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Abstract: Coastal aquaculture areas are some of the main areas to obtain marine fishery resources and
are vulnerable to storm-tide disasters. Obtaining the information of coastal aquaculture areas quickly
and accurately is important for the scientific management and planning of aquaculture resources.
Recently, deep neural networks have been widely used in remote sensing to deal with many problems,
such as scene classification and object detection, and there are many data sources with different
spatial resolutions and different uses with the development of remote sensing technology. Thus,
using deep learning networks to extract coastal aquaculture areas often encounters the following
problems: (1) the difficulty in labeling; (2) the poor robustness of the model; (3) the spatial resolution
of the image to be processed is inconsistent with that of the existing samples. In order to fix
these problems, this paper proposes a novel semi-/weakly-supervised method, the semi-/weakly-
supervised semantic segmentation network (Semi-SSN), and adopts 3 data sources: GaoFen-2 image,
GaoFen-1(PMS)image, and GanFen-1(WFV)image with a 0.8 m, 2 m, and 16 m spatial resolution,
respectively, and through experiments, we analyze the extraction effect of the model comprehensively.
After comparing with other the-state-of-art methods and verifying on an open remote sensing dataset,
we take the Fujian coastal area (mainly Sanduo) as the experimental area and employ our method to
detect the effect of storm-tide disasters on coastal aquaculture areas, monitor the production, and
make the distribution map of coastal aquaculture areas.

Keywords: coastal aquaculture areas; semantic segmentation; semi-/weakly-supervised learning;
GAN; conditional adversarial learning

1. Introduction

Recent successful advances of deep learning make it become an increasingly popular
choice in many fields of application. Following this wave of success and due to the increased
availability of data and computational resources, the usage of deep learning in remote
sensing is finally taking off in remote sensing as well. Coastal aquaculture areas, as a typical
area for remote sensing, are vulnerable to storm-tide disasters, and are important for the
government’s scientific management and planning of aquaculture resources. In order to
obtain the information of aquaculture areas, there are more and more researchers paying
attention to using remote sensing technology and machine learning, and a series of research
works has ensued [1–7]. At present, researchers use expert experience [8–10], characteristic
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learning [11–14], threshold segmentation [15,16], and semantic segmentation networks [6]
to extract aquaculture areas, and the practice has proven that these methods work well in
this field. Reference [6] adopted a semantic segmentation network based on hybrid dilated
convolution (HDC) [17] to extract aquaculture areas and summed up its four improvements
compared to traditional machine learning: (1) the extraction results have clearer boundaries;
(2) attenuation of the impact of sediments in seawater on the extraction results; (3) avoiding
the influence of ships and other floatage; (4) avoiding the misidentification of the internal
clearance of the cage culture area.

Although CNN-based approaches have achieved astonishing performance, they re-
quire an enormous amount of training data, and the robustness of the model is too poor
to be applied to more scenarios. Different from image classification and object detection,
semantic segmentation requires accurate per-pixel annotations for each of the training data,
which can have a considerable expense and time. To ease the effort of acquiring high-quality
labeled data, semi-supervised methods and weakly-supervised methods [18–25] have been
applied to the task of semantic segmentation, which is significant for the application of
deep learning in remote sensing. They are both incomplete supervised learning based
on a small amount of labeled training samples, but weakly-supervised methods requires
a lower quality of labeled training samples that cannot be exactly the same as the test
and validation samples. Meanwhile, the emergence of the generative adversarial network
(GAN) [26] makes semi-/weakly-supervised semantic segmentation more possible, and
there are many semi-/weakly-supervised semantic segmentation networks based on GANs.
The conditional GAN [27] has a further improvement based on GAN, which feeds y into
both the discriminator and generator as an additional input layer, in order to make the
generator able to generate samples related to y.

In this paper, we construct our network, the semi-/weakly-supervised semantic seg-
mentation network (Semi-SSN) based on conditional generative adversarial nets (CGANs)
and, through a self-training method, generate the pseudo-labels of unlabeled data by
the generator to achieve semi-/weakly-supervised learning. Then, we employ Semi-SSN
to extract aquaculture in a semi-supervised manner in GF-2 images, make comparative
experiments with other state-of-the-art methods, and explore the scientific quality and
practicability of our method based on an open remote sensing dataset. Besides, in remote
sensing, there are many data sources with different spatial resolutions, and different spatial
resolutions of remote sensing images serve different purposes. Ten meter level image
remote sensing usually can be used to obtain information in a large area, because of the
larger breadth, which is good for mapping the distribution map of coastal aquaculture
areas. Meter level and sub-meter level remote sensing images are convenient to obtain the
spatial distribution and capture more accurate information, so they are suitable for change
detection such as disaster emergency response, production monitoring, etc. However, in
practice, the resolution of the image to be processed can be inconsistent with that of the
existing samples. Therefore, we employed Semi-SSN to extract aquaculture areas in a
weakly-supervised manner with different spatial resolution remote sensing images. Taking
the Fujian coastal area (mainly Sanduo) as the experimental area, we explore the application
effect of Semi-SSN in different scenarios.

