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Abstract: Western Bahia is a critical region in Brazil’s recent expansion of agricultural output.
Its outstanding increase in production is associated with strong growth in cropland area and irrigation.
Here we present analyses of Western Bahian historical changes in land use, including irrigated area,
and suitability for future agricultural expansion that respects permanent protection areas and the
limits established by the Brazilian Forest Code in the Cerrado biome. For this purpose, we developed
a land use and land cover classification database using a random forest classifier and Landsat images.
A spatial multicriteria decision analysis to evaluate land suitability was performed by combining
this database with precipitation and slope data. We demonstrate that between 1990 and 2020, the
region’s total agricultural area increased by 3.17 Mha and the irrigated area increased by 193,480 ha.
Throughout the region, the transition between the different classes of land use and land cover
followed different pathways and was strongly influenced by land suitability and also appears to be
influenced by Brazil’s new Forest Code of 2012. We conclude that even if conservation restrictions
are considered, agricultural area could nearly double in the region, with expansion possible mostly
in areas we classify as moderately suitable for agriculture, which are subject to climate hazards when
used for rainfed crops but are otherwise fine for pastures and irrigated croplands.

Keywords: agricultural suitability; land use change; Cerrado agriculture frontier; multicriteria analysis

1. Introduction

Brazil had a much smaller role in global agriculture just a few decades ago, but it has
recently become one of the top global exporters of food, feed, and fiber and is currently the
world’s largest exporter of soybeans, the second largest exporter of maize, and the fourth
largest exporter of cotton [1]. Part of this production increase is related to the expansion of
crop areas in agricultural frontiers and to growth in yields [2]. Yet a commonly overlooked
factor is playing a significant role in increasing Brazil’s grain and fiber production: Brazil
has been transforming its agriculture to take advantage of its tropical climate, with more
and more areas harvesting two or more crops a year. With no temperature or solar radiation
limitations, in regions where the rainy season is longer than 200 days, two rainfed crops are
possible [3,4]; in other areas, irrigation is used to increase cropping frequency. Nationally,
the harvested area of maize as a second crop has increased by about fivefold in 20 years,
from 2.9 Mha in 2000 to 13.7 Mha in 2020 [5], while the irrigated area has doubled from
3.1 Mha in 1996 to 7 Mha in 2015 [6].

This transformation in Brazilian agriculture is not uniform spatially and depends on
local and regional factors [7]. Specific local climate characteristics, such as the duration
of the rainy season and photoperiod, and other regional factors, including biome type,
land suitability, water resources availability, and power infrastructure for irrigation, are
also important. Assessing only the national potential for future expansion of grain and
fiber production disregards the intimate connection between land and irrigation and these
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regional biophysical factors. Thus, analyses that consider specific local conditions may
produce a clearer picture of each region’s role in increasing Brazilian agricultural output.

This study’s main objective is to provide a detailed and multidisciplinary analysis of
historical changes in land use and agricultural suitability for future agricultural expansion
in Western Bahia, one of a few regions in Brazil where the rapid and significant increase in
production has been outstanding in both the national and international context. Between
1990 and 2014, there was an ~50-fold increase in cotton harvested area, while soybean
area increased by 254% [8]. Soy production in Western Bahia in 2018 amounted to about
6 Mt, roughly 5% of the national output, of which over 70% was exported. In contrast,
the cotton area in Western Bahia in 2019 amounted to 316,900 ha, roughly 20% of the
national harvested area. We also assess how agricultural expansion influences territorial
management, in addition to showing the need for integration with water management
studies to make better decisions for future agricultural expansion.

Remote sensing imagery, regional climate, and topography information were used to
analyze the spatial and temporal evolution of rainfed croplands, irrigated croplands, and
pasturelands. Western Bahia’s agricultural expansion potential is also contextualized with a
suitability classification developed in this work. Although there are other historical land use
classifications [2,9] and maps of the irrigated area in Brazil [6], previous analyses have not
cross-analyzed agricultural expansion with land suitability. Moreover, irrigation expansion
analyses are usually disconnected from land use dynamics. Here, we regard irrigation
expansion as a type of land use change that should be considered both in the context of
land suitability and as a sustainable alternative to an increase in agricultural output.

2. Materials and Methods
2.1. Study Area

Western Bahia is part of MATOPIBA (acronym created from the first two letters of
four Brazilian state names: Maranhão, Tocantins, Piauí, and Bahia), a region regarded as
the last agricultural frontier in Brazil (Figure 1a). The region’s climate is not appropri-
ate for producing two rainfed crops, but the rainy season is well defined. In addition,
slopes vary from flat to wavy, facilitating large-scale agricultural mechanization. Finally,
water resources are abundant, particularly in the extreme western part of the region [10],
allowing for escalating irrigation growth since the 1990s [11]. These characteristics have
attracted migrant rural producers from southern Brazil who established strong commercial
agriculture in the region, although subsistence farming is also present. With only 1.5%
of the national area, Western Bahia is today one of the largest producers of soybeans and
cotton in the country.

2.2. Land Use and Land Cover Classification

Land use and land cover were classified into nine categories. The Cerrado biome’s
natural vegetation is a mosaic of different vegetation types ranging from grasslands to
forestlands. It has been classified into three categories by [12]: forest formations (ciliary
forest, gallery forest, dry forest, and Cerradão), savanna formations (Cerrado sensu stricto,
park savanna, palm, and vereda), and grasslands (campo limpo, campo sujo, and campo
rupestre). Agriculture land uses include four classes [9]: rainfed agriculture, irrigated
agriculture, pasturelands, and mosaics of crops and pastures. Water bodies and urban
areas/other farm buildings complete the list.

The land use and land cover classification (LULCC) method used includes cloud
computing steps using the Python API on the Google Earth Engine platform [13] (Figure 2a)
and local processing steps using a set of programming languages and open-source tools for
geospatial analysis (Figure 2b).
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Figure 1. Orientation map. (a) The study area corresponds to the basins of the Grande, Corrente, and Carinhanha Rivers,
which are in the western part of Bahia State, Brazil, extending from 10◦S to 16◦S and from 47◦W to 43◦W and covering
approximately 130,000 km2 in the Cerrado biome. Part of the Carinhanha basin is in Minas Gerais State; (b) Delimitation of
the basins of the Grande, Corrente, and Carinhanha Rivers and locations of the ground truth sites (see Section 2.2).

The imagery dataset used in this work was composed by Thematic Mapper, Enhanced
Thematic Mapper Plus and Operational Land Imager Landsat sensors, onboard Landsat 5,
7 and 8 missions [14]; the digital surface model used was ALOS World 3D-30m dataset,
version 3.1 [15]; the Day/Night band composites of nighttime data from the Visible Infrared
Imaging Radiometer Suit project (VIIRS), version 1.0 [16]. The urban and road infrastructure
data were obtained from the OpenStreetMaps project database [17] and the hydrography
data used was obtained from the multiscale ottocodified hydrographic base provided by the
National Water Agency in Brazil [18]. Agricultural areas used to validate our study were
provided from the Municipal Agricultural Survey—IBGE [19], MapBiomas version 4.1 [9],
TerraClass project [20], and PRODES Cerrado [21].

