophysical Trait Prediction from Laboratory Spectra in Norway Spruce Is More Affected by Needle Age Than by Site
Soil Conditions. Remote Sens. 2021, 13, 391. [CrossRef]
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Interactive effects of water deficit and nitrogen nutrition on winter wheat. Remote sensing methods for their detection. Agricult.
Water Manag. 2018, 210, 171–184. [CrossRef]

101. Schlemmer, M.R.; Francis, D.D.; Shanahan, J.F.; Schepers, J.S. Remotely measuring chlorophyll content in corn leaves with
differing nitrogen levels and relative water content. Agron. J. 2005, 97, 106–112. [CrossRef]

102. Fawcett, D.; Panigada, C.; Tagliabue, G.; Boschetti, M.; Celesti, M.; Evdokimov, A.; Biriukova, K.; Colombo, R.; Miglietta, F.;
Rascher, U.; et al. Multi-Scale Evaluation of Drone-Based Multispectral Surface Reflectance and Vegetation Indices in Operational
Conditions. Remote Sens. 2020, 12, 514. [CrossRef]

103. Ollinger, S.V. Sources of Variability in Canopy Reflectance and the Convergent Properties of Plants: Tansley Review. New Phytol.
2011, 189, 375–394. [CrossRef]

104. Cescatti, A.; Zorer, R. Structural Acclimation and Radiation Regime of Silver Fir (Abies Alba Mill.) Shoots along a Light Gradient:
Shoot Structure and Radiation Regime. Plant Cell Environ. 2003, 26, 429–442. [CrossRef]
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