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Abstract: Simultaneous Localization and Mapping (SLAM) has always been the focus of the robot
navigation for many decades and becomes a research hotspot in recent years. Because a SLAM
system based on vision sensor is vulnerable to environment illumination and texture, the problem of
initial scale ambiguity still exists in a monocular SLAM system. The fusion of a monocular camera
and an inertial measurement unit (IMU) can effectively solve the scale blur problem, improve the
robustness of the system, and achieve higher positioning accuracy. Based on a monocular visual-
inertial navigation system (VINS-mono), a state-of-the-art fusion performance of monocular vision
and IMU, this paper designs a new initialization scheme that can calculate the acceleration bias as a
variable during the initialization process so that it can be applied to low-cost IMU sensors. Besides,
in order to obtain better initialization accuracy, visual matching positioning method based on feature
point is used to assist the initialization process. After the initialization process, it switches to optical
flow tracking visual positioning mode to reduce the calculation complexity. By using the proposed
method, the advantages of feature point method and optical flow method can be fused. This paper,
the first one to use both the feature point method and optical flow method, has better performance in
the comprehensive performance of positioning accuracy and robustness under the low-cost sensors.
Through experiments conducted with the EuRoc dataset and campus environment, the results show
that the initial values obtained through the initialization process can be efficiently used for launching
nonlinear visual-inertial state estimator and positioning accuracy of the improved VINS-mono has
been improved by about 10% than VINS-mono.

Keywords: IMU; monocular camera; sensor fusion; SLAM; VINS

1. Introduction

With the fast development of science and technology, the automation in industry is
being improved gradually. Big developments have been made in mobile robotics since it
involves automation, computer science, artificial intelligence, and so on. Simultaneous
Localization and Mapping (SLAM) has always been the focus of the robot navigation for
many decades; SLAM is the basic and necessary factor for mobile robot to realize location
and obstacle avoidance. It means that moving objects only depend on the sensors they
carry to locate themselves in the process of motion and map the surrounding environment
at the same time. Because cameras are cheaper, smaller, and more informative than laser
sensors, vision-based SLAM (V-SLAM) technology has become a research hotspot [1,2].

However, relying only on monocular camera information to locate a mobile robot
in navigation creates a problem of scale ambiguity, and the true length of the trajectory
cannot be obtained. This is the scale ambiguity in monocular SLAM, which limits extensive
application. RGB-D camera can obtain color image and depth image at the same time, but
its measurement distance is limited and contains too much noise [3]. A two-dimensional
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laser scanner is widely used in indoor positioning, but it contains too little information to
perform complex tasks. Three-dimensional laser scanners are not widely used because of
its high price. In order to solve this defect, more and more solutions tend to use the sensor
fusion method, making use of the different characteristics of data acquired by sensors to
complement each sensor’s advantages and achieve better results [4,5]. In different sensor
modes, the combination of a monocular camera and an IMU has good robustness and low
cost, so this combination is a potential solution.

SLAM technology, which combines vision and an IMU, is also called a Visual-Inertial
Navigation System (VINS) [6]. The camera provides abundant environmental information
for motion recovery and the identification of visited sites. However, the IMU sensor
provides its own motion state information, which can restore the scale information for
monocular vision, estimate the gravity direction, and provide visual absolute pitch and
rolling information. The complementary nature of the two components makes them obtain
higher accuracy and better robustness for the system.

The representative work of vision-based SLAM includes Parallel Tracking and Map-
ping (PATM) [7], Fast semi-direct monocular visual odometry (SVO) [8], Large-Scale Direct
monocular SLAM (LSD-SLAM) [9], and ORB-SLAM [10]. Liu et al. [11–14] gave a detailed
overview of the existing work. This paper also summarizes the current classic visual SLAM
scheme as shown in Table 1. This work focuses on the research status of monocular vision
and IMU fusion. The easiest way to combine monocular vision with an IMU is loose
coupling [15,16], which treats an IMU as a separate module to assist in visually solving the
results of structure from motion. The loosely coupled method is mainly produced with
an Extended Kalman Filter (EKF) algorithm; that is, the IMU data are used for state esti-
mation, and the pose calculated by the monocular vision is updated. The state estimation
algorithms based on the tight coupling method are the EKF algorithm [17–19] and the
graph optimization algorithm [20–23]. The tight coupling method is a joint optimization of
the raw data obtained by the IMU and the monocular camera. The Multi-State Constraint
Kalman Filter (MSCKF) [17] scheme is a better method based on the EKF method, which
maintains several previous camera poses and uses the same feature points for multi-view
projection to form a multi-constrained update. The optimal method based on bundle
adjustment is used to optimize all the variables to obtain the optimal solution. Because an
iterative solution to nonlinear systems requires a large amount of computing resources, it is
difficult to achieve a real-time solution with a platform of limited computing resources. In
order to ensure the consistency of the algorithm complexity of the pose estimation, sliding
window filtering is usually used [21–23].