In short, we propose a novel method, Semi-SSN, based on conditional adversarial
learning to extract aquaculture areas, in order to deal with the following problems: (1) the
difficulty in labeling; (2) the poor robustness of the model; (3) the spatial resolution of the
image to be processed is inconsistent with that of the existing samples. After comparing
with other state-of-the-art methods and verifying on an open remote sensing dataset, we
take the Fujian coastal area (mainly Sanduo) as an example and use our method to carry
out disaster emergency response, production monitoring, and map making.
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2. Materials and Methods
2.1. Related Work

In 2014, Goodfellow et al. [26] first proposed the generative adversarial network
(GAN), which has been widely used in object detection [27], semantic segmentation [27,28],
etc. The GAN (Figure 1) is composed of two neural networks: the generator G and the
discriminator D. The generator trains with the objective to maximize the probability of
the discriminator making mistakes, i.e., building a mapping function from a generator
distribution pg to the data space as G

(
z; θg

)
(where θg are the parameters of the generator).

The discriminator D(x; θd) (where θd are the parameters of the discriminator) aims to
estimate the probability that the sample came from the training data rather than the
generator distribution pg. Both networks are trained simultaneously with value function
V(G, D):

min
G

max
D

V(G, D) = Ex∼pdata (x)[log D(x)] + Ez∼pz(z)[log(1− D(G(z)))] , (1)

Figure 1. GAN architecture.

Based on its theoretical foundation, M. Mirza et al. [29] proposed conditional gen-
erative adversarial nets (CGANs) to make improvements (Figure 2), which makes the
generator and discriminator conditioned on some extra information y. Both the prior noise
distribution pz(z) and y are input into the generator, and in the discriminator, x and y are
treated as inputs. The value function would be as follows:

min
G

max
D

V(G, D) = Ex∼pdata (x)[log D(x | y)] + Ez∼pz(z)[log(1− D(G(z | y)))] , (2)

Figure 2. Conditional generative adversarial net (CGAN) architecture.

Then, the methodology of conditional adversarial learning was applied to a wide
range of discrete labels [30,31], tackling prediction from a normal map [32], future frame
prediction [33], semantic segmentation [34,35], and image generation from sparse annota-
tions [36,37].

The semantic segmentation network [38–42] is a method of interpreting images at the
pixel level, which requires an enormous amount of labeled data and has a considerable
expense. Pinheiro and Collobert [18] and Pathak et al. [43] employed MIL to generate
labels for supervised training. Hong et al. [44] used image level supervised images and a
few fully annotated images to train their semantic segmentation network. In order to ease
the effort of acquiring high-quality labeled data, semi-supervised semantic segmentation is
imperative, and the emergence of GAN makes it more possible.
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Recently, with the rise of the GAN and its improved network, adversarial learning
has been widely used in semantic segmentation. Pauline et al. [28] trained a convolutional
semantic segmentation network along with an adversarial network that discriminates
segmentation maps coming either from the ground truth or from the segmentation network
to detect and correct higher-order inconsistencies between ground truth and the map
generated by the segmentation net. Huaqing Liu et al. [45] proposed semi-cGAN, based
on CGAN, to segment lumbosacral structures on thin-layer computed tomography with
a few labeled data. Souly et al. [46] leveraged a massive amount of available unlabeled
or weakly labeled data and non-real images created through the GAN to achieve semi-
supervised learning, and subsequently, Hung W C [47] made improvements based on
it. Konstantinos et al. [48] adapted source domain images to the target domain based
on a GAN-based method, which outperformed many unsupervised domain adaptation
scenarios, and produced plausible samples. Xue et al. [49] proposed a novel semantic
segmentation network, named SegAN, used a fully convolutional neural network as the
segmenter, and adopted a multi-scale L1 loss function to train the critic and segmenter.
Cherian et al. [50] presented a semantically-consistent GAN framework based on Cycle-
GAN, dubbed Sem-GAN, which improved the quality of the translated images significantly.

Based on the methodology of CGAN and previous research, this paper proposes
a novel network, Semi-SSN, that introduces conditional adversarial learning into the
semantic segmentation network to realize semi-/weakly-supervised learning. We adopt
the confidence maps generated by the discriminator and the predicted maps generated by
the generator of the unlabeled data to produce the pseudo-labels for the model’s training.

2.2. Network and Algorithm

The self-training method in semi-/weakly-supervised learning means that the classi-
fier can be used to generate pseudo-labels of unlabeled data, after it is sufficiently trained
on labeled data. If we take the confident predictions and assume that they are correct,
we can add the unlabeled data with pseudo-labels into the training. If the noise in the
pseudo-labels is sufficiently low, the model can benefit from the additional training data to
obtain improved accuracy.