The random forest classifier [22] was applied to Landsat 5, 7, and 8 images to produce
the LULCC maps. Seven Landsat bands were used in this work, including visible (red,
green, blue), near-infrared (NIR), shortwave infrared (SWIR1, SWIR2), thermal, in addition
to pixel quality assessment. All images were filtered for the dry season of the Cerrado
biome (from April to August) to minimize the commission errors in the classification
of forest formations and to avoid loss of information due to clouds and cloud shadows.
A total of 49,639 tiles were processed: 20 scenes to cover the entire study area annually
from 1990 to 2020, with one image every 16 days for the seven Landsat bands used. Each
image was corrected for top-of-atmosphere and relief (pixel-by-pixel approach), removing
pixels contaminated by clouds and cloud shadows and, subsequently, the noise of images
edges. Thirty-one annual mosaics were generated—from 1990 to 2020—using the median
values of the pixels uncontaminated by clouds and cloud shadows filtered from the images
time series.
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In addition, forty indexes were calculated based on (i) Landsat 5, 7 and 8 bands, (ii)
the ALOS World 3D-30m, (iii) the VIIRS Day/Night Band, and (iv) from the pixel distances
to the main towns, rivers, and roads in the study area to be later evaluated against the
random stratified samples generated within the polygons digitized in this work.
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of the irrigated and rainfed area’s spectral response when there was no crop planted in 
the center pivots at the time the images were collected. Therefore, we separated the rain-
fed croplands from the irrigated farmlands using the maps of historical center pivot data 
in Western Bahia from 1990 to 2018 [11], which were also produced using remote sensing, 
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The diverse spectral responses related to climate seasonality and interannual varia-
bility, variations within the same land cover class, different crops, and crop-pasture mo-
saics caused discontinuities in the classification results. To minimize these discontinuities, 

Figure 2. Flowchart for datasets and processing steps used for land use and land cover change classification of Western
Bahia. (a) The initial processing of the imagery used the Google Earth Engine platform; (b) The final processing steps
used specific code written in programming languages, and open-source tools for geospatial analysis were used on a local
workstation in the subsequent steps.

Three types of data sampling were used for calibration of the classification. First, we
classified the land use and land cover for 120 ground truth sites in two field campaigns
in 2017 [23] (Figure 1b). The land use and land cover were organized into five classes:
(i) forest formations, (ii) savannas, (iii) rainfed crops, (iv) irrigated crops, and (v) pastures.
These field samples were then used to assist in manually drawing 2707 similar polygons in
neighbor regions of the mosaic generated for that year (112 polygons in forest formations,
121 in savanna formations, 121 in grasslands, 35 in mosaics of crop or pastures, 294 in
rainfed crops, 1411 in irrigated crops, 309 in pasturelands, 204 in water bodies, and 100 in
urban areas/farm buildings). Random pixels were sampled inside the drawn polygons
(stratified sample approach) to expand the sampling points from 120 to about 28,500 points.
These training data were sufficient to train the classifier, since the use of all pixels within
the polygons made the computational processing time much longer.

Second, grasslands were sampled with Landsat images with a natural color composi-
tion and the normalized difference vegetation index. Third, urban areas and water bodies
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were sampled based on mapping data from the OpenStreetMap project and the Landsat
NIR band. Regions that were not distinguishable between cropland and pasture were
classified as a mosaic of crops and pastures.

Dimension reduction procedures such as a principal component analysis and a correla-
tion analysis were performed to eliminate the calculated indexes with high autocorrelation
(r > 0.75) for all sampling points. In addition, spectral information from Landsat data
bands (blue, green, red, NIR, SWIR1, SWIR2) was transformed by the tasseled cap method
into three indexes (brightness, greenness, and wetness), providing more specific spectral
information [24–27]. After all processing, a combination of 14 bands and indexes was
sufficient to classify the images: nighttime light data, normalized difference built-up index,
four physical data variables (elevation, slope, aspect, and hill shade), pixel distances to the
nearest stream, red/green ratio, enhanced vegetation index, normalized difference water
index, the three tasseled cap transformation indexes, and a water mask.

To train the random forest classifier, we randomly selected 80% of all sampled points
collected (22,800 points) and used 100 decision trees and the 14 indexes remaining after
the dimension reduction procedures. Three thousand two hundred points were randomly
stratified to train (800 for validation) each class of natural vegetation and agriculture,
while just 200 points were randomized to train (50 for validation) water bodies and urban
areas/agricultural buildings to minimize commission errors on these two classes.

Initially, the classifier was not able to identify irrigation areas with high accuracy. Most
of the irrigation areas were originally classified as rainfed crops due to the similarity of
the irrigated and rainfed area’s spectral response when there was no crop planted in the
center pivots at the time the images were collected. Therefore, we separated the rainfed
croplands from the irrigated farmlands using the maps of historical center pivot data in
Western Bahia from 1990 to 2018 [11], which were also produced using remote sensing,
ground-truth data, and cloud computing. Subsequently, the series with irrigated areas was
digitized and updated with the years 2019 and 2020 in this work using the same methods
according to [11].

The diverse spectral responses related to climate seasonality and interannual variabil-
ity, variations within the same land cover class, different crops, and crop-pasture mosaics
caused discontinuities in the classification results. To minimize these discontinuities, algo-
rithms based on temporal, transition, and spatial metrics were developed. The temporal
discontinuities associated with the interannual variability of climate and other variations
in time were filtered using a 5-year filter (the year to be corrected, the two years before, and
the two years after). The replaced pixel is equal to the statistical mode (the most common
value) of the pixels within these five years. With this metric, it was possible to minimize
the discrepancies of temporal continuity of LULCC classes due to failures in the acquisition
of data from sensors and the presence of clouds and shadows. This process also reduces
transition inconsistencies between the classes of forest and savanna formations attributable
to variations in the greenness of the natural vegetation caused by the interannual variability
of climate (e.g., it avoids unlikely changes such as forest formation > rainfed crop > forest
formation). In addition, specific rules were used to correct the years at the beginning and
end of the series (1990, 1991, 2019, and 2020). For example, for the year 1991, the metric
correction used only the year 1990 and the two subsequent years. For 2020, the filter used
only the previous two years of data.

Finally, spatial metrics were used to remove isolated pixels and small clusters of pixels
(<1 ha, or <10 pixels) to generate the final time series dataset of LULCC from 1990 to 2020.

Two methods evaluated the accuracy of the land use classification: (i) a cross-comparison
between ground-truth sites and the classification results using the Cohen’s kappa index [28,29],
and (ii) correlations of total area per class against other LULCCs. These correlations were
calculated at the municipality level, aggregating cropland and pastureland data results
of this work and correlating them with four independent products for different periods.
The first database used to evaluate LULCC was the IBGE (Brazilian Institute of Geography
and Statistics) database for the period 1990–2018 [19]. The second was the LULCC time
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series from the MapBiomas consortium (release 4.1) for 1990–2018 [9]. The third was
the municipality-aggregated yearly deforestation data from the PRODES Cerrado project
during 2008–2018 [21]. The fourth was the agricultural land use data from the TerraClass
project for the Cerrado for 2013 [20].