In practice, the measurement frequency of an IMU is generally 100–1000 Hz, which
is much higher than the camera shooting frequency. This can lead to more complicated
state estimation problems. To this end, the most straightforward solution is to use the EKF
method to estimate the state using IMU measurements [15,16] and then use the camera
data to update the state prediction values.

Another method is the use of pre-integration theory, which appears in the framework
of graph optimization, in order to avoid repeating the integration of IMU data and reducing
the amount of calculation. This theory was first proposed by Lupton [24], and it uses the
Euler angle to parameterize the rotation error. An on-manifold rotation formulation for
IMU-pre-integration was developed by Shen et al. [20], who further derived the covariance
propagation using continuous-time IMU error state dynamics. However, this formulation
does not consider the random walk error in the IMU measurement process. Forster [25]
further completed the theory and increased the correction of the IMU random walk bias.
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Table 1. Visual Simultaneous Localization and Mapping (SLAM) scheme.

Scheme Name Release Time Sensor Form Characteristic

MonoSLAM [26] 2007 Monocular First real-time visual SLAM, EKF+ sparse corners
PATM [7] 2007 Monocular Keyframe +BA, First optimized for backend

DTAM [27] 2011 Monocular Direct method, monocular dense map, requires GPU
SVO [8] 2014 Monocular Sparse direct method, only VO

DSO [28] 2016 Monocular direct method, the current best direct method
LSD-SLAM [9] 2014 Monocular Direct method + semi-dense map

ORB-SLAM [10] 2015 Monocular ORB feature point cloud + three thread structure

The integration of IMU into monocular SLAM will make a system more complicated,
attracting many new problems, including different sensor time synchronization problems,
initialization problems, data reception asynchronous problems, and nonlinear optimization.
At present, the research on the positioning and navigation system based on monocular
camera and IMU fusion has achieved some results, as shown in Table 2.

Table 2. Visual-inertial navigation system (VINS) scheme for visual inertial measurement unit (IMU)
fusion.

Scheme Name Release Time Sensor Form Characteristic

ROVIO [16] 2015 Monocular+IMU VIO Based on EKF
OKVIS [19] 2015 Binocular+IMU Optimized Key Frame VIO

VINS-mono [29] 2017 Monocular+IMU Optimized Key Frame VI-SLAM

VINS-fusion [30] 2019 (Mono+IMU; Stereo;
Stereo+IMU) Optimized Key Frame VI-SLAM

Based on a monocular visual-inertial navigation system (VINS-mono), a state-of-the-
art fusion performance of monocular vision and IMU, this paper designs a new initialization
scheme that can calculate the acceleration bias as a variable during the initialization process
so that it can be applied to low-cost IMU sensors. Besides, in order to obtain better
initialization accuracy, visual matching positioning method based on feature point method
is used to assist the initialization process. After the initialization process, it switches to
optical flow tracking visual positioning mode to reduce the computational complexity. By
using the above method, the advantages of feature point method and optical flow method
can be fused, and this scheme has better performance in the comprehensive performance of
positioning accuracy and robustness under the low-cost sensors. Through experiments and
analysis with scenarios in the EuRoc dataset and campus environment, the results show that
the initial values obtained through this process can efficiently be used to launch nonlinear
visual-inertial state estimator and positioning accuracy of the improved VINS-mono has
been improved by about 10% according to VINS-mono.

The rest of this study is organized as follows. In Section 2, the improved VINS-mono
system overall framework is given; then, the initialization process of the improved VINS-
mono is described in Section 3. Next, the local visual-inertial bundle adjustment with
relocalization is presented in Section 4. The experiment result and analysis are shown in
Section 5. Finally, a conclusion is drawn in Section 6.

2. Improved VINS-Mono System Overall Framework

Both a monocular VINS and a visual SLAM essentially state estimation problems. Based
on the VINS-mono project, this paper uses nonlinear optimization to couple IMU and camera
data in a tightly coupled manner. The functional modules of the improved VINS-mono consist
of five parts: data preprocessing, initialization, back-end nonlinear optimization, closed-loop
detection, and closed-loop optimization. The code mainly opens four threads, including front-
end image matching, back-end nonlinear optimization, closed-loop detection, and closed-loop
optimization. The overall frame of the improved VINS-mono system is shown in Figure 1,
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where the red solid line represents the improvement parts compared with the VINS-mono.
The main functions of each functional module are as follows.

Figure 1. The improved visual-inertial navigation system (VINS)-mono system architecture framework.