This paper proposed a self-training semi-supervised semantic segmentation method,
which is divided into two processes: (1) using labeled data to train the classifier; (2) obtain-
ing pseudo-labels of unlabeled data based on the classifier and then further training the
classifier. At the same time, this paper introduced adversarial loss into the network, which
not only improves the accuracy of semantic segmentation, but also reduces the noise of the
pseudo-labels, thereby improving the accuracy of the entire model. The specific algorithm
and network architecture are as follows.

2.2.1. Network Architecture

Based on the methodology of conditional adversarial learning, we propose a semi-
/weakly-supervised semantic segmentation network (Semi-SSN), as shown in Figure 3.
In this framework, we made the generator-classifier and discriminator of the GAN as a
kind of semantic segmentation network; the generator-classifier, i.e., S(·), generates the
prediction map of the labeled image X or unlabeled image X̂, and the latter, i.e., D(·), takes
[X, S(X)], or [X, Y], or [X̂, S(X̂)] as the input and outputs a confidence map, which infers
the regions where the prediction results are close enough to the ground truth distribution.
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Figure 3. Semi-/weakly-supervised semantic segmentation network (Semi-SSN) architecture.
The black workflow is the process of training labeled image X; The red workflow is the process of
training unlabeled image X̂.

1. Generator-classifier:
According to the training tips proposed by DCGAN [51], we made some improve-
ments to SegNet to obtain the generator-classifier, i.e., the baseline model in this
paper:

(1) Use Leaky-ReLU activation for all layers except for the output, which uses Softmax.
(2) Replace deterministic spatial pooling functions (such as max pooling) with strided

convolutions.
(3) Replace upsampling with deconvolutions (the difference between the two meth-

ods is that the latter’s parameters can be learned in the training process).
(4) Use batch normalization on all layers except for the output layer.

2. Discriminator
We chose a simple dilation convolution network, the context network as discriminator
(Table 1), and we used Leaky-ReLU activation for all layers.

Table 1. Context network. In this network, C is the category number.

Layer 1 2 3 4 5 6 7 8

Dilated rate 1 1 2 4 8 16 1 1
Kernel size 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 1 × 1

Filter 2C 2C 4C 8C 16C 32C 32C C

2.2.2. Algorithm

At the start, we trained our model based on labeled datasets. Given an input image X
of size H ×W × channels, where channels is the number of bands, with its label map Y of
size H×W ×C, where C is the category number, we could obtain the predicted probability
map S(X) and confidence map D(X, S(X)) or D(X, Y).

Firstly, we fixed the generator-classifier, i.e., S(·), and trained the discriminator, i.e.,
D(·), and we minimized the spatial cross-entropy loss LD.

LD = −∑
h,w

log(1− D(X, S(X)))(h,w) + log(D(X, Y))(h,w), (3)

After training the discriminator k times, fix the discriminator, and update the generator-
classifier by minimizing Lclass, which is combined by the generator-classifier’s cross-entropy
loss Lseg and the adversarial loss Ladv.

Lseg = −∑
h,w

∑
c∈C

Y(h,w,c) log
(

S(X)(h,w,c)
)

, (4)

Ladv = −∑
h,w

log(D(X, S(X)))(h,w), (5)

Lclass = Lseg + λadvLadv, (6)

where λadv ≤ 1 is a constant for balancing the multi-task training.
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Iterate the above steps n times. After obtaining the trained generator-classifier and
discriminator based on labeled data, we trained in a semi-/weakly-supervised manner the
generator-classifier based on unlabeled data. Given an input image X̂ of size H ×W × C,
where channels is the number of bands, we utilized the prediction map S(X̂) and the
confidence map D(X̂, S(X̂)) generated by the trained discriminator to generate the fake
label map Ŷ.

Ŷ = OneHotEncode
(

I
(

D(X̂, S(X̂)) > Tsemi
)
· arg max(S(X̂))

)
, (7)

where the threshold, Tsemi, is equal to the validation accuracy of the generator-classifier that
was trained by Lclass and labeled data and I(·) is the indicator function,
OneHotEncode(·) indicates one-hot encoding of the vector, i.e., when D(X̂, S(X̂))(h,w)

is greater than Tsemi, S(X̂)(h,w) can be regarded as a true value of X̂(h,w). The resulting
semi-/weakly-supervised loss is defined by:

Lsemi = −∑
h,w

∑
c∈C

Ŷ(h,w,c) log
(

S(X̂)(h,w,c)
)

, (8)

Then, we trained the generator-classifier by minimizing Lsemi−class, which combines
semi-/weakly-supervised loss Lsemi and the adversarial loss Ladv.

Lsemi−class = λsemiLsemi + λadvLadv, (9)

where λadv, λsemi ≤ 1 is a constant for balancing the multi-task training. And the specific
details of training are in Algorithm 1.

Algorithm 1. Minibatch stochastic gradient descent training of our model. The number
of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least
expensive option, in our experiments.