2.3. Suitability for Future Agricultural Expansion

The suitability analysis for future agricultural expansion was divided into five parts
(Appendix A, Figure A1). First, the land suitability classes were defined following the Food
and Agriculture Organization of the United Nations (FAO) land suitability classification:
highly suitable, moderately suitable, marginally suitable, and unsuitable (Section 2.3.1).
Second, the criteria used to identify suitability were chosen according to their importance
for agricultural expansion in Western Bahia (Section 2.3.2). Third, the criteria and the
pair-wise comparison matrix were aggregated and processed using the spatial multicriteria
decision analysis (SMCDA) method applied to the 1990 LULCC. This step also eliminated
the restricted areas from suitable areas for expansion (Section 2.3.3). Fourth, the areas
classified according to their 1990 suitability were evaluated against historical land use
changes (Section 2.3.4). Here, rainfed crops, irrigated crops, and pastureland areas were
spatially associated with land suitability classes to assess agricultural expansion changes
from 1990 to 2020. Finally, the criteria weights from the SMCDA method were also applied
to 2020 LULCC to generate an updated suitability map for future agricultural expansion
(Section 2.3.5).

2.3.1. Suitable Areas

The land suitability classification by the FAO approach classifies land according to a
range—from highly suitable to not suitable (unsuitable)—based on climate, terrain, soil
properties, and other land-use-related characteristics [30].

The quality of land suitability assessments, and hence the reliability of land use
decisions, depends primarily on the quality of the information used to derive them [31].
Land evaluation is defined as “the assessment of land performance when used for a
specified purpose, involving the execution and interpretation of surveys and studies of
landforms, soils, vegetation, climate and other aspects of land to identify and make a
comparison of promising kinds of land use in terms applicable to the objectives of the
evaluation” [30]. Here, the lands are classified in only one kind of suitability class, described
in Table 1.

Table 1. Land suitability classes as defined in [30].

Classes Description

Highly suitable
Land having no significant limitations to the sustained application of a given use or only minor

limitations that will not significantly reduce productivity or benefits and will not raise inputs
above an acceptable level.

Moderately suitable
Land having limitations which, in aggregate, will reduce productivity or benefits and increase

required inputs to the extent that the overall advantage to be gained from the use, although still
attractive, will be appreciably inferior to that expected on highly suitable land.

Marginally suitable
Land having limitations that, in aggregate, are severe for sustained application of a given use and

will reduce productivity or benefits or increase required inputs, an expenditure that is only
marginally justified.

Unsuitable Land which has qualities that appear to preclude sustained use of the kind under consideration.

2.3.2. Criteria Thresholds

To evaluate the land suitability for future agriculture expansion in Western Bahia,
we used a SMCDA. SMCDA is a useful tool to assess multiple conflicting criteria in the
decision-making process. It is mainly used when it is necessary to decide which metrics
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are most relevant or limiting in decision analysis. A detailed description of the SMCDA
method and results are presented in Appendix A.

First, we used three criteria to determine the agricultural land suitability for cropland
and pastureland in Western Bahia: (i) the percentage of years that the rainy season lasted
longer than 120 days (pp), (ii) the 1990 LULCC, and (iii) the slope of the terrain. Then,
we evaluated their influence on agriculture expansion in the region (Table 2).

Table 2. List of criteria and threshold values for each variable.

Criteria Fuzzy Set Description

pp

pp = 100%: pixel value = 1
80% ≤ pp < 100%: pixel value = 0.9
50% ≤ pp < 80%: pixel value = 0.5

pp < 50%: pixel value = 0.1

Rain duration is the most critical environmental factor in
the model. Rainfed crops need at least 120 days of rain to

grow healthy. Pixels where the average rainy season
duration is greater than or equal to 120 days in 100% of

the years from 1993 to 2016 (pp = 100%) receive the highest
priority value (1). Pixels achieving this threshold between

80% and 100% of the time receive a moderate priority
value (0.9); pixels achieving this between 50% and 80% of
the time receive a marginal priority value (0.5); and pixels
where pp < 50% receive a priority value close to zero (0.1).

LULCC

Forest formations: pixel value = 0.3
Savanna formations: pixel value = 0.5

Grasslands: pixel value = 0.9
Mosaic of crops and pasture: pixel value = 1

Rainfed crops: pixel value = 1
Irrigated crops: pixel value = 1
Pasturelands: pixel value = 1

Water bodies: pixel value = 0.1
Urban areas and farm buildings: pixel value = 0.1

Given the costs of land conversion, LULCC is a limiting
factor in agricultural expansion. Areas already used as

rainfed crops, irrigated crops, and pasturelands are
already converted, so they receive the highest value for

suitability (1). Grasslands are easy to convert to
agriculture and therefore receive a high priority value (0.9).
Savanna formations have higher conversion costs, and we
expect that they will typically be converted to agriculture
after grasslands, and thus they receive a moderate priority
value (0.5). Forest formations should be the last land to be

converted to agriculture and therefore receive a low
priority value (0.3). Water bodies, urban areas, and land

occupied by farm buildings are not usable for agriculture,
so they receive the lowest priority value (0.1).

Slope

Fuzzification method with an inverted J-shaped
curve. The lowest slope values receive the highest
priority values up to the limit of 30% slope. Above

this value, pixels receive values close to zero
because of their lowest priority. See Appendix A

for more details.

Steeper slopes (more than 30%) make mechanization
impractical for rainfed or irrigated croplands. Steeper

lands are restricted to use as pastures.

We selected pp because the rainfed croplands are critically dependent on rains for
healthy growth and production. Rainfed crops typically grown in the region, such as
soy, cotton, or maize, require at least 600 mm of rainfall, which must be distributed
throughout the 120-day growing season. The climate in Western Bahia presents substantial
interannual variability, both in terms of the amount of annual rainfall and duration of the
rainy season [8]. As a result, areas where the rainy season lasts at least 120 days every
year (pp = 100%) are the best choice for a safe financial return and receive the highest
suitability-priority value (1). In contrast, areas that meet this criterion less frequently
receive lower suitability-priority values, according to Table 2. We also assumed that when
the rainy season lasts longer than 120 days, the amount of rain exceeds 600 mm in the
period. Fuzzified values associated with pp are presented in Figure A3a.

LULCC is a simple criterion to indicate how human activity interacts with the land-
scape. It is related to the cost of converting the natural land cover to agriculture and is
also associated with land economic value. Agricultural lands undoubtedly have higher
suitability values than the unconverted areas (forests, savannas, and grasslands), which
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have their suitability values chosen according to the cost of conversion, according to Table 2.
A map of the fuzzy set for LULCC is similar to the land use map presented in Figure 3.
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Finally, agricultural machinery increases farm worker productivity, and thus mecha-
nization is another particularly important driver of productivity, land value, and suitability
for agriculture. The slope has a sizable financial influence on agriculture production—large

http://obahia.dea.ufv.br
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tractors and implements can only be used when the grade is low (<3%). In comparison,
smaller and less productive tractors must be used as inclination increases until the max-
imum of 30% inclination, the practical limit for tractor use (Table 2). Fuzzified values
associated with slope are presented in Appendix A, Figure A3b.