(1) Image and IMU preprocessing. The acquired image is processed with a pyramid
presentation. The ORB feature points are extracted from each layer of the image. The
adjacent frames are matched according to the feature points method. The outliers are
removed by Random Sample Consensus (RANSAC) [31]. Finally, the tracking feature
points are pushed into the image queue, and a notification is sent to the back end for
processing. The IMU data are integrated to obtain the position, velocity, and rotation
(PVQ) of the current time, and the pre-integration increments of the adjacent frames, the
Jacobian matrix, and the covariance terms of the pre-integration errors used in the back-end
optimization are calculated.

(2) Initialization. Structure From Motion (SFM) [32] is used for the pure visual estima-
tion of the poses and 3D positions of all key frames in the sliding window. Then, the initial
parameter calculation is performed by combining the IMU pre-integration results.

(3) Local visual-inertial bundle adjustment with relocalization. The visual constraints,
IMU constraints, and closed-loop constraints are put into a large objective function for
nonlinear optimization in order to solve the speed, position, attitude, and bias of all frames
in the sliding window.

(4) Closed-loop detection and optimization. The Open-Source Library-Dictionary Bag-
of-Words (DBoW3) is used for closed-loop detection. When the detection is successful, the
relocation is performed, and finally the entire camera trajectory is closed-loop optimized.

3. The Initialization Process of the Improved VINS-Mono

VINS-mono does not initialize acceleration bias ba which simply sets its initial value
to zero, which is not applicable to low-precision IMUs. The initialization result directly
affects the robustness and positioning accuracy of the entire tightly coupled system.

In this paper, a new initialization scheme is designed, which can calculate the accel-
eration bias ba during the initialization process so that it can be applied to low-cost IMU
sensors. Besides, the ORB feature point method is used instead of optical flow method to
make the initialization model more accurate and robust during the initialization process.

The VINS-mono visual processing uses the optical flow tracking method. The accuracy
of the pose solved by the optical flow tracking is not as good as the feature point matching,
which has a great influence on the accuracy of the initialization and is directly related to
the accuracy of the subsequent motion estimation. In order to improve this situation, in
this paper, the ORB feature point method is used for pose estimation in the initialization
phase. The flow of the initialization is shown in Figure 2.
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Figure 2. Procedure of initializing of the improved VINS-mono.

3.1. Visual SFM

The visual initialization uses the key frames image sequences in the initial time about
10 s to perform the pose calculation and triangulation as well as further global optimization.
The selection of the image key frame is mainly based on the distance of the parallax, and
when the parallax distance is greater than a certain threshold, it is selected as a key frame.
The vision based SFM technique is used to obtain the more accurate pose and image point
coordinates of the key frame sequence. This provides more accurate pose parameters for
IMU initialization. In order to make the visual initialization independent of the scene, that
is, to determine whether the initial scene is flat or non-planar, a relatively accurate initial
value can be obtained. The two initial key frames images of the system adopt a parallel
computing fundamental matrix and a homography matrix method and choose the right
model according to a specific mechanism. The scene scale is fixed, and the triangle points
are initialized according to the initial two key frames, then the Perspective-n-Point (PnP)
algorithm is used to restore motion and continuously triangulate to restore the map point
coordinates. After tracking a sequence, a Bundle Adjustment (BA) is constructed based on
the projection error of the image coordinates for global optimization, and the optimized
map points and poses are obtained, as shown in Figure 3.

Figure 3. Visual Structure from Motion (SFM) flowchart.

3.1.1. Two Parallel Computing Models and Model Selection

During the movement of the camera, the visual initialization may occur for the case of
pure rotation or the distribution of feature points on the same plane. In this case, the degree
of freedom of the fundamental matrix is degraded, and a unique solution cannot be obtained.
Therefore, in order to make the initialization more robust, two models of parallel computing
for the fundamental matrix and homography matrix are adopted. Finally, a model is chosen
with a lower re-projection error, and the motion and map construction resume.

In practice, there are a large number of mismatches in feature matching. Using these
points directly is inaccurate for solving the fundamental matrix and the homography matrix.
Therefore, the RANSAC algorithm is used in the system to remove the mismatched pairs.
Then, using the remaining pairs of points to solve the fundamental matrix and the homog-
raphy matrix, the pose transformation under different models is further derived. Since the
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monocular vision has scale uncertainty, the scale needs to be normalized in the decomposition
process. The initial map points can then be further triangulated by the two models.

Finally, the pose parameters recovered by the two models are used to calculate the
re-projection error, and the model with a lower re-projection error is selected for motion
recovery and map construction.

