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Abstract: In this study, we proposed an adaptive sparse constrained least squares linear spectral
mixture model (SCLS-LSMM) to map wetlands in a sophisticated scene. It includes three procedures:
(1) estimating the abundance based on sparse constrained least squares method with all endmembers
in the spectral library, (2) selecting “active” endmember combinations for each pixel based on
the estimated abundances and (3) estimating abundances based on the linear spectral unmixing
algorithm only with the adaptively selected endmember combinations. The performances of the
proposed SCLS-LSMM on wetland vegetation communities mapping were compared with the
traditional full constrained least squares linear spectral mixture model (FCLS-LSMM) using HJ-1A/B
hyperspectral images. The accuracy assessment results showed that the proposed SCLS-LSMM
obtained a significantly better performance with a systematic error (SE) of –0.014 and a root-mean-
square error (RMSE) of 0.087 for Reed marsh, and a SE of 0.004 and a RMSE of 0.059 for Weedy
meadow, compared with the traditional FCLS-LSMM. The proposed methods improved the unmixing
accuracies of wetlands’ vegetation communities and have the potential to understand the process of
wetlands’ degradation under the impacts of climate changes and permafrost degradation.

Keywords: wetland mapping; adaptive sparse unmixing; hyperspectral image

1. Introduction

Wetlands in high-latitude areas are well-known as an irreplaceable part of the cold
region ecosystems because they regulate climate, replenish ground water, store carbon
and maintain seasonal frozen soil mainly due to the heat insulation and water storage
characteristics of the peat layer [1]. Besides, wetlands in cold regions provide a unique
habitat for many endangered wetland species, such as Grus japonensis and Grus monacha [2].
The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report and
Millennium Ecosystem Assessment Report indicate that the wetlands in high-latitude cold
regions are fragile and unstable because they are nutrient-limited and sensitive to climate
changes and human disturbances [3]. Therefore, identifying the spatial distribution and
heterogeneous pattern of wetland vegetation communities in cold regions is very important
to evaluate the impacts of climate change and permafrost degradation on the wetland
ecosystem health and safety [4].

Satellite remote sensing detecting methods have many advantages in providing multi-
scale, multi-spectral and multi-temporal imagery for mapping wetland dynamics compared
with the traditional field survey [5]. For example, multi-spectral sensors (Landsat multi-
spectral scanner (MSS), Landsat-5 thematic mapper (TM), Landsat-7 enhanced thematic

Remote Sens. 2021, 13, 751. https://doi.org/10.3390/rs13040751 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-6386-4135
https://orcid.org/0000-0003-2394-2597
https://orcid.org/0000-0002-0207-9299
https://doi.org/10.3390/rs13040751
https://doi.org/10.3390/rs13040751
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13040751
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/13/4/751?type=check_update&version=2


Remote Sens. 2021, 13, 751 2 of 12

mapper plus (ETM+), Landsat-8 operational land imager (OLI) and SPOT’s high resolution
visible range instruments (HRV)) have been widely used to discriminate wetlands from
the other land cover types at various scales [6–8]. However, it has been testified that
wetlands are difficult to map only with multi-spectral remote sensing images because of
frequent cloud coverage and spectral heterogeneity of the vegetation communities [9]. Re-
searchers have found that combining multi-source remote sensing data (including optical
and radar imagery) with geographical ancillary data (including topographical features,
soil and landform features) provided an effective method to illustrate the sophisticated
scenes, such as wetlands in seasonally flooding plains [10–12]. Generally, the classification
predictive variables which derive from multi-source sensors and ancillary geographical
data are sufficient to discriminate major land cover types (e.g., marsh, open water, grass,
forest and imperious area, etc.). However, their limited number of spectral bands and
amounts of speckle noise inherited in the optical and radar imagery cannot map wetland
vegetation communities in detail [13]. The commonly used hyperspectral images such as
Earth-Observing One (EO-1) satellite Hyperion and the airborne visible/infrared imaging
spectrometer (AVIRIS) have contiguous narrow wavelength bands which could detect finer
spectral characteristics of the ground vegetation than the other multispectral images [14].
It has been testified to be efficient to identify invasive plant or habitat features in natural
wetland distribution areas [15,16]. Nevertheless, the application of these hyperspectral
images is prevented to some extent by its availability and high cost. Recently, China
environment satellite HJ-1A/B and Sentinel-2 A/B provided a new hyperspectral data
source for earth observation. These hyperspectral data provide a possible approach for
identifying wetland vegetation communities in heterogeneous landscapes.