The agricultural suitability map for 2020, used for future expansion analysis, was
generated with the same weights from the SMCDA based on the pp, slope, and LULCC
criteria from 1990, changing only the LULCC map to 2020.

2.3.3. Constrained and Restricted Areas

Constrained areas are not subject to short-term changes; i.e., currently, they cannot
be used for agriculture. They include urban areas, highways, farm buildings, and water
bodies (small lakes, dams, or streams). Constructed areas, roads, and the stream network
locations were produced as part of the land cover classification described in Section 2.2.

The restricted areas are lands intended for environmental preservation due to federal
regulations and cannot be used for agriculture. These include Permanent Preservation
Areas (PPAs), Legal Reserves (LRs), and Integral Conservation Units (ICUs). PPA and LR
are regulated by Brazil’s revised Forest Code (Federal Law 12,651 of 25 May 2012), whereas
ICUs are governed by the National System of Nature Conservation Units (Federal Law
9985, of 18 July 2000).

PPAs are natural landscapes preserved mainly due to the natural vegetation’s capacity
to protect the soil against erosion, landslides, or other forms of degradation. It covers
geologically fragile spaces such as river edges and mountain tops, among others and helps
preserve water resources and biodiversity, facilitating fauna and flora’s gene flow.

LRs are areas with native vegetation located inside a rural private property, other than
the PPAs. They are necessary for the sustainable use of natural resources, helping in the
conservation and rehabilitation of ecological processes and promoting the preservation
of biodiversity and shelter and protection of wild fauna and native flora. In the Cerrado
biome, rural properties must preserve at least 20% of the total property area as a LR.
Although the legislation allows the possibility of sustainable management of the LR under
specific conditions, we decided to keep these areas entirely restricted from agricultural
expansion in our land suitability classification.

ICUs are set aside to preserve nature, and only the indirect use of their natural resources
is allowed, with exceptions specified in the legislation. Agricultural activities are not permitted
in an ICU. Thus, we consider these areas as restricted from agriculture expansion.

PPAs, LRs, ICUs, constructed areas, highways, and stream network locations were
converted to raster format in the same resolution as the LULCC and were aggregated to
the SMCDA.

2.3.4. Evaluation of Results

To evaluate the suitability analysis’s accuracy for future agricultural expansion classi-
fication, we compare the actual land use classification for 2020 against the land suitability
classes for 1990. This analysis assesses how the LULCC observed in 2020 is distributed
across the land suitability classes determined 30 years before.

2.3.5. Assessment of Future Expansion

The validated criteria weights from the SMCDA method were also applied to the
2020 LULCC to generate the 2020 suitability map. The 2020 map is different from the 1990
map because changes in land use and land cover may have changed the land suitability,
following the rationale of Table 2.

The agricultural suitability changes in the last 30 years are analyzed by a cross-
comparison of the suitability maps of 1990 and 2020 (Section 3.2).

To assess the limitations on future agricultural expansion, we cross-evaluate agri-
cultural lands with irrigated crops considering both the agricultural suitability level of
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the remaining areas (i.e., those that have not yet been converted to agriculture) and the
restrictions related to conservation units and preservation areas.

3. Results
3.1. Land Use and Land Cover Classification

The historical LULCC dataset has a yearly temporal resolution (from 1990 to 2020)
and a spatial resolution of 1 arc-second (approximately 30 m). The historical series con-
tains the following classes: forest formations, savanna formations, grasslands, mosaics of
crops and pasture, rainfed crops, irrigated crops, pasturelands, water bodies, and urban ar-
eas/farm buildings. Agricultural expansion occurred mainly from west to east in the region
(Figure 3a–g). In the extreme western areas, most landscapes classified as pastureland in
1990 were converted to rainfed croplands by 2005 (Figure 3a–d). The expansion of rainfed
agriculture in the extreme west has dislocated pasturelands mostly to the northeast and
southeast. Most savanna formations were converted to pastures, while the grasslands were
converted to croplands (Table 3). The growth of irrigated cropland in the region occurred
mainly between longitudes 46◦W and 45◦W on the plateau (Figure 3a–g). The irrigated
cropland spread between 12◦S and 13◦S in the late 1990s (Figure 3b,c), later intensified in
these areas (Figure 3d,e), and more recently expanded to other regions (Figure 3f,g).
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Table 3. Transition matrix between 1990 and 2020 land use land cover classifications. Transition numbers and totals by class are in ha. The total natural vegetation area is the sum of forest
formations, savanna formations, and grasslands. The total agricultural area is the sum of the mosaics of crops and pasture, rainfed crops, irrigated crops, and pasturelands.

1990 LULCC
Total 2020
Area by

Class (ha)

Total 2020 Natural
Vegetation

or Agriculture
Area (ha)

Forest
Formations

Savanna
Formations Grasslands

Mosaics of
Crops and

Pasture

Rainfed
Crops

Irrigated
Crops Pasturelands Water

Bodies

Urban Areas
and Farm
Buildings

20
20

LU
LC

C

Forest formations 1.42 × 106 8.36 × 104 6.31 × 104 6.33 × 102 1.57 × 102 2.35 × 102 2.84 × 103 2.83 × 102 1.94 × 101 1.57 × 106

7.87 × 106Savanna formations 1.11 × 106 2.56 × 106 9.19 × 105 1.17 × 104 8.80 × 102 5.53 × 102 1.75 × 104 8.95 × 102 4.15 × 101 4.62 × 106

Grasslands 4.16 × 104 5.95 × 104 1.57 × 106 1.51 × 103 1.27 × 103 1.54 × 102 4.79 × 103 1.20 × 102 6.08 × 101 1.68 × 106

Mosaics of crops and
pasture 5.30 × 104 1.31 × 105 1.50 × 104 3.79 × 104 1.56 × 101 3.20 × 102 1.17 × 105 1.77 × 102 1.53 × 102 3.54 × 105

5.14 × 106Rainfed crops 4.98 × 105 6.88 × 105 9.00 × 105 7.34 × 103 7.83 × 105 2.11 × 103 3.33 × 105 6.69 × 102 3.23 × 102 3.21 × 106

Irrigated crops 2.06 × 104 6.29 × 104 7.34 × 104 4.25 × 102 3.04 × 104 2.02 × 104 9.71 × 103 0 2.36 2.18 × 105

Pasturelands 1.07 × 105 5.64 × 105 1.01 × 105 1.56 × 104 3.80 × 102 5.75 × 102 5.65 × 105 1.87 × 102 1.12 × 102 1.35 × 106

Water bodies 2.82 × 103 5.17 × 102 1.15 × 102 3.02 × 101 1.49 0 1.58 × 102 3.91 × 103 6.16 7.56 × 103 –
Urban areas and farm

buildings 5.00 × 102 3.06 × 103 1.62 × 103 1.19 × 103 6.30 × 102 0 1.60 × 103 3.16 2.79 × 103 1.14 × 104 –

Total 1990 area by class (ha) 3.25 × 106 4.15 × 106 3.64 × 106 7.63 × 104 8.17 × 105 2.42 × 104 1.05 × 106 6.28 × 103 3.51 × 103 1.30 × 107 –
Total 1990 natural

vegetation or agricultural
area (ha)

1.10 × 107 1.97 × 106 – – – –
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The transitions between the land use and land cover classes are shown in Table 3.
Overall, the total agricultural area expanded from 1.97 Mha in 1990 to 5.14 Mha in 2020,
an increase of 3.17 Mha (average expansion rate of 102,269 ha yr−1, or 3.14% yr−1 from
1990 to 2020) (Table 3 and Figure 4). Irrigated croplands increased 7.35% yr−1, from
2.42 × 104 ha to 2.18 × 105 ha (from 187 center pivots in 1990 to 1883 center pivots in 2020)
(Table 3).