3.1.2. BA Optimization

In the system, after the visual initialization, there are already triangular map points,
and the pose of remaining key frames can be solved with 3D-2D. In order to prevent the
degradation of the map points in this process, it is necessary to continuously triangulate the
map points and finally construct a Bundle Adjustment (BA) based on the key frame data.
The position and pose of the camera and the coordinates of the map points are optimized,
and the objective function of the optimization is as follows:

J(x) = ∑N
j=1 ∑

Nj
i=1 ejT

i W ej
i . (1)

In the formula, N represents the number of key frames, Nj represents the number of
map points visible in each frame, e represents the re-projection error of the pixel coordinates,
and W represents the weight matrix.

3.2. Visual-inertial Alignment

The purpose of visual-inertial alignment is to use the results of the visual SFM to
decouple the IMU and calculate its initial values separately. The initialization process can
be decomposed into four small problems in order to solve:

(1) Estimation of the gyroscope bias
(2) Estimation of the scale and the gravitational acceleration
(3) Estimation of the acceleration bias and the optimization of the scale and gravity
(4) Speed estimation

In order to describe the movement of the rigid body in three-dimensional space and
the positional relationship between the camera and the IMU sensor mounted on the rigid
body, the positional transformation relationship is defined as shown in Figure 4. The IMU
coordinate system and the rigid body coordinate system (body) are defined as coinciding.
TBC represents the transformation of the coordinates in the camera coordinates to the IMU
coordinate system, and it is composed of RBC and tBC. TWB denotes the transformation
relationship between the rigid body coordinate system and the world coordinate system
(RWB denotes the rotating part, and WP denotes the translation part). Pl and zl represent
world coordinates and image plane coordinates, respectively.

Figure 4. Conversion relations of different coordinate systems.

3.2.1. Gyro Bias Estimation

The bias of the gyroscope can be decoupled from the result of the rotation calculated
by the visual SFM and the result of the IMU pre-integration. During the initialization
process, it can be assumed that bg is a constant and does not change over time. Throughout
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the initialization process, the rotation of the adjacent key frames can be solved by the visual
SFM. The rotation between adjacent frames can also be obtained by the pre-integration of
the IMU. Assuming that the rotation matrix obtained by visual SFM is accurate, the value
of bg can be calculated indirectly using the difference between the two rotation matrices
corresponding to Lie algebra. The exponential map (at the identity) Exp: so(3)→SO(3)
associates an element of the Lie Algebra to a rotation and coincides with the standard
matrix exponential (Rodrigues’ formula).

The calculation formula is as follows:

argmin
bg

∑n−1
i=1 ‖ Log

(
(Ri+1

BW Ri
WB)

T
∆Ri,i+1Exp

(
Jg
∆Rbg

))
‖

2
(2)

where the Jacobians Jg
∆R account for a first-order approximation of the effect of changing the

gyroscope biases without explicitly recomputing the pre-integrations. Both pre-integrations
and Jacobians can be efficiently computed iteratively as IMU measurements arrive [28].
The above formula R(·)

WB = R(·)
WCRCB, n represents the number of key frames, and ∆Ri,i+1

represents the integral value of the gyroscope between two adjacent key frames. The
superscript i represents the time of the key frame. R(·)

WC can be obtained with visual SFM,
and RCB is the rotation matrix of the IMU coordinate system in the camera coordinate
system. Formula (2) can be solved with the Levenberg–Marquard algorithm based on
nonlinear optimization, which is more robust than the Gauss–Newton method, and the
value of bg can be decoupled.

3.2.2. Scale and Gravity Estimation

bg is calculated, brought into the pre-integration formula again, and then the posi-
tion, speed, and rotation between adjacent frames are recalculated. Because the position
calculated by visual SFM does not have real scale, the conversion between the camera coor-
dinate system and the IMU coordinate system includes a scale factor s. The transformation
equation of the two coordinate systems is as follows [26]:

W PB = sW PC + RWCCPB (3)

It can be seen from the IMU pre-integration [28] that the motion between the two
consecutive key frames can be written as follows:

Ri+1
WB = Ri

WB∆Ri,j+1Exp((Jg
∆Rbi

g))

Wvi+1
B = Ri

WB(∆vi,j+1 + Jg
∆vbi

g + Ja
∆Rbi

a) + Wvi
B + gw∆ti,j+1

W pi+1
B = Ri

WB(∆pi,j+1 + Jg
∆pbi

g + Ja
∆pbi

a) + W pi
B + Wvi

B∆ti,j+1 +
1
2 gw∆t2

i,j+1

(4)

In the formula, W represents the world coordinate system, and B represents the IMU
coordinate system or carrier coordinate system.