Much effort has been made on wetland classification algorithms over the past few
decades, including maximum likelihood classification (MLC) [17], spectral angular map-
per (SAM) [18], partial least squares regression (PLSR) [19], support vector machines
(SVMs) [14], random forests (RF) [20], object-based methods [21] and spectral mixture
analysis (SMA) [22]. Among these methods, SMA has been widely utilized to predict the
abundances of wetlands within each pixel of hyperspectral imagery [23]. One common
SMA method, the full constrained least squares linear spectral mixture modelling (FCLS-
LSMM), was widely utilized considering its preciseness in abundances prediction and
convenience in practical application [24]. With FCLS-LSMM, researchers must construct an
endmember spectra dataset to estimate the land cover abundances for the whole image.
However, using the same endmember spectra dataset tends to ignore the spatial hetero-
geneity of the endmembers and therefore, may lead to the overestimation of nonexistent
endmembers.

During the recent years, an improved version of the FCLS-LSMM, the multiple end-
member spectral mixture analysis (MESMA), has been proposed to solve the problem of
the spatial heterogeneity of the endmembers [25,26]. Too many endmembers will make
the MESMA model too sensitive to the endmembers selection scheme and generate un-
stable unmixing results [27]. To solve this problem, land cover maps, height fractions
and spectral similarity indicators have been used as prior knowledge of possible existing
endmembers in previous studies [23,28,29]. However, the classification errors inherited
in the land cover maps, the high cost of height fractions deduction and the subjectivity
of the spectral similarity threshold values’ selection will bring inevitable uncertainties to
these approaches.

An adaptive endmember selection approach based on the sparse constraints was
proposed to generate this a priori probability knowledge in the current study. Under the
limits of Abundance Nonnegative Constraints (ANC) and Abundance Sum to one Con-
straint (ASC) conditions, the sparse unmixing method decreased the number of “active”
endmembers, and the abundances of unlikely existent endmembers are assigned to zero
or approximate zero. In this way, the sparse unmixing method could adaptively select an
endmember and its spectra for each pixel in the high-dimension feature space of hyper-
spectral imagery, and only the selected endmembers are used to estimate the abundances
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of each pixel with the FCLS-LSMM. Taking the wetlands in high-latitude cold regions of
China as a study area, we developed an adaptive endmember selection unmixing model
constrained by sparsity to improve the classification accuracy of the wetlands’ vegetation
communities in a sophisticated scene. Referenced wetland vegetation types generated from
in situ field measurements were utilized to demonstrate the unmixing accuracy and the
appropriateness of the proposed algorithm. The developed method has the potential to
generate accurate and fine-scale wetland mapping data.

2. Study Site and Materials
2.1. Study Site

Zhalong National Nature Reserve (ZNNR) lies in the Northeast of the Songnen Plain,
China (Figure 1). The wetlands in the ZNNR connect with the Wuyuer River and Shuyang
River. The Ramsar Convention has nominated ZNNR as a “Wetland of International
Importance” since 1992, as it plays important roles in protecting the endangered waterfowls,
particularly the Grus japonensis. ZNNR is located at the continental monsoon climate zone,
the average annual temperature is 3.9 ◦C and the annual precipitation is 402.7 mm. The
seasonal frozen soil is widely distributed in this area, the ecosystem of ZNNR is quite
varying and the vegetation, such as the aquatic vegetation and wet meadow, always exhibit
similar spectral characteristics on the multi-spectral satellite imagery. Our previous studies
have detected the wetland environment dynamics of the ZNNR, including the changes
of vegetation communities and the degradation of habitat quality. However, a finer scale
wetland vegetation community’s classification map derived from hyperspectral images
with fine temporal and spatial resolution is among the first attempts.