1 
 

Figure 4. Evolution of land use and land cover changes in Western Bahia. The proportion of water bodies and urban
areas/farm buildings to the other land uses is too small to be represented in the figure.

At the decadal time scale, the total agriculture areas increased by 1.13 Mha in 1990–2000,
1.07 Mha in 2000–2010, and 0.970 Mha in 2010–2020. The average linear expansion rate has
decreased slightly in the period (0.112, 0.107, and 0.097 Mha yr−1, respectively), but the
decadal growth rate was approximately twice as high in 1990–2000 (57%) as the growth
rate in 2000–2010 (35%) and 2010–2020 (23%). Rainfed crops increased by 0.833, 0.958, and
0.606 Mha from 1990–2000, 2000–2010, and 2010–2020, respectively, with a higher linear
expansion rate in the first two decades (0.0833, 0.0958, and 0.0606 Mha yr−1, respectively)
and a decadal growth rate of 102%, 58%, and 23%, respectively. Irrigated crops started from
24,200 ha in 1990 and increased by 49,700 and 34,600 ha from 1990–2000 and 2000–2010,
respectively but accelerated to a change of 109,000 ha during 2010–2020, with growth rates
of 205%, 47%, and 101%, respectively. Pasturelands had the highest growth in 1990–2000,
increasing 0.274 Mha (27,400 ha yr−1, or 26% in 10 years), over five times higher than in
2000–2010 (4,980 ha yr−1, or 4% in 10 years). After that, pasturelands decreased at the rate
of 2110 ha yr−1 during 2010-2020.

The next paragraphs analyze the long-term changes, i.e., from 1990 to 2020, according
to the conversion matrix presented in Table 3.

The rainfed crop areas increased by 2.39 Mha, from 0.817 Mha to 3.21 Mha (7.72× 104 ha yr−1).
This increase represents 76% of the overall agricultural land expansion (3.17 Mha; Table 3
and Figure 4). Over time, rainfed crops were established mostly over grasslands (9.00 × 105 ha)
and savanna formations areas (6.88 × 105 ha), with smaller areas coming from forest for-
mations (4.98 × 105 ha) and pasturelands (3.33 × 105 ha) (Table 3).

Total pasturelands area increased by 300,000 ha, from 1.05 Mha in 1990 to 1.35 Mha in
2020 (an average rate of 9.75 × 103 ha yr−1, which represents 10% of the overall agriculture
expansion) (Table 3). The pasturelands expansion occurred mainly in savanna areas
(5.64 × 105 ha), with smaller areas coming from forest formations (1.07 × 105 ha) and
grasslands (1.01 × 105 ha).
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Mosaics of crops and pasture increased by 277,700 ha, from 7.63× 104 ha to 3.54 × 105 ha
in 2020 (8.97 × 103 ha yr−1), mostly over savanna formations (1.31 × 105 ha) and forest
formations areas (5.30 × 104 ha). Most irrigated crops were established on grassland and
savanna formations (7.34 × 104 ha and 6.29 × 104 ha, respectively).

Meanwhile, natural vegetation decreased by 3.18 Mha, from 11.0 Mha in 1990 to
7.87 Mha in 2020. Forest formations decreased by 1.69 Mha and grasslands decreased by
1.96 Mha, while savanna formations increased by 470,000 ha. The slight increase in the
savanna formations area seems to be due to the degradation of forest formations caused by
fire or other disturbance: 1.15 Mha of forest formations were converted to either savanna
(1.11 Mha) or grasslands (41,600 ha). A much smaller portion of forest formations was
converted to pastureland (107,000 ha), rainfed crops (498,000 ha), and irrigated crops
(20,600 ha). Urban areas and farm buildings increased from 3510 ha in 1990 to 11,400 ha in
2020 (Table 3).

These numbers indicate a change in the agricultural focus of the region. While pasture-
lands dominated in 1990 (1.05 Mha versus 0.82 Mha), rainfed crops were predominant in
2020, with twice as much cropland as pasture (3.21 Mha versus 1.35 Mha). About 343,000 ha
of cropland area (333,000 ha of rainfed and 9,700 ha of irrigated) were established over
former pasturelands. This accounts for about 33% of the total rainfed agriculture expan-
sion of 1.05 Mha. Moreover, the high rate of irrigation growth—nearly twice as fast as
rainfed cropland expansion (7.35% yr−1 versus 3.14% yr−1)—also illustrates the region’s
investment in irrigation.

In summary, the agricultural expansion occurred mainly over grasslands and savanna
formations, while part of the savanna loss was offset by the degradation of forest formations
to savanna formations (Table 3 and Figure 4). In addition, agricultural expansion slowed
between 2013 and 2015, and since 2015, it appears to have stabilized.

The accuracy of the LULCC was determined by -cross-comparison of the municipality-
aggregated LULCC data from different databases. The Cohen’s kappa, although it was a
classic accuracy index widely used in remote sensing in the past, was not used in this work
because it is misleading and/or incorrect for practical applications in remote sensing [32,33].
A more robust indicator of accuracy is the determination coefficient r2, which was used to
determine all correlations between agricultural areas from our LULCC database (y-axis)
and other LULCC data (x-axis). In all cases, r2 was higher than 0.94 (Figure 5a–d).

Compared to the MapBiomas 4.1 classification, the LULCC developed in this study
showed an adjustment of r2 = 0.97 for the rainfed crop class (Figure 6a), r2 = 0.04 for mosaics
of crops and pastures (Figure 6b), and r2 = 0.48 for the pastureland class (Figure 6c). The
rainfed crops and pastureland areas were slightly overestimated in our LULCC (slope ~1.2)
(Figure 6a,c). The differences between our results and MapBiomas are also influenced by
ground truth data used for machine learning calibration of the classification algorithms.
While our analysis is regionally focused, using ground truthing throughout the region to
improve the classifier, MapBiomas analysis is nationally focused and may underperform in
a specific region.
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3.2. Suitability for Future Expansion

A map of agricultural suitability in 1990 is presented in Appendix A, Figure A2a. The
areas classified according to their 1990 suitability are evaluated against historical land use
changes (Figure 7). In 2020 the highly suitable lands were mainly used by croplands (both
rainfed and irrigated), with a small number of pasturelands in these lands. On the other
hand, moderately suitable areas are somewhat well distributed between pasturelands and
croplands. The fact that most of the highly suitable land was taken over by croplands
validates our land suitability analysis.
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map of 1990 and the 2020 land use land cover classification.