The accelerometer bias is relatively small to the gravitational acceleration, and there-
fore can then be neglected. When Formula (4) is introduced in Formula (3), the following
formula is obtained:

sW pi+1
C = sW Pi

C + wvj
B∆ti,j+1 +

1
2 gw∆t2

i,j+1
+Ri

WB∆Pi,i+1 + (Ri
WC − Ri+1

WC)C pB
(5)

The purpose of this formula is to solve for the scale factor s and the gravity vector. It
can be seen that the above equation contains velocity variables. To reduce the computation
and to eliminate the velocity variables, the following transformations are performed.
Formula (5) is a three-dimensional linear equation. The data of the three key frames can be
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used to list the two sets of linear equations, and the velocity variables can be eliminated by
using the speed relationship of Formula (4). We can write Formula (5) as a vector form:

[
α(i) β(i)

][ s
gw

]
= γ(i) (6)

To facilitate the description, three keyframe symbols, i, i + 1, and i + 2 are written as 4,
5, and 6. The specific forms are as follows:

α(i) = (W p5
C −W p4

C)∆t56 − (W p6
C −W p5

C)∆t56
β(i) = 1

2 I3×3(∆t2
45∆t56 + ∆t2

23∆t45)
γ(i) = (R5

WC − R4
WC)C pB∆t56 − (R6

WC − R5
WC)C pB∆t45

+R5
WB∆p56∆t45 + R4

WB∆v45∆t45∆t56
−R4

WB∆p45∆t56

. (7)

Formula (6) can be constructed as a linear system in the form of A3(N−2)×4x4×1 =
B3(N−2)×1. The scale factor and the gravity vector form a four-dimensional variable, so
at least four frames of key frame data are needed for a Singular Value Decomposition
(SVD) [33] solution.

3.2.3. Estimation of the Acceleration Deviation and the Optimization of the Scale
and Gravity

It can be seen from Formula (5) that the accelerometer bias is not considered in the
process of solving for the gravity and the scale factor, because the biases of the acceleration
and gravity are difficult to distinguish, but it is easy to form a pathological system without
considering the bias of the accelerometer. In order to increase the observability of the
system, some prior knowledge is introduced. It is known that the gravitational acceleration
of the Earth G is 9.8 m/s2, and the direction points to the center of the earth. Under the
inertial reference frame, the direction vector of gravity is considered to be ĝI = {0, 0,−1}.
According to g∗w, the direction ĝW = g∗w/‖g∗w‖ of gravity can be calculated, and the rotation
matrix of the inertial coordinate system to the world coordinate system can be further
calculated, as follows [26]:

RWI = Exp(v̂θ)

v̂ = ĝI×ĝW
‖ĝI×ĝW‖

θ = arctan(‖ĝI × ĝW‖, ĝI · ĝW)

(8)

So, the gravity vector can be written as:

gW = RWI ĝI G. (9)

The z-axis of the world coordinate system is aligned with the gravity direction, so
RWI only needs to parameterize and optimize the angle around the x-axis and the y-axis.
The perturbation is used to optimize the rotation as follows:

gW = RWI Exp(δθ)ĝI G

δθ =
[

δθT
xy 0

]T

δθT
xy =

[
δθx δθy

]T
(10)

The first-order approximation of Formula (10) is obtained as follows:

gW ≈ RWI ĝI G− RWI(ĝI)×Gδθ (11)
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Formula (11) is introduced into Formula (3), then the bias of acceleration is taken into
consideration, and the following formula is obtained:

sW pi+1
C = sW pi

C + Wvi
B∆ti,i+1 − 1

2 RWI(ĝI)×G∆t2
i,i+1δθ

+Ri
WB(∆pi,i+1 + Jα

∆pba) + (Ri
WC − Ri+1

WC)C pB
+ 1

2 RWI ĝI G∆t2
i,i+1.

(12)

Similar to Formula (6), in three consecutive key frames, speed variables can be elimi-
nated, and the following forms can be obtained:

[
λ(i) φ(i) ς(i)

] s
δθxy
ba

 = ψ(i) (13)

λ(i) is the same as Formula (6). φ(i), ς(i), and ψ(i) are written as follows:

φ(i) =
[

1
2 RWI(ĝI)×G(∆t2

45∆t56 + ∆t2
56∆t45)

]
(:,1:2)

ς(i) = Rc2
WB Ja

∆p56
∆t45 + R1

WB Ja
∆v56

∆t45∆t56

−R1
WB Ja

∆p45
∆t56

ψ(i) = (R2
WB − R1

WB)C pB∆t56 − (R3
WB − R2

WB)C pB∆t45
+R2

WB∆P56∆t45 + R1
WB∆v45∆t45∆t56

−R1
WB∆P45∆t56 +

1
2 RWI ĝI G∆t2

i,j

(14)

In formula (14), the (:, 1 : 2) represents the first two columns of the matrix. According
to the relationship between the consecutive key frames, a similar form of the linear system
A3(N−2)×6x6×1 = B3(N−2)×1 can be constructed according to Formula (13). This linear
system has six variables and 3(N − 2) equations, so at least four keyframe datasets are
needed to solve the linear system. The ratio of the maximum singular value to the minimum
singular value is obtained by SVD decomposition to verify whether the problem is well
solved. If the ratio is less than a certain threshold, Formula (12) can be re-linearized to
solve the problem iteratively.