For number of supervised training iterations do
For k steps do
• Select a minibatch with {x1, x2, . . . , xm} with ground truth {y1, y2, . . . , ym}

from the labeled training set.
• Obtain the probability maps {S(x1), S(x2), . . . , S(xm)}
• Update the discriminator by ascending its stochastic gradient:

∇θd

m

∑
i=1

∑
h,w

log(1− D(xi, S(xi)))
(h,w) + log(D(xi, yi))

(h,w)

End For
• Select a minibatch with {x1, x2, . . . , xm} with ground truth {y1, y2, . . . , ym} from

labeled training set.
• Update the generator by ascending its stochastic gradient:

∇θg

m

∑
i=1

∑
h,w

[
λadv log(D(xi, S(xi)))

(h,w) + ∑
c∈C

y(h,w,c)
i log

(
S(xi)

(h,w,c)
)]

End For
For number of semi-/weakly-supervised training iterations do
• Select a minibatch with {x̂1, x̂2, . . . , x̂m} from the unlabeled training set.
• Obtain the fake label maps {ŷ1, ŷ2, . . . , ŷm}

ŷi = OneHotEncode (I(D(x̂i, S(x̂i)) > Tsemi) · arg max(S(x̂i)))
• Update the generator by ascending its stochastic gradient:

∇θg

m

∑
i=1

∑
h,w

[
λadv log(D(x̂i, S(x̂i)))

(h,w) + λsem i ∑
c∈C

ŷ(h,w,c)
i log

(
S(x̂i)

(h,w,c)
)]

End For
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2.3. Data Source

There are two mainly types of coastal aquaculture areas: cage culture area and raft
culture area (Figure 4). Cage culture areas have small grid cages that can be clearly observed
in high-resolution remote sensing images. They are mainly made of plastic material and
appear as uneven rectangles on the image. The raft culture area is usually arranged together
and appears as a dark and more uniform rectangle on the image, and there are small light
points on the edge of the raft culture area in optical images.

This paper employed four GF-2 images, three GF-1(PMS) images, and three GF-
1(WFV) images (Table 2) to explore the scientific quality and practicality of our method,
Semi-SSN. The technical indicators of the GF-2, GF-1(PMS), and GF-1(WFV) images are as
shown in Table 3.

Figure 4. Two main types of aquaculture areas. (a) Cage culture area in a GF-2 image; (b) cage culture
area in a GF-1(PMS) image; (c) cage culture area in a GF-1(WFV) image; (d) raft culture area in a GF-2
image; (e) raft culture area in a GF-1(PMS) image; (f) raft culture area in a GF-1(WFV) image.

Table 2. Data sources and their uses.

Data
Source Use Date Central Geographical

Coordinates

GF-2
Sample Construction 30 March 2019 119°52′E 26°43′N

30 March 2019 119°49′E 26°32′N

Production Monitoring 22 June 2016 119°54′E 26°42′N
19 September 2016 119°48′E 26°42′N

GF-1(PMS)
Sample Construction 23 September 2019 119°56′E 26°49′N

Disaster Emergency 8 April 2018 119°42′E 26°36′N
Response 19 September 2018 119°54′E 26°36′N

GF-1(WFV)
Sample Construction 28 January 2019 119°50′E 26°55′N

Map making 15 May 2016 119°55′E 26°54′N
15 July 2016 119°50′E 26°50′N
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Table 3. The technical indicators of the GF-2, GF-1(PMS), and GF-1(WFV) images.

Spectral Range Resolution

GF-2 GF-1(PMS) GF-1(WFV)

Pan 0.45–0.90 µm 1 m 2 m 16 m

Multispectral

0.45–0.52 µm 4 m 8 m 16 m
0.52–0.59 µm 4 m 8 m 16 m
0.63–0.69 µm 4 m 8 m 16 m
0.77–0.89 µm 4 m 8 m 16 m

3. Results

There were two experiments. In one experiment, we used Semi-SSN to extract coastal
aquaculture areas in GF-2 images based on semi-supervised method with different labeled
GF-2 data amounts. In the other experiment, we employed Semi-SSN to extract coastal
aquaculture areas in higher (lower) spatial resolution remote sensing images based on
weakly-supervised method with lower (higher) spatial resolution remote sensing images.

3.1. Training Objective
3.1.1. Sample Construction

In deep learning, the dataset mainly includes the training set, validation set, and test
set. The training set is used to train the weight parameters of the model. Neither the
validation set, nor the test set is involved in the training of the model. The former is used
to adjust the hyperparameters of the model, preliminarily to evaluate the prediction ability
of the model, and to prevent over-fitting during training. The latter is used to evaluate the
robustness and generalization ability of the model.

According to Table 2, we chose two GF-2 images, one GF-1(PMS) image, and one
GF-1(WFV) image for sample construction. We selected four areas from GF-2 images with
a size of 5000 × 5000 pixels, an area from GF-1(PMS) images with a size of 2000 × 2000
pixels, and an area from GF-1(WFV) images with a size of 2000 × 2000 pixels for category
marking. We randomly cut these images and labels for a size of 128 × 128 pixels. Then,
according to Tables 4 and 5, we constructed training set and validation set, respectively.