Figure 1. Location of the Zhalong National Nature Reserve (ZNNR).

2.2. Materials

The hyperspectral images which derived from China environment 1A series satellite
(HJ-1A) hyperspectral Imaging Radiometer (HSI) sensor and the multispectral images from
China environment 1B series satellite (HJ-1B) charge coupled device (CCD) sensor were
used to produce the fine-scale wetland maps. The HJ-1A HSI hyperspectral sensor includes
110 bands which range from 0.459 to 0.956 um, while the HJ-1B CCD sensor has four bands
ranging from 0.43 to 0.90 um. The HSI hyperspectral sensor has a spatial resolution of
100 m with a 50 km width view, while the CCD multispectral sensor has a 30 m spatial
resolution with a 360 km width view. In the current study, one scene of each the HSI image
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(path/row: 120/27) and CCD image (path/row: 120/27) observed on September 9 2015 in
the Zhalong NNR was utilized. Both of the HJ-1A HSI and HJ-1B CCD images could be
downloaded from the China Center for Resource Satellite Data and Applications (CRESDA)
(http://218.247.138.121/).

Seventy ground control points collected from 1:50,000 digital topographic maps were
used to calibrate the images. The root-mean-square errors (RMSE) of the calibrated pro-
cedure are less than 0.5. The digital number (DN) values of the georeferenced images
were atmospheric corrected and converted to the top-of-atmosphere reflectance by the fast
line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) toolbox embedded in
the environment for visualizing images (ENVI) 5.1 software. The adaptive intensity-hue-
saturation (AIHS) algorithm was used to blend multispectral CCD and hyperspectral HSI
imagery to produce the fusion imagery with both fine spatial and spectral resolution [30].
During the fusion process, the hyperspectral bands were integrated into groups, and the
hyperspectral bands of each integrated group were overlapped by the corresponding mul-
tispectral CCD bands. Therefore, we utilized a stepwise fusion strategy to assemble one
multispectral CCD band with a group of hyperspectral bands.

We constructed a classification system which is suitable for typical freshwater marsh
wetlands in northeast China and subdivides the land cover types in this region into 9
classes, including Reed marsh, Carex marsh, Grassy meadow, Weedy meadow, Dry land,
paddy field, Saline and alkaline land, impervious and open water. The detailed descriptions
of the 9 land cover types are shown in Table 1. The spectral library of the 9 endmembers is
built directly from the field survey synchronized with the derivation of the HJ-1 remote
sensing images using the field portable spectroradiometers (SVC HR-1024i) (Figure 2).
Spectra measurements were repeatedly conducted nine times for each endmember and
the averaged values for each endmember were finally utilized to construct the references
spectra library.

Table 1. The description of different land covers in the Zhalong NNR.

Land Cover Types Vegetation Communities Description

Marsh Reed marsh
Mainly constituted by Gramineae plants with high biomass and
canopy height, including Phragmites communis, Typha angustifolia,

Zizania caduciflora, etc.

Carex marsh
Occupied by Cyperaceae plants with relatively low canopy

height, including Carex pseudocuraica, Carex pseudocuraica and
Carex appendiculata.

Meadow Weedy meadow
Dominated by mesophytes vegetation, including

Artemisia latifolia, Stipa baicalensis, Calamagrostis epigioes and
Heteropappus altaicus, etc.

Grassy meadow
Mainly composed by xerophytes and intermediate xero-phytes

vegetations, including Leymus chinensis, Kalimeris integrifolia and
Arundinella hirta, etc.

Cultivated land Dry land
Paddy field

Cultivated crops, dominated by Glycine max and Zea mays.
Cultivated crops, dominated by Oryza sativa L.

Impervious Including residential area and county road.
Open water Permanent open water, including lakes, rivers and ponds.

http://218.247.138.121/
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Figure 2. The field gauged spectral curves of four typical vegetation communities.