In 2020, 2.00 Mha of cropland areas occupied highly suitable areas, while 1.31 Mha
occupied moderately suitable areas (Figure 7). The pasturelands are located mainly in
moderately suitable areas (1.02 Mha), and a lower amount is in highly suitable areas
(0.186 Mha). The presence of agricultural practices in marginally suitable and unsuitable
areas in Western Bahia represents less than 105,000 ha (Figure 7). While marginally suit-
able cropland areas represent 43,700 ha and pasturelands a total of 52,000 ha, the use of
unsuitable areas by crops and pastures is negligible.

The transitions of cropland, pastureland, and remaining natural vegetation areas (i.e.,
those that may have remaining potential for conversion to agriculture) followed different
pathways between the suitability classes. We showed in Section 3.1 that total cropland in
Western Bahia increased from 0.841 to 3.43 Mha (Table 3). Most of this expansion (2.39 Mha)
happened in highly suitable areas (from 0.77 Mha in 1990 to 3.17 Mha in 2020; Table 4).
In the moderately suitable areas, cropland increased from 25,900 ha to 197,000 ha, while in
the marginally suitable areas, it increased from 794 ha to 7960 ha (Table 4).
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Table 4. The transitions between the 1990 and 2020 suitability maps for cropland, pastureland, and remaining natural
vegetation areas. Transition numbers and totals are in ha. The total agricultural area is the sum of the suitability classes
(High + Moderate + Marginal) for the cropland and pastureland classes. Total natural vegetation area is the sum of the
suitability classes (High + Moderate + Marginal + Unsuitable) in remaining natural vegetation areas.

Land Use and
Land Cover Class

Total Area by Suitability Class (ha) Change by Class
2020−1990

(ha)

Change by LULCC
(ha)Suitability

Class 1990 2020

C
ro

pl
an

d High 7.73 × 105 3.17 × 106 2.39 × 106

2.57 × 106Moderate 2.59 × 104 1.97 × 105 1.70 × 105

Marginal 7.94 × 102 7.96 × 103 7.06 × 103

Pa
st

ur
el

an
d High 4.81 × 105 4.38 × 105 −4.51 × 104

2.99 × 105Moderate 4.78 × 105 8.24 × 105 3.43 × 105

Marginal 2.81 × 103 4.48 × 103 1.53 × 103

R
em

ai
ni

ng
na

tu
ra

l
ve

ge
ta

ti
on

ar
ea

s

High 2.04 × 106 6.57 × 105 −1.38 × 106

−2.87 × 106Moderate 6.08 × 106 5.00 × 106 −1.08 × 106

Marginal 6.40 × 105 2.54 × 105 −3.86 × 105

Unsuitable 1.57 × 105 1.33 × 105 −2.43 × 104

Total agricultural area (ha) 1.76 × 106 4.63 × 106 2.87 × 106

Total natural vegetation area (ha) 8.92 × 106 6.05 × 106 −2.87 × 106

Pastureland increased by 300,000 ha from 1990 to 2020. It has expanded mainly in
moderately suitable areas, increasing from 480,000 ha in 1990 to 824,000 ha in 2020 and in
the marginal areas from 2780 ha to 4480 ha. However, in highly suitable areas, pasturelands
decreased from 483,000 ha to 438,000 ha (Table 4).

Natural vegetation was mostly present in highly and moderately suitable areas in
1990, and thus these were the lands that suffered most of the conversion to agriculture
(changes of −1.39 Mha and −1.08 Mha, respectively; Table 4). In 1990, the remaining
natural vegetation areas were predominantly in moderately suitable areas rather than
in highly and marginally suitable areas; this general pattern persisted in 2020. In 1990,
6.10 Mha of the remaining natural vegetation area was in the moderately suitable class,
followed by 2.05 Mha in highly suitable areas and 644,000 ha in marginal areas. In 2020, the
natural vegetation areas decreased to 5.02 Mha in the moderately suitable class, 659,000 ha
in the highly suitable class, and 256,000 ha in marginal areas.

Overall, the total agricultural area increased by 2.88 Mha at the expense of natural
vegetation. Of these changes, 83% (2.39 Mha) were for establishing croplands in highly
suitable areas (Table 4). Little highly suitable land remains unused by agriculture today
(657,000 ha). As discussed in the previous paragraph, most of the land available for
expansion is moderately suitable for agriculture (5 Mha, Table 4). However, 94% of 2020
croplands (3.17 out of 3.43 Mha) are in highly suitable areas, which reflects the preferences
of crop farmers for better lands and sets limitations for cropland expansion in the region.
These limitations will be discussed in Section 4.

An analysis of the spatial patterns of agricultural land use across suitability classes
indicates that croplands and pasturelands dominated most of the highly suitable areas
in 1990 (compare dark green shades in Figure 8a with dark blue shades in Figure 8b).
Some highly suitable areas initially used as pasturelands were converted to croplands
throughout the years, for example, in the extreme west around 13◦S. In 1990, most of the
remaining unused areas were classified as moderately and marginally suitable areas that
were subsequently converted to crop or pasture over time (Figure 8, Table 4). Pasturelands
expanded over moderately suitable areas (Figure 8, Table 4) and diminished over highly
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suitable areas, indicating that farmers replaced pastures located in highly suitable areas
with croplands (Figure 8).
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basin (69,500 ha, 0.5% of the region area), (2) Rio de Janeiro basin (252,000 ha, 1.9% of the region 
area) and (3) Rio Grande basin (2.45 Mha, 19% of the region area). Most of the remaining land is 
moderately suitable. 

The rainfed cropland in highly suitable areas increased at an approximately constant 
rate (4.40 × 104 ha yr−1) from 1990 to 2013. From 2013 to 2018, this rate decreased to 2.81 × 
103 ha yr−1 (Figure 9a), and after 2018, it increased to 8.70 × 103 ha yr−1. This dramatic de-
crease between 2013 and 2018 is most likely associated with the new Forest Code’s ap-
proval and the scarcity of highly suitable land discussed above. However, it is also linked 
with agricultural intensification practices such as irrigation, which has also increased dra-
matically since 2013 (Figure 9b). In other words, without much highly suitable land avail-
able for expansion and pressured by the Forest Code limitations, farmers increasingly 
turned to irrigation to increase production. 

Similar patterns were observed on rainfed crops in moderately suitable regions (Fig-
ure 9a). From negligible amounts in 1990, rainfed crops expanded into moderately suita-
ble areas at a rate of 4.01 × 104 ha yr−1 until 2013, reaching 0.962 Mha. From 2013 to 2018, 

Figure 8. Spatial suitability classification of Western Bahia in (a) 1990 and (b) 2020. The blue shades represent the suitability
classes for cropland, while the shades of orange represent the suitability classes for pastureland. The remaining potential
for agricultural land expansion in Western Bahia is shown in shades of green and brown. Pink represents the areas where
agricultural expansion is restricted (2.37 Mha). (c) Overlap of the areas available for expansion, showing regions with high
water stress [34]. These three basins account for only 21% of the total study region: (1) Rio Branco basin (69,500 ha, 0.5% of
the region area), (2) Rio de Janeiro basin (252,000 ha, 1.9% of the region area) and (3) Rio Grande basin (2.45 Mha, 19% of the
region area). Most of the remaining land is moderately suitable.