Table 4. Division of samples in the semi-supervised experiment.

Labeled Data Amount
Training Set

Validation Set
Labeled Unlabeled

Full 8000 - 2000
1/2 4000 4000 2000
1/4 2000 6000 2000
1/8 1000 7000 2000

Table 5. Division of samples in the weakly-supervised experiment.

Labeled Data/Unlabeled Data
Training Set

Validation Set
Labeled Unlabeled

GF-2/GF-1(PMS) 1000 7000 2000
GF-2/GF-1(WFV) 1000 7000 2000
GF-1(PMS)/GF-2 1000 7000 2000

GF-1(PMS)/GF-1(WFV) 1000 7000 2000
GF-1(WFV)/GF-2 1000 7000 2000

GF-1(WFV)/GF-1(PMS) 1000 7000 2000
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Then, we chose a test area in the GF-2 image with a size of 2000 × 2000 pixels, a
test area in the GF-1(PMS) image with a size of 1000 × 1000 pixels, and a test area in the
GF-1(WFV) image with a size of 1000 × 1000 pixels, as shown in Figure 5, to further verify
the effect of the model.

Figure 5. Test image. (a) GF-2 test image; (b) GF-1 (PMS) test image; (c) GF-1 (WFV) test image.

3.1.2. Implementation Details

We used the mean intersection over union (mIoU) as the evaluation function, as
Equation (11).

IoU =
TP

TP + TN + FN
, (10)

mIoU =
1
N

N

∑
i=1

IoUi, (11)

where TP is the pixel number that is correctly extracted as aquaculture areas, FP is pixel
number that is mistakenly extracted as aquaculture areas, and FN is the pixel number that
is not extracted, but is aquaculture areas in reality. N is the number of categories. IoUi is
the intersection over union of the ith class.

We implemented our network using the Keras and TensorFlow framework. We trained
our network on eight GPUs with 12 GB memory. We used Adam [52] as the optimizer,
where the weight decay was 10−4 and the initial learning rate was set as 10−7. In our
experiment, Tsemi is a dynamic value that changes with the validation accuracy (i.e., mIoU
on the validation set) of each iteration, as Equation (12). λsemi is determined according
to the labeled data amount, as Equation (13). We set λadv as 0.04 (the detail is given in
Section 4.1).

Tsemi = 0.6× validation_accuracy, (12)

λsemi = labeled_data_amount, (13)

3.2. Semi-Supervised Experiment

In the experiment, we randomly divided the GF-2 sample as Table 4, calculated the
mIoU on the validation set and test set (Table 6), and obtained the extracted result of the
test area (Figure 6).
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Figure 6. Extraction result, where green stands for cage culture areas, yellow stands for raft culture
areas, and black for background. (a) Ground truth; (b) labeled data amount: full, model: baseline;
(c) labeled data amount: full, model: baseline + Ladv; (d) labeled data amount: 1/2, model: baseline;
(e) labeled data amount: 1/2, model: baseline + Ladv; (f) labeled data amount: 1/2, model: baseline
+ Ladv + Lsemi; (g) labeled data amount: 1/4, model: baseline; (h) labeled data amount: 1/4, model:
baseline + Ladv; (i) labeled data amount: 1/4, model: baseline + Ladv + Lsemi; (j) labeled data amount:
1/8, model: baseline; (k) Labeled data amount: 1/8, model: baseline + Ladv; (l) labeled data amount:
1/8, model: baseline + Ladv + Lsemi.
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Table 6. mIoU on the validation set and test set.

Methods
Labeled Data Amount

1/8 1/4 1/2 Full

Validation Accuracy
baseline 0.7047 0.7434 0.7937 0.8530

baseline + Ladv 0.7512 0.7842 0.8253 0.8725
baseline + Ladv + Lsemi 0.7961 0.8103 0.8417 N/A

Test Accuracy
baseline 0.6842 0.7618 0.8036 0.8847

baseline + Ladv 0.7635 0.7876 0.8309 0.9058
baseline + Ladv + Lsemi 0.8053 0.8244 0.8610 N/A

3.3. Weakly-Supervised Experiment

Another currently hot issue is how to use a small amount of existing labeled samples
to extract aquaculture areas in different spatial resolution remote sensing images and
comprehensively analyze practical problems according to the data from various sources
based on the weakly-supervised semantic segmentation method.

In this experiment, we used Semi-SSN to extract coastal aquaculture areas in lower
(higher) spatial resolution images based on weakly-supervised method with a small
amount of labeled higher (lower) spatial resolution data with unlabeled lower (higher) data
(Table 5), obtained the extraction results of unlabeled data source (Figure 7), and calculated
mIoU on the validation set and test set (Table 7).