3. Method

As is shown in Figure 3, the sparse constrained least squares linear spectral mixture
model (SCLS-LSMM) includes three steps: (1) obtains the HJ-1A/B hyperspectral images
and constructs an endmember spectral library based on field gauged spectra for endmem-
bers, (2) adaptively selects “active” endmember combinations for each pixel based on prior
knowledge of the abundances using the sparse constrained least squares method and (3)
estimates abundances for each pixel based on the linear spectral mixture model algorithm
only with the adaptively selected endmember combinations.

Figure 3. Procedure of the sparse constrained least square linear spectral mixture model.
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3.1. Adaptive Endmembers Selection Based on Sparsity Constrained Method

In a complex scene such as the wetland distribution area, the actual number and type
of endmembers in each pixel of the image are much smaller than that of endmembers in
the whole scene, which was defined as sparsity [31]. Although with a large endmembers’
spectral library, the sparse unmixing regulates that only a few of endmembers could be
included in the following unmixing procedure. The general unmixing model can be written
as follows:

y = Ax + n (1)

where y is a matrix gathering spectral feature values of all the pixels in the hyperspectral
image. A signifies a spectral library which contains endmembers’ signature with 110 hyper-
spectral bands, x is the matrix gathering all the abundances coefficients to be predicted for
all pixels in the hyperspectral image and n represents noise. Since only a few endmember
signatures in the spectral library could be included in the following unmixing procedure,
the estimated x would contain many zero values which are unlikely to exist in the specific
pixel. In order to predict the abundance x, the objective function and constraint conditions
could be demonstrated as follows:

min
x
||Ax− y||2F + λx2, x ≥ 0,

m

∑
i=1
|xi| = 1 (2)

where x ≥ 0 means the non-negative constraint of the abundance vector (abundance

nonnegative constraints, ANC), while
m
∑

i=1
|xi| = 1 indicates the sum of the abundance vector

is the constraint of “1” (abundance sum to one constraints, ASC). ||X||F ≡
√

trace(XXT)
is the Frobenius norm. The regularization parameter λ > 0 is utilized to coordinate the two
terms in the objective function, and ||x ||2 represents the L2 norm. Although L1 and L1/2
have also been used in the sparse unmixing to solve this linear convex problem [32], we
conducted the sparse unmixing with L2 norm considering the L2 norm could enforce
joint sparsity to all pixels [33]. The sparse unmixing algorithm of L2 norm is solved by
integrating the alternative direction method of multipliers (ADMM) algorithm [34]. During
the process of sparse unmixing, the constraints of sparsity regulate the abundances of
nonexistent endmembers equal to or lower than 0. Through setting a threshold manually
to seek the “active” endmembers, all endmembers with less than this value of abundances
are discarded. Finally, the FCLS-LSMM method could be used to inverse the abundances
according to the adaptively selected endmembers and their spectrum.

3.2. Abundance Inversion Based on Linear Spectral Mixture Model

The least square linear spectral mixture model was used to calculate the abundances
based on the adaptively selected endmembers for each pixel in the entire image, and the
unmixing formula can be expressed as follows:

yi =
M

∑
m=1

Ci,mxm + ni,
M

∑
m=1

xm = 1·x ≥ 0 (3)

where yi is the spectral signature of a mixed pixel at band i, Ci,m is the spectral signature
of the mth endmember at the band i, xm indicates the corresponding abundance value
of the mth endmember and noise ni represents the error term of band i. Traditionally,
the endmember library M should generally include all the collected endmembers in the
scene, however, only the adaptive selected endmembers based on the sparsity constrained
method were used to inverse the abundance with the FCLS-LSMM method. In other words,
various “active” endmembers were utilized to perform the linear spectral unmixing for
each pixel, while the nonexistent endmembers’ signatures were removed from the dynamic
endmember spectra matrix. Therefore, the proposed method could prevent overestimating
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the abundances of nonexistent endmembers in the complex scene and has the potential to
improve the abundances’ inversion accuracy.