The rainfed cropland in highly suitable areas increased at an approximately constant
rate (4.40 × 104 ha yr−1) from 1990 to 2013. From 2013 to 2018, this rate decreased to
2.81 × 103 ha yr−1 (Figure 9a), and after 2018, it increased to 8.70 × 103 ha yr−1. This
dramatic decrease between 2013 and 2018 is most likely associated with the new Forest
Code’s approval and the scarcity of highly suitable land discussed above. However,
it is also linked with agricultural intensification practices such as irrigation, which has
also increased dramatically since 2013 (Figure 9b). In other words, without much highly
suitable land available for expansion and pressured by the Forest Code limitations, farmers
increasingly turned to irrigation to increase production.
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Figure 9. Agricultural expansion according to the suitability classes in the 2020 land use land cover classification. (a) Rainfed
croplands, (b) irrigated croplands, and (c) pasturelands. The colors, consistent with Figures 8 and 10, indicate the suitability
classes. Cropland mainly grew over highly suitable areas and later expanded to moderately suitable areas. Pastures were
located over moderately suitable areas and have expanded rapidly in these regions since 2010.
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Figure 10. Historical expansion of agricultural lands according to the agricultural suitability category (y-axis) plotted
against the historical expansion of irrigated area (x-axis). The thick black line indicates the total agricultural land use, and
each dot represents one year, from 1990 to 2020. Dotting is irregular due to the uneven yearly expansion of both agricultural
lands and irrigation. The potential for agricultural land expansion in Western Bahia is shown in shades of green and brown.
The pink bar on the top represents the areas where agricultural expansion is restricted (preservation areas, conservation
units, water bodies, and constructed areas). Since 2013, agricultural area expansion has been small, while the irrigated area
has increased from ~131,000 ha to ~216,000 ha (2020). Much of the land available for expansion is moderately suitable.
The maximum irrigated area depends not only on land characteristics but also on the availability of water resources and
infrastructure and on irrigation management, and it is currently unknown.
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Similar patterns were observed on rainfed crops in moderately suitable regions
(Figure 9a). From negligible amounts in 1990, rainfed crops expanded into moderately
suitable areas at a rate of 4.01 × 104 ha yr−1 until 2013, reaching 0.962 Mha. From 2013
to 2018, this rate decreased to 1.38 × 104 ha yr−1, and then it increased again after this
period (Figure 9a). Moreover, since rainfall limitation is one the major limitations on land
suitability in this region, irrigated crop area increased nearly as fast in moderately suitable
lands as in highly suitable lands.

Irrigated crops increased by 2110 ha yr−1 in highly suitable areas and 1700 ha yr−1

in moderately suitable areas from 1990 to 2011, increasing irrigated area by 46,500 ha in
highly suitable areas and by 37,500 ha in moderately suitable areas. Between 2011 and 2020,
irrigated crops expanded twice as fast, increasing by 61,400 ha (6140 ha yr−1) in highly
suitable areas and 42,900 ha (4290 ha yr−1) in moderately suitable areas. There is little
irrigation on marginally suitable lands (Figure 9b). This confirms irrigation as a solution
to increase production in a scenario with low availability of highly suitable land and to
overcome rainfall limitations in moderately suitable lands.

Pasture area, on the other hand, decreased from 1990 to 2012 in highly suitable
areas at a rate of −11,600 ha yr−1 (from 481,000 ha to 215,000 ha), while increasing
in moderately suitable areas at a rate of 25,800 ha yr−1 (from 478,000 ha to 1.07 Mha).
From 2012 to 2015, the pastureland growth rate in moderately suitable areas increased
further to 55,300 ha yr−1, while shifting to positive growth rates in highly suitable ar-
eas (+5990 ha yr−1). After 2015 the pasture area started to decrease dramatically, with a
negative growth rate of −8720 ha yr−1 in highly suitable areas and −45,100 ha yr−1 in
moderately suitable areas. Marginally suitable areas had little importance for pastures.

The region’s commitment to grain and fiber production was demonstrated by the
steady growth in rainfed and irrigated crop areas after 1990 and the steady decrease in
pasturelands in highly suitable areas. However, after the mid-2000s, pastures increased
quickly in the moderately suitable areas in the northeastern part of the region (Figure 9c but
see Figures 3 and 8). As stated earlier, from 1990 to 2012, pasturelands grew consistently on
moderately suitable areas (25,800 ha yr−1) with a substantial increase in the rate between
2012 and 2015 (55,300 ha yr−1), followed by a decrease again after 2015. Despite the twofold
increase in a short period (2012 to 2015), pasturelands have been replaced by rainfed and
irrigated crops. Pasturelands represent a small fraction of croplands and typically occupy
areas with precipitation restrictions, which are unlikely to be used by rainfed croplands.

4. Discussion

The evolution of land use in Western Bahia is following two notable patterns. First,
cropland has established itself primarily in the flat, rainy, and highly suitable areas of
the extreme western part of the region. It confirms the results of previous studies that
have analyzed agricultural expansion in specific municipalities, like São Desidério [35],
Barreiras [36], Riachão das Neves [37], and Formosa do Rio Preto [38]. In earlier years,
it expanded somewhat linearly, with subsequent expansion in moderately suitable areas.
Pasturelands occupy other moderately and marginally suitable areas. This linear expansion
lasted until about 2012–2013. The subsequent slowdown in the extensification trend was
due to a combination of a scarcity of highly suitable area (only 0.657 Mha, Figure 10) and
the approval of Brazil’s new Forest Code in 2012. The impact of the Forest Code is clearly
visible in Figure 10. There is twice as much area preserved as remaining highly suitable
areas for agriculture expansion. On the other hand, plenty of moderately suitable areas
remain available (5.00 Mha, Figure 10), but farmers clearly prefer to expand production by
increasing irrigated area (Figure 10).

As discussed above, nearly all the land available for expansion is moderately suitable
for agriculture, which has been similarly used by rainfed croplands and pasturelands
(Figure 7). The environmental impacts of a possible agriculture expansion in the region
have been discussed somewhat generically due to the scarcity of regionally specific data
for a thorough evaluation. For example, Gaspar et al. [39] argue that preserved areas
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may contribute to the maintenance of local biodiversity and the recharge of the Urucuia
aquifer, while Oliveira et al. [40] conclude that the landscape transformation in Western
Bahia has negative consequences on the ecosystem functioning. The most detailed data
available is about the impacts of LULCC on changes in soil carbon storage. Conversion
of Cerrado formations to irrigated croplands, rainfed croplands, and pasturelands does
not significantly change the soil carbon content to a depth of 1 m (p-value = 0.33, 0.25, and
0.11, respectively) [41]. Moreover, 0-20 cm soil carbon volumetric content may significantly
increase by 3% yr−1 in well-managed rainfed cropland clayish soils (p-value = 0.001) and
by 2.6% yr−1 in irrigated areas (p-value = 0.057) [42]. The main problem is converting
forested lands to rainfed croplands and pasturelands, which decrease soil carbon by 30%
(p-value = 0.018) and 37% (p-value = 0.007), respectively [41]. Although most of the forest
formations in the region are protected in LRs and PPAs, there are plenty of unprotected
forest formations. Most of the original forest formations in 1990 have been degraded to
savanna formations (probably through fire) or converted to pasturelands in 2020 (Figure 3,
Table 3).