According to the above subsections, bg, s, gW , and ba have been determined. So far,
there are only 3 ∗ N variables related to velocity. At this time, the speed of each key frame
can be calculated by substituting bg, s, gW , and ba into Formula (12).

4. Local Visual-Inertial Bundle Adjustment with Relocalization

After the initialization of the improved VINS-mono system, subsequent Local visual-
inertial bundle adjustment with relocalization can be carried out. Besides, the visual matching
positioning method based on feature point method switches to optical flow tracking visual
positioning mode. Because the calculation of descriptors and the matching of feature points
are omitted, compared with the feature point method, the optical flow method is less sensitive
to the environment texture and saves more computing resources. This is the reason why
we choose the optical flow method after the initialization process. The VINS-mono system
elaborates the rest of the process, including the nonlinear optimization and the marginalization
strategy of the sliding window, closed-loop detection and optimization, and global pose
optimization, this paper does not expound upon it too much.

5. Experimental Results and Analysis

The experiment on the initialization of the improved VINS-mono system was based
on EuRoC, the unveiled dataset used to make the accuracy analysis and verification. The
Swiss Federal Institute of Technology (ETH Zurich) collected the data with a binocular
VIO camera carried on a drone and completed the dataset for the mainstream dataset
of the test of monocular VINS system. The dataset consisted of two scenes, namely an
industrial workshop and an ordinary indoor scene, as shown in Figure 5, while the dataset
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was divided into three categories, easy, medium, and complex, according to the number
of environment-featured textures, the change of light, the speed of motion, and the image
quality. This experiment only adopted the acceleration and the acceleration information
measured by the IMU and the sequence of images acquired by the left-eye camera. We
also test our algorithm with an Intel i5-6500HQ CPU running at 2.60GHz in real-time in
the experiments. Since the feature point method is just used in the initialization phase, the
improved VINS-mono and VINS-mono have the same computational cost in the real-time
localization phase.

Figure 5. Some figures describe EuRoC dataset scenario [34] (a) Room Scene 1 (b) Room Scene 2
(c) Industrial Workshop Scene 1 (d) Industrial Workshop Scene 2.

5.1. Initialization Experiment

In this study, tests were conducted on dataset at two difficulty levels in different scenes
(MH_01_easy, V2_02_medium). The purpose of this experiment was to test the convergence
of system variables in the initialization process. Figures 6 and 7 show the curves for the
accelerometer bias, the bias of the gyroscope, the scale, and the number of system variables
during the initialization process, which have good agreement with the convergence of
each variable in the process. It can be seen from Figures 6 and 7 that within approximately
10 s, the bias of the accelerometer and the bias of the angular speedometer with the IMU
converged to a stable value, while the scale estimate was close to the optimized value. The
optimized value was obtained by a similarity transformation of the posture estimation and
the true pose. After 10 s, the condition number dropped significantly, and the convergence
occurred, indicating that the system has a faster convergence rate. Figures 6 and 7 also
shows the evolution in the condition number, indicating that some time is required to get
a well-conditioned problem. This confirms that the sensor must perform a motion that
makes all variables observable, especially the accelerometer bias. In other words, if each
initial value were precisely estimated to ensure the observability, the system would be
properly initialized. The proposed initialization allows to start fusing IMU information, as
gravity, biases, scale and velocity are reliably estimated.

In order to test the initialization ability more rigorously, we use the MH_01_easy
dataset to evaluate the accelerometer bias at different times. In this dataset, the accelerome-
ter bias is approximately [−0.0032, 0.026, 0.076] m/s2 in x, y and z axes, respectively. In our
algorithm, we maintain at least 15 frames for initial visual structure. In general, the first
few seconds are used for initialization. We estimate accelerometer bias in the initialization
phase. To verify the capability of initialization, we randomly select start times in the dataset.
Figure 8 shows the accelerometer bias calibration performance in 20 tests with the different
start times in MH_01_easy dataset. The three sub-figures are accelerometer bias in xyz axis,
respectively. The average error of accelerometer bias in two dominant direction x and y are
[8.01, 1.52] % respectively, if we define the accelerometer bias less than 10% is successful
initialization, our initialization procedure performs 90% success rate in this dataset. In
fact, the local visual-inertial bundle adjustment with relocalization can be successfully
bootstrapped even the initial scale error is about 20%.
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Figure 6. This figure describes the results of initialization of variables in dataset MH_01_easy dataset.
(a,b) describe separately the result of gyroscope bias initialization and accelerometer bias. (c) describes
the results of initialization of scale. (d) describes the convergence of the number of system variables.