3.3. The Accuracy Evaluations of Two LSMMs

We also performed FCLS-LSMM using all endmembers in the spectral library with
the support of ENVI 5.3 software in order to compare the performance of the traditional
unmixing model with SCLS-LSMM. Vegetation communities and fractional coverage
recoded by field survey were used to assess the unmixing accuracy of the FCLS-LSMM
and SCLS-LSMM algorithms. We also randomly sampled 50 homogeneous testing plots
along one transect stretched across the Zhalong NNR through field survey at the same
time as the hyperspectral images’ derivation. The sampling sites were spatially scattered
to avoid the auto-correlation issues, and the interval of the field works were above 100 m.
The coordinates of each plot were recorded by the handheld Trimble GEO 7 GPS receivers
with centimeter level positioning accuracy. The size of the plot was 30 × 30 m2, and each
plot was made of five quadrants with a size of 1 × 1 m2. Five quadrants were distributed
systematically throughout each plot. Assign one quadrant at the crossing point of two
diagonals in a plot and locate the other four quadrants at equal distance to the crossing point
along the diagonals. More than 3 photos were taken of each quadrant by the fisheye camera,
and the fractional vegetation covers were extracted from the photos by visual interpretation.
The calculated fractional vegetation covers of five quadrants were averaged to represent the
value of each plot center. The abundances of different wetland vegetation types extracted
by the FCLS-LSMM and SCLS-LSMM were examined respectively, by the abundances
calculated from 50 testing plots. The systematic error (SE) and root-mean-square error
(RMSE) were utilized to demonstrate the accuracies of abundances’ estimation. Specifically,
RMSE indicates the relative estimated errors of different land cover abundances, while SE
represents the bias, signified by under-estimation or over-estimation.

SE =
∑N

i=1(Xi −Yi)

N
(4)

RMSE =

√
∑N

i=1 (Xi −Yi)
2

N
(5)

where Xi represents the estimated value of the ith sample, Yi represents the verification
value of the ith sample and N is the number of sample plots.

4. Results
4.1. Classification Results Based on SCLS-LSMM

The abundances of various land cover classes were obtained from the HJ-1A/B hy-
perspectral images based on the proposed SCLS-LSMM and traditional FCLS-LSMM. The
classification results of the two algorithms were determined according to the land cover
class with the highest abundances (Figure 4a, b). As we can see from the Figure 4b, Reed
marsh is mainly located in the core area of the ZNNR, and it accounts for 80% of the
total area of the reserve. Carex marsh mainly distributed surrounding the lakes and the
river bench, and generally had the maximum water depth beneath the wetland vegetation
canopy. Most Grassy meadow concentrated on the northeast of the Wuyuer River, which as-
sociated with areas of high relief. The weed meadow, which accounts for a small part of the
Zhalong NNR, mainly disperses at the transitional zone between marsh wetlands and up-
lands. The spatial distributions of four wetland classes extracted by the proposed method
are entirely consistent with its ecological niches. In order to evaluate the unmixing accuracy
of main vegetation communities in the wetlands, we compare the proposed SCLS-LSMM
algorithm with the traditional FCLS-LSMM algorithm in the following paragraph.
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Figure 4. Different land cover maps derived from the full constrained least squares linear spectral
mixture model (FCLS-LSMM) (a), and the sparse constrained least squares linear spectral mixture
model (SCLS-LSMM) (b).

4.2. Accuracy Assessment and Comparative Analysis

The accuracy assessment comparisons between SCLS-LSMM and traditional FCLS-
LSMM algorithms were shown in Table 2. Generally, accuracy assessment results indicated
that the performance of the SCLS-LSMM is better than that of the FCLS-LSMM for main
vegetation communities in the Zhalong Wetlands. Specifically, the performance of the
traditional FCLS-LSMM was worse for Reed marsh, with an RMSE of 0.169 and SE of 0.053,
which are significantly higher than that of the proposed SCLS-LSMM. Further analysis
indicated that the FCLS-LSMM performed a severe over-estimation for Reed marsh with a
significantly higher absolute value of SE (0.053 vs. –0.014).