Figure 7. Extraction result based on the weakly-supervised method. (a) GF-2 Image; (b) ground truth
of GF-2 image; (c) extraction result of GF-2 image based on labeled GF-1 (PMS) data; (d) extraction
result of GF-2 image based on labeled GF-1 (WFV) data; (e) GF-1 (PMS) image; (f) ground truth of GF-
1 (PMS) image; (g) extraction result of GF-1 (PMS) image based on labeled GF-2 data; (h) extraction
result of GF-1 (PMS) image based on labeled GF-1 (WFV) data; (i) GF-1 (WFV) image; (j) ground
truth of GF-1 (WFV) image; (k) extraction result of GF-1 (WFV) image based on labeled GF-2 data;
(l) extraction result of GF-1 (WFV) image based on labeled GF-1 (PMS) data.
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Table 7. mIoU on the validation set and test set.

Unlabeled Data Source Labeled Data Source Validation Accuracy Test Accuracy

GF-2 GF-1(WFV) 0.4418 0.3259
GF-2 GF-1(PMS) 0.6976 0.6368

GF-1(PMS) GF-1(WFV) 0.6754 0.6309
GF-1(PMS) GF-2 0.7977 0.8198
GF-1(WFV) GF-1(PMS) 0.8297 0.8329
GF-1(WFV) GF-2 0.8426 0.8646

4. Discussion
4.1. Hyperparameter Selection

The hyperparameters are mainly determined according to the performance of the
model in the validation set. There are three hyperparameters: λadv and λsemi are used to
balance the multi-task learning, and Tsemi is used to control the sensitivity in the semi-
/weakly-supervised learning described in Equation (7). In our experiment, Tsemi is a
dynamic value that changes with the validation accuracy of each iteration, as Equation (12).
λsemi is determined according to the labeled data amount, as Equation (13). We used GF-2
labeled data to evaluate the effect on λadv, as shown in Table 8, and chose final values
as 0.04.

Table 8. The effect on λadv.

λadv 0 0.02 0.035 0.04 0.045 0.05 0.06

Validation Accuracy 0.8530 0.8613 0.8683 0.8725 0.8652 0.8612 0.8566

4.2. Analysis of the Results
4.2.1. Semi-Supervised Results

It can be seen (Table 6) that the adversarial loss and unlabeled data could improve
the mIoU to different degrees; the former can help improve the validation accuracy by
1.9–4.7% and improve the test accuracy by 2.1–8.0%, and the latter can help improve the
validation accuracy by 4.8–9.2% and improve the test accuracy by 5.7–12.2%, compared to
the baselines. The extraction results have a clear boundary with few fragments (Figure 6),
especially the addition of adversarial loss, which makes the model more sensitive to
structure information, which greatly avoids the misidentification of floatage on the water
surface. In order to facilitate observation, we zoom in on local details (Figure 8). It can
be seen that Semi-SSN is convenient to filter out some impurities such as floatage on the
water surface after adding adversarial loss.
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Figure 8. The details of the extraction result. (a) image; (b) labeled data amount: full, model: baseline;
(c) labeled data amount: 1/2, model: baseline; (d) labeled data amount: 1/4, model: baseline;
(e) labeled data amount: 1/8, model: baseline; (f) ground truth; (g) labeled data amount: full, model:
baseline + λadv; (h) labeled data amount: 1/2, model: baseline + λadv; (i) labeled data amount: 1/4,
model: baseline + λadv; (j) labeled data amount: 1/8, model: baseline + λadv.

4.2.2. Weakly-Supervised Results

From the overall point of view, using the higher spatial resolution labeled data to
extract the coastal aquaculture areas in the lower spatial resolution image, both validation
accuracy and test accuracy can reach about 80%. The extraction result (Figure 7g,k,l) has a
clear boundary, which can be directly put into practical applications.

While using lower spatial resolution labeled data to extract aquaculture areas in higher
spatial resolution images, the situation is relatively complicated, and the common point is
that the accuracy is not enough to meet the needs of practical applications. Using labeled
GF-1(PMS) data to achieve extraction in a GF-2 image cannot extract the aquaculture areas
precisely (Figure 7c), but the extraction result can simply reflect the spatial distribution
of the aquaculture areas, which means it can be used for rough analysis and extraction.
However, using labeled GF-1(WFV) data to extract the aquaculture area in a GF-1(PMS) or
GF-2 image (Figure 7d,h), the raft culture area is easily confused with seawater, and the
cage area culture cannot be extracted completely.

In short, Semi-SSN is conducive to using the existing labeled data to extract aquacul-
ture areas in different spatial resolution remote sensing images and can help reduce the
time cost of labeling. According to our method, labeled higher spatial resolution samples
can be used to extract aquaculture areas in lower spatial resolution images, and partially
labeled lower spatial resolution data (GF-1(PMS)) can be conducive to roughly extracting
the distribution of aquaculture areas in higher spatial resolution images (GF-2). However,
in general, using labeled lower spatial resolution samples to extract aquaculture areas in
higher spatial resolution images cannot obtain ideal results.