Figure 7. This figure describes the results of initialization of variables in dataset V1_02_media dataset.
(a,b) describe separately the result of gyroscope bias initialization and accelerometer bias. (c) describes
the results of initialization of scale. (d) describes the convergence of the number of system variables.
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Figure 8. Accelerometer bias in the initialization procedure in MH_01_easy dataset. The figure
contains the results in 20 tests with different start time.

To test whether the new initialization algorithm was adaptable to low-cost sensors, a
standard MYNT binocular camera was used to test the initialization. The information fusion
between the camera and the IMU sensor required the relationship Tbc of their coordinate
systems. The camera-IMU offline calibration was performed through the Kalibr toolbox [35]
before initialization, and the two sensors were considered to be relatively fixed in subsequent
calculations. In other words, the result about Tbc solved by Kalibr toolbox were not changed
during the testing of the campus environment. Besides, the other calibrations could be
obtained by Kalibr toolbox, such as gyroscope bias, accelerometer bias, camera internal
parameters, and so on, as shown in Table 3. During the experiment, the initialization of
the improved VINS-mono was applied to the low-cost IMU sensors, which can initialize
and locate efficiently. By comparing the results of calibrated by Kalibr toolbox with the
results tested by initialization scheme proposed in this paper, Table 4 shows they are basically
consistent. The trajectory of the experiment can be seen in Figure 9.

It was concluded that the new initialization method was a good solution for effectively
initializing the variables of the VINS system consisted of low-cost sensors. As indicated
in Figures 6 and 7, this initialization algorithm could be used to complete the entire
initialization process within approximately 10 s.

Table 3. The parameter of MYNT binocular camera calibrated by Kalibr toolbox.

Parameter of MYNT Binocular Camera

Cam0

camera_model: pinhole
intrinsics: [461.629, 460.152, 362.680, 246.049]

distortion model: radtan
distortion_coeffs: [−0.27695497, 0.06712482, 0.00087538, 0.00011556]

T_cam_imu (Tbc):
- [0.01779316, 0.99967548, −0.01822937, 0.07008564]
- [−0.9998015, 0.01795238, 0.00860716, −0.01771024]

- [0.00893159, 0.01807261, 0.99979679, 0.00399247]
- [0.0, 0.0, 0.0, 1.0]

timeshift_cam_imu: −8.121e-05s
rostopic: /cam0/image_raw

resolution: [752, 480]

Accelerometer
Accelerometer_noise_density: 1.88e-03 #Noise density (continuous-time)

accelerometer_random_walk: 4.33e-04 #Bias random walk

Gyroscope gyroscope_noise_density: 1.87e-04 #Noise density (continuous-time)
gyroscope_random_walk: 2.66e-05 #Bias random walk
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Table 4. Initialization result calibrated by using Kalibr toolbox and calculated by the initializa-
tion method.

Calibration by
Kalibr Toolbox

Calculation by the
Initialization Method

Accelerometer bias (m/s2) 4.33e-04 4.30e-04 1

4.51e-04 2

Gyroscope bias (rad/s) 2.66e-05 2.62e-05 1

2.75e-05 2

1 represents the calculated acceleration bias of accelerometer and gyroscope in dormitory building. 2 represents
the calculated acceleration bias of accelerometer and gyroscope on the playground.

Figure 9. This figure describes the results of the initialization experiments carried out in indoor and
outdoor environments. (a,b) describe separately the running trajectory of dormitory building and
playground. Red dots represent the sparse point cloud formed by triangulation and the yellow line
represents the running trajectory.

5.2. The State Estimation Experiment

The dataset adopted in state estimation experiment was the same as that in the IMU
initialization experiment (MH_01_easy, V2_02_medium), and the improved VINS-mono
system was tested with various difficulty levels and environments. In this research, the
accuracy analysis was carried out on the tracks generated by different datasets, and then a
further comparison with well-performed VINS-mono was conducted. From the accuracy
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comparison between the two systems, it is clear that the improved VINS-mono system had
significant improvement.