Table 2. Accuracy assessment of vegetation abundances with the proposed SCLS-LSMM and traditional FCLS-LSMM. SE is
the systematic error, while RMSE is the root-mean-square error.

Vegetation Communities Accuracy
Indicators SCLS-LSMM FCLS-LSMM F Significances

Reed SE –0.014 0.053 11.14 0.001 **

marsh RMSE 0.087 0.169 8.045 0.006 **

Carex SE –0.002 –0.007 0.061 0.805
marsh RMSE 0.097 0.144 1.836 0.178
Grassy SE 0.003 –0.014 0.791 0.376

meadow RMSE 0.091 0.138 1.749 0.189
Weedy SE –0.004 –0.043 5.964 0.016 *

meadow RMSE 0.059 0.130 6.298 0.014 *

* Significant at the 95% significance level. ** Significant at the 99% significance level.

As we can see from Figure 4a, the Reed marsh in the east of the Zhalong wetlands
has been overestimated by the FCLS-LSMM algorithm. When compared to the Weedy
meadow, the SCLS-LSMM method also achieved significantly higher accuracies, with a
lower SE value (–0.004 vs. –0.043) and RMSE value (0.059 vs. 0.130). For Carex marsh
and Grassy marsh, the performance of the proposed SCLS-LSMM and the traditional
FCLS-LSMM was similar, and the proposed SCLS-LSMM performed slightly better than
the traditional FCLS-LSMM. We also produced a scatter plot based on 50 randomly selected
samples to demonstrate the coherence between the modeled and referenced abundances
of main vegetation communities (Figure 5). The scatter plot testified that the proposed
SCLS-LSMM performed better than the traditional FCLS-LSMM with higher values of
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coefficient of determination (R2) and lower values of root-mean-square error (RMSE) for
the four main vegetation communities. To summarize, the proposed SCLS-LSMM could
discriminate Reed marsh from the other vegetation communities and improved both the
unmixing accuracies of the main vegetation communities and the detail level of the wetland
classification in ZNNR.

Figure 5. Comparison between the referenced abundances and the modeled abundances derived
from the sparse constrained least squares linear spectral mixture model (SCLS-LSMM) for (a) Reed
marsh, (b), Carex marsh, (c) Grassy meadow and (d) Weedy meadow.

5. Discussion

The current study provided detailed spatial distribution data for the typical fresh-
water marsh wetlands within our study area of Zhalong NNR, Northeast of China, with
minimal preprocessing procedure and manual manipulation. To the best of our knowledge,
this is among the first attempt to map the wetlands’ vegetation communities in such a
sophisticated scene. Therefore, it brings novel insights into detailed wetland vegetation
classification, and provided an efficient tool for monitoring of sub-pixel level wetland
dynamics. Unlike the other upland cover types, which have been mapped and monitored
in great numbers and frequencies, the spatial data of wetland vegetation communities are
scarce for most of the regions due to their inaccessible geographical locations and similar
spectral characteristics. This limitation has inhibited exploration of questions related to
the degradation and succession process of wetland vegetation under the influences of
water shortage pressures which occurred in most of the wetland regions in China at the
current time [35]. Our proposed method could be used to identify the wetlands’ vege-
tation communities. When integrated with hydrological situation data, these data offer
opportunities to investigate the relationship between hydrological processes and the spatial
distribution of the wetland vegetation species [36]. In addition, the detailed data of wetland
vegetation communities also facilitate the studies on the suitability and the ecological water
requirements of the endangered waterfowls.