4.3. Algorithm Validation
4.3.1. Comparison with Other Methods

We made comparative experiments with FCN8s, UNet, SegNet, and HDCUNet [6]
based on 8000 labeled GF-2 samples (Table 9). Note that the validation accuracy and test
accuracy of our baseline model are slightly inferior to HDCUNet, but they are effectively
improved with the addition of the adversarial loss. Besides, it can be seen (Tables 6 and 9) that
our method can reach the approximate effect of FCN8s, UNet, and SegNet based on a smaller
amount (1/2, 1/4, and 1/2) of labeled samples, after adding Ladv and Lsemi to our baseline.
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Table 9. mIoU of five methods.

Method FCN8s UNet SegNet HDCUNet Baseline Baseline + Ladv

Validation Accuracy 0.8286 0.7910 0.8347 0.8693 0.8530 0.8725
Test Accuracy 0.8451 0.8249 0.8607 0.8926 0.8847 0.9058

4.3.2. Algorithm Validation on an Open Dataset

Tong et al. [53] constructed a large-scale land cover dataset with GaoFen-2 (GF-2)
satellite images, named GID, and it contained two sub-datasets: a large-scale classification
set (LCS) and a fine land cover classification set (FLCS), which is provided online at
http://captain.whu.edu.cn/GID/ (accessed on 1 November 2020). The LCS contains
150 pixel level annotated GF-2 images (the training set contains 120 images; the validation
set contains 30 images), and the FLCS is composed of 30,000 multi-scale image patches
(training set) coupled with 10 pixel level annotated GF-2 images (validation set).

In this paper, we pretrained our baseline based on LCS and generated coarse pixel
level labels based on the patch level labels of the FLCS training set. Then, we used the FLCS
to explore the effectiveness of our method, trained Semi-SSN based on labeled samples
and unlabeled samples with different ratios, and made a comparative experiment with
Tong et al. [53] Given that Tang et al. [53] used overall accuracy (OA) as the evaluation
criterion (as Equation (14)), we made a comparison based on this (Table 10).

OA =
TP + TN

TP + FP + TN + FN
, (14)

Table 10. Result on the validation set of the fine land cover classification set (FLCS).

Methods Labeled Data Amount (OA)

1/8 1/4 1/2 Full

Tong et al. [53] N/A N/A N/A 0.7004
baseline 0.4609 0.5233 0.6298 0.6962

baseline+Ladv 0.5051 0.5709 0.6523 0.7191
baseline+Ladv+Lsemi 0.5652 0.6619 0.6913 N/A

Table 10 shows the evaluation results on the FLCS dataset; the OAof our base-
line model trained fully labeled data can reach above 69%, and OA can exceed that in
Tong et al. [53] after adding Ladv. The adversarial loss brings consistent performance
improvement (2.2–4.8%) over different amounts of training data, and incorporating the
proposed semi-supervised learning scheme brings overall a 6.1–13.8% improvement.

4.4. Application and Analysis
4.4.1. Disaster Emergency Response

On 11 July 2018, typhoon “Maria”, the eighth super typhoon, landed on Huangqi
Peninsula, Lianjiang county, Fujian Province, with a local maximum wind level of 14,
accompanied by heavy rain, and Sanduo suffered the most serious damage. Based on two
GF-1(PMS) images, the disaster situation of the area is discussed as shown in Figure 9a,b.

http://captain.whu. edu.cn/GID/
http://captain.whu. edu.cn/GID/
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Figure 9. Change detection before and after typhoon “Maria”, where white stands for coastal
aquaculture areas, red stands for the reduction of aquaculture areas, and green stands for the increase
of aquaculture areas. (a) GF-1 (PMS) image imaged on 8 April 2018; (b) GF-1 (PMS) image imaged on
19 September 2018; (c) cage culture area before typhoon “Maria”; (d) cage culture area after typhoon
“Maria”; (e) change area of the cage culture area; (f) raft culture area before typhoon “Maria”; (g) raft
culture area after typhoon “Maria”; (h) change area of the raft culture area.

We used Semi-SSN to extract coastal aquaculture areas based on the existing labeled
GF-2 samples and unlabeled samples collected from these two images (Figure 9a,b) and
detected the changes of the intersecting parts (3500× 3500 pixels).

We found that typhoon “Maria” had a relatively small impact on the cage culture area
(Figure 9e), while the raft culture area (Figure 9h) had a large area loss. Besides, for the
incremental part after the typhoon, the patch-like increase was likely caused by the broken
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aquaculture areas being blown away by the typhoon, and the more complete increase may
be the newly added aquaculture areas for subsequent reconstruction after the disaster.
According to the statistics, the raft culture area after the typhoon was reduced by about
174,664 m2, and about 16,388 m2 were added; and the cage culture area was reduced by
about 5992 m2 and about 4108 m2 added.

What is more, from 11 to 13 July 2018, we followed the field investigation team from
the National Marine Hazard Mitigation Service (NMHMS) who went to the Fujian coastal
areas to investigate the impact and destruction of the disaster. As shown in Figure 10,
the raft culture area in Sanduo was seriously damaged, and the aquaculture facilities were
destroyed and scattered by storm surges and coastal waves, which further supports the
results of this experiment. Through field investigation, the main reason for the loss of
the raft culture area was that it was easily pushed away by storm surge and nearshore
waves, which usually causes a large area of damage. However, for the cage culture area, the
construction was relatively stable, which was not easily destroyed; therefore, the specific
damage to the species cultured in the cage culture area caused by the typhoon is not easy
to directly measure through image interpretation.