In this experiment, the motion track of the carriers was obtained using the adoption
of a dataset in two different test environments, as indicated in Figure 10. Since the dataset
contained the real track coordinates, the accuracy of the track in the modified system could
be worked out by the calculation of an error between the estimated trajectory and the real
trajectory. According to Figure 11, the trajectory result error was small, and the cumulative
error was properly eliminated when MH_01_easy data were running in the system. This
was because the speed of collecting data for MH_01_easy with the drone was slow enough
for the system to detect in a closed loop and hence to make a holistic optimization. After
the testing of the results of the improved VINS system in two different environments, the
trajectory accuracy of the improved monocular VINS-mono system was also tested in the
rest of the EuRoc datasets, as shown in Table 5.

Figure 10. Improved VINS-mono Running results of the system in dataset MH_01_easy (a) and dataset
V2_02_medium (b) (red line represents real trajectory, green line represents estimate trajectory).

Figure 11. The graph describes the trajectory error change of the improved system over time in
dataset MH_01_easy (a) and Dataset V2_02_medium (b) testing.
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Table 5. Trajectory accuracy of the improved VINS-mono (EuRoc Dataset).

EuRoc Dataset Improved VINS-mono RMES (m) Scale Error (%)

V1_01_easy 0.068 0.079
V1_02_medium 0.099 0.118
V1_03_difficult 0.130 0.128

V2_01_easy 0.067 0.112
V2_02_medium 0.073 0.108
V2_03_difficult 0.185 0.151
MH_01_easy 0.129 0.062
MH_02_easy 0.097 0.124

MH_03_medium 0.102 0.129
MH_04_diffeicut 0.143 0.104
MH_05_diffeicut 0.181 0.133

In order to accurately analyze the performance of the improved VINS-mono, in
this paper, the accuracy of the improved VINS-mono is described in the form of a root
mean square error (RMSE) [36]. The estimated pose of the key frame is expressed as
Qi ∈ SE(3),i = 1 . . . n, and the true pose is expressed as Li ∈ SE(3) i = 1 . . . n. The S is
corresponding to the least-squares solution that maps the estimated trajectory Qi onto the
ground truth trajectory Li. The root mean square error of all key frames was calculated to
obtain the final trajectory accuracy results as follows:

Fi = L−1
i SQi (15)

RMSE(F1:n) =

(
1
n

n

∑
i=1
‖trans(Fi)‖2

)1/2

(16)

According to Table 6, it can be seen that the improved VINS-mono system has less
than 0.2 m test trajectory accuracy except for the V1_03_difficult sequences, because of the
texture of the scene is too weak, the number of key points extracted is too small to match
well. In addition, this paper also compares the accuracy of the improved VINS-mono and
VINS-mono. According to Table 6 and Figure 12, the different data show that the improved
VINS-mono system had better precision than the VINS-mono system.

Table 6. Accuracy comparison of improved VINS-mono system and VINS-mono system.

EuRoc DataSet Improved VINS-Mono
RMES (m)

VINS-Mono
RMES (m)

OV1_01_easy 0.068 0.078
V1_02_medium 0.099 0.106
V1_03_difficult 0.130 0.135

V2_01_easy 0.067 0.089
V2_02_medium 0.073 0.090
V2_03_difficult 0.205 0.221
MH_01_easy 0.129 0.278
MH_02_easy 0.097 0.124

MH_03_medium 0.102 0.135
MH_04_diffeicut 0.143 0.239
MH_05_diffeicut 0.181 0.366
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Figure 12. This figure describes error comparison analysis in dataset MH_01_easy. (a) Orientation error
and (b) Translation error (red for VINS-mono system and blue for the improved VINS-mono system).

6. Conclusions

In this study, an initialization scheme was suggested to improve the accuracy and
robustness of the visual-inertial navigation system. For this purpose, this paper designs a
new initialization scheme which can calculate the acceleration bias as a variable during the
initialization process so that it can be applied to low-cost IMU sensors. Besides, in order to
obtain better initialization accuracy, a visual matching positioning method based on feature
point method is used to assist the initialization process. After the initialization process,
it switches to optical flow tracking visual positioning mode to reduce the calculation
complexity. In the research, the improved VINS-mono was tested based on the unveiled
dataset EuRoc and campus environment. The results show that the improved VINS-mono
scheme completes the entire initialization process within approximately 10 s and can
efficiently facilitate initialization with low-cost sensors. Due to the stricter initialization
scheme to avoid the result from falling into the local minimum, the positioning accuracy is
also improved.

The improved VINS-mono scheme still uses bag-of-word for loopback detection, but it
can easily cause false results for loopback detection especially in an indoor environment that
has many similar scenes. Therefore, further improvement of the robustness of the system
loop detection is needed. Besides, this scheme can generate sparse point clouds information
and it is necessary to generate dense 3D point clouds information of environment based on
the video stream captured by camera real-time in the next work. In addition, it is necessary
to fuse more sensor information to improve the positioning accuracy and robustness further
in next step.
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