Many studies have testified that there is an advantage of hyperspectral images to
map land cover compared with the optical multi-spectral images, especially to recognize
vegetation communities with the similar spectral signature in a sophisticated scene such
as the wetland distributed area [14]. The main wetlands in the Zhalong NNR are Reed
marsh, which is a kind of emergent vegetation with permanent or seasonal flooding. Many
previous studies integrated multi-spectral optical images with the multi-temporal synthetic
aperture radar (SAR) images to distinguish marsh from the other land cover types [37,38].
However, these studies could not distinguish Reed marsh from the other wetland veg-
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etation communities due to their similar spectral characteristics with the Carex marsh
and meadow in the flooding period. In contrast, the image fusion between fine spatial
resolution HJ-1B satellite images and hyperspectral resolution HJ-1A satellite images pro-
vides feasibility for distinguishing the spatial distributions of different aquatic vegetation
communities. Hundreds of narrow, continuous bands of the hyperspectral images could
help us to discriminate Reed marsh from the other aquatic vegetation communities. The
spectral profiles of the Reed marsh, Carex marsh, Grassy meadow and Weedy meadow
showed significant differences from the spectral curves of the hyperspectral data, especially
for the spectrum from red to near-infrared bands (Figure 2). The hyperspectral data provide
the possibility to discriminate the Reed marsh from the other vegetation communities in the
Zhalong wetlands. We noticed that accurate spectral calibrations of hyperspectral imaging
data are necessary to be achieved in order to make such quantitative and precise appli-
cation. The artifact triggered by the shift of center wavelength is important for accurate
spectral calibration. Therefore, we would further evaluate the influences of these artifacts
on the wetland classification.

Spectral unmixing is one of the most commonly used algorithms for vegetation
abundances’ estimation based on hyperspectral images. Constructing the endmember
library and defining the spectral signatures for each endmember plays an important
role during the process of spectral unmixing. The objective of our proposed SCLS-LSMM
algorithm is to adaptively select the proper endmembers combination for spectral unmixing
based on sparsity constraints for each pixel. Through decreasing the occurrence probability
of the nonexistent endmember, the SCLS-LSMM improved the abundance estimation
accuracies of different wetland vegetation communities in a sophisticated scene. The
comparisons between simulated and verified abundances of different wetland vegetation
communities derived from SCLS-LSMM and FCLS-LSMM showed that the proposed SCLS-
LSMM model improved the accuracies of the wetland vegetation abundances compared
with the traditional FCLS-LSMM (Table 2 and Figure 5). This was due to the different
endmembers’ selection modes. The traditional FCLS-LSMM algorithm applied fixed
endmember combinations to calculate the abundances for each pixel in the current scene.
Due to the high spatial heterogeneity of the image pixel in complex scenes, the inclusion of
the fixed endmember combination usually leads to the incorrect endmembers. SCLS-LSMM
could adaptively select the potential endmembers to calculate the wetlands’ abundances
for each pixel based on the sparsity constraints. Therefore, the proposed method avoids
the impacts of nonexistent endmembers on the spectral unmixing accuracies and improves
the wetland classification accuracies in the sophisticated scene.

6. Conclusions

This study developed an adaptive endmember selection method based on sparsity to
resolve the problems of spatial variability of the endmembers’ spectra. The performance
of the proposed SCLS-LSMM algorithm was compared with the traditional FCLS-LSMM,
and the feasibility and limit conditions of the proposed algorithm were quantitatively
assessed and discussed in typical marsh wetlands of cold regions. The main conclusions
are as follows: (1) The combinations of hyperspectral remote sensing imagery with the
SCLS-LSMM algorithm have the potential to distinguish the marsh wetland vegetation
communities. The high spectral resolutions of the HJ-1A hyperspectral remote sensing
images could discriminate Reed marsh from the other vegetation communities in the
wetlands. (2) The proposed SCLS-LSMM algorithm could adaptively select the “active”
endmembers and their signatures. Therefore, only these “active” endmembers were utilized
to estimate the abundances of the wetlands’ vegetation communities, which effectively
relieve the problems of spatial heterogeneity of endmembers in a sophisticated scene.
(3) Compared with the traditional FCLS-LSMM algorithm, the SCLS-LSMM algorithm
improved the unmixing accuracies of Reed marsh significantly. The lower SE and RMSE
for four different wetland vegetation communities signified that the proposed SCLS-LSMM
algorithm improved the unmixing accuracies of the typical freshwater marsh wetlands.
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