Figure 10. Field investigation of disaster situation. (a) Cage culture area; (b) raft culture area.

4.4.2. Production Monitoring

Aquaculture production activities are mainly carried out from May to September every
year. The number and density of aquaculture areas are very important for production
quality and water environment, so it is necessary to monitor the production activities. After
an investigation, there was no super typhoon passing through the area from 22 June to 19
September in 2016, so we used the intersection region (10,000 × 10,000 pixels) of these two
GF-2 images (Figure 11a,b) to discuss the area change of the two kinds of aquaculture areas
in the peak season.

We used Semi-SSN to extract coastal aquaculture areas based on the existing labeled
GF-2 samples and unlabeled samples collected from these two images (Figure 11a,b) and
compared the changes of the intersecting parts.

It can be seen intuitively that the increase and decrease of the raft culture area
(Figure 11h) is obvious, but the change of the cage culture area (Figure 11e) is not ob-
vious. Through the investigation, the cage culture area can be used for two to three years,
in general, and does not need to be redeployed every year, so it has a lower probability of
a large number of changes. From the extraction results, it is found that the cage culture
area did not change significantly in the peak season of 2016, which shows that this year is
very likely not the year when the cage culture area needed to be replaced and redeployed,
while the raft culture area needs to be redeployed every year, and its significant increase
or decrease indicates that this kind of aquiculture had been actively carried out during
this period. However, at the same time, the density of the raft culture area increased
significantly, which is very important to the yield and biological environment. Therefore,
it is necessary to monitor and control it in time. According to the statistics, in the peak
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season, the raft culture area was reduced by about 50,806 m2 and 72,485 m2 added, and the
cage culture area was reduced by about 5045 m2 and about 4733 m2 added.

Figure 11. Production monitoring, where white stands for coastal aquaculture areas, red stands for
the reduction of aquaculture areas, and green stands for the increase of aquaculture areas. (a) GF-2
image imaged on 22 June 2016; (b) GF-2 image imaged on 19 September 2016; (c) cage culture area on
22 June 2016; (d) cage culture area on 19 September 2016; (e) change area of the cage culture area;
(f) Raft culture area on June 22, 2016; (g) raft culture area on 19 September 2016; (h) change area of
the raft culture area.

4.4.3. Map Making

We chose two GF-1(WFV) images covering Sanduo and carried out image fusion to
avoid the interference of clouds; the detail information is shown in Table 2. Then, we used
Semi-SSN to extract coastal aquaculture areas based on the existing labeled GF-2 samples
and unlabeled samples collected from these two images and made the distribution map of
coastal aquaculture areas in Sanduo, as shown in Figure 12. According to the statistics, in
2016, the raft culture area was 911,872 m2, and the cage culture area was 810,496 m2.
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Figure 12. The distribution map of the coastal aquaculture areas.

5. Conclusions

In this work, we proposed a semi-/weakly-supervised semantic segmentation network
(Semi-SSN) based on conditional adversarial learning for extracting aquaculture areas, and
after experiments and analysis, we drew the following conclusions:

1. For semi-supervised extraction in GF-2 images, both adversarial loss and unlabeled
samples are conducive to improving the validation accuracy and test accuracy, and
especially the former can make the model more sensitive to structure information;

2. For multi-scale spatial resolution remote sensing images, labeled higher spatial resolu-
tion samples are conducive to extracting aquaculture areas in lower spatial resolution
images, but not vice versa;

3. Through experiments, Semi-SSN can reach the approximate effect of other state-of-the-
art methods based on relatively fewer labeled samples and adversarial loss and perform
better in an open remote sensing dataset (FLCS) than Tong et al.’s method [53];

4. Applying Semi-SSN to detect the change before and after typhoon “Maria”, the raft
culture area was more vulnerable than the cage culture area in this disaster.

5. Employing Semi-SSN to monitor the production, in the peak season (2016), the
distribution density of the raft culture area increased significantly during this period,
while the cage culture area did not change significantly.

6. Making the distribution map of coastal aquaculture areas in 2016, the raft culture area
was 911,872 m2, and the cage culture area was 810,496 m2.

In short, Semi-SSN is convenient for practical application and provides a new paradigm
for solving the following problems: (1) the difficulty in labeling; (2) the poor robustness of
the model; (3) the spatial resolution of the image to be processed is inconsistent with that of
the existing samples. In the future, we will be devoted to improving the transfer capacity
and robustness of our model, which is the general dilemma of deep learning models in
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dealing with remote sensing problems, and further explore the performance of our model
on different spectral resolutions, radiometric resolutions, radar data, and different remote
sensing tasks, to make it more suitable for the actual needs.
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