The second main pattern is the expansion of irrigated agriculture. The region’s
location on the top of the Urucuia aquifer, the availability of vast surface water resources,
and the flat topography have promoted this expansion. While the trend in the rainfed
crop areas increased until 2012 and nearly leveled off after that (Figure 9a), the rate of
expansion of irrigation after 2011 was about three times higher than the rate before 2010,
occurring mainly in highly and moderately suitable areas (Figure 9b). The increase in
investments in irrigation in this period may also have been encouraged by the 2013 National
Policy on Irrigation (Law 12,787 of 11 January 2013), which provided several incentives
for the expansion of irrigated area nationally, including subsidized rates on loans and
reduced tariffs on electric power for irrigation projects. While Forest Code restrictions
may have limited or at least discouraged extensification to new suitable lands, increasing
cropping frequency through irrigation maintained the increasing trends in the region’s total
agricultural output. To be sure, these changes in the last ten years have happened while
there has been plenty of moderately suitable land for expansion (5.00 Mha, Figure 10).

Increasing production by irrigation—rather than by increasing cropped area—is also
a smarter solution from both logistical and climate-risk points of view [43]. From a single
farmer’s perspective, managing a single farm with irrigation and growing two high-yield
crops on it in a year is much simpler than managing two rainfed farms of similar size
that could be quite distant from one another. It avoids, for example, the purchase of
duplicate machinery or the constant transport of machinery between farms. Moreover,
rainfed crops are subject to crop failures in the event of prolonged dry spells or short rainy
seasons—a somewhat common climatic feature in moderately suitable areas (as explained
in Tables 1 and 2).

On the other hand, the environmental consequences of choosing irrigation instead
of extensification are different, and there are both positive and negative consequences.
Choosing irrigation decreases the pressure on deforestation and carbon emissions associ-
ated with clearing land. Moreover, a recent study using eight years of soil carbon data in
Western Bahia has shown that soils under irrigated croplands take up carbon at a rate of
0.28 g dm−3 yr−1 (2.6% yr−1, p = 0.065). In contrast, sandy soils under rainfed crops were
not significantly accumulating carbon [42].

Irrigation, however, consumes water, which is a finite resource. Irrigation expansion is
limited not only by slope but also by the availability of infrastructure and water resources.
The potential for the development of irrigation in the area is currently unknown. Still,
at least three sub-basins in Western Bahia are either in a state of conflict for water use or
are moving rapidly toward it: The upstream Rio Grande, the Rio de Janeiro, and the Rio
Branco (black polygons in Figure 8c). In these three sub-basins, the potential for expansion
of irrigation is extremely low, if not null. These three sub-basins account for only 21% of
the region’s area. Despite the high water stress, water use for irrigation has been steadily
increasing, pushing the water stress to its limits [34], mainly in the basin’s headwaters.
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Most of the remaining moderately suitable areas for expansion are in the lower part of the
Grande and Corrente basins, which do not include the three sub-basins discussed above
(see overlap in Figure 8c). Although irrigation expansion along the main stems of the
Grande and Corrente Rivers is a possibility, only a detailed water resources study will be
able to quantify the maximum irrigated area in the region.

5. Conclusions

Expansion of the agricultural frontier and irrigation in both highly and moderately
suitable areas has raised Western Bahia’s national and international importance. Most
highly suitable land is already being used for agriculture—mainly as highly productive
croplands, particularly soybeans and cotton. In response to the scarcity of highly suitable
land, the limitations imposed by the new Forest Code around 2012, and energy tariff
incentives to irrigation after 2013, farmers invested in cropland intensification through
investments in irrigation systems, which increased output, simplified individual logistics,
and stagnated deforestation.

Agricultural output in Western Bahia can increase by any combined pathway of area
expansion or irrigation expansion (Figure 10, upper right side). Even considering the
Forest Code and Conservation Unit restrictions, the agricultural area could nearly double
in the region (Figure 10). However, the possible area expansion is mostly in moderately
suitable areas, subject to climate hazards for rainfed crops but otherwise fine for pastures
and irrigated crops, which are less susceptible to soil moisture limitations. Nevertheless,
future land cover and land use changes may affect local biodiversity, aquifer recharge,
ecosystem functioning, the local climate, and soil carbon storage. Thus, we emphasize the
necessity of further regional studies to quantify the impacts of land use change in these
interactions to contribute to the development of a more sustainable agricultural output.

Suppose future trends follow the trends of the last ten years (2011–2020). In that case,
the main strategies to maintain the regional focus on crop production will be increased
irrigation and conversion of the few pasturelands on highly suitable lands to croplands.
At the same time, pasturelands may expand over the remaining moderately suitable areas.

Irrigation expansion, however, is contingent upon the availability of water resources
and effective water security. Parts of the region, including most of the upstream Rio Grande
basin and part of the Corrente basin, are already at water stress limits [11,34]. Although it
has been strong in the last ten years, we urge that future irrigation expansion is preceded
by careful planning and monitoring to avoid water insecurity in the region.
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Appendix A. Spatial Multicriteria Decision Analysis (SMCDA)

To develop a SMCDA, we used the analytical hierarchy process (AHP) with the
ordered weighted average (OWA) in conjunction with programming languages and open-
source tools for geospatial analysis.

The AHP is a decomposition multiple-attribute decision-making method that provides
a comprehensive and mathematical structure to incorporate measures from objective
criteria and derives priorities for intangible criteria to allow the best choice to be made
in a decision process [44–46]. The AHP technique is useful due to its high accuracy for
treating multiple criteria and compensating for both quantitative and qualitative data [47].
The calculated weights are not fuzzy numbers, which means that the results do not need
to undergo defuzzification [48]. With the AHP method, it is possible to calculate the
consistency ratio (CR). The criteria priorities are computed using a reciprocal pair-wise
comparison matrix following the methodology proposed by [49].

The OWA is a parameterized family of combined operators that provides a general
class of average aggregation operators. These operators allow the continuous adjustment
of the values of the risk and tradeoff axes between the criteria, providing control over both
the risk and tradeoff axes, which delimit the strategic decision space. The OWA method
quantitatively considers degrees of optimism/pessimism and the effects of the decision
maker’s different risk attitudes in a decision space. The OWA is characterized by two sets
of weights: criterion importance weights and order weights.

The integration of the AHP with the OWA used in conjunction with programming lan-
guages and open-source tools for geospatial analysis presents an effective multicriteria deci-
sion analysis instrument for challenges oriented to make complex spatial decisions [50–54].
The SMCDA process used in this work is depicted in Figure A1.

Appendix A.1. Weight Analysis

In AHP, the pair-wise comparison matrix is established based on opinions that, in most
cases, have nonobjective nature. Therefore, any misjudgment parameters can be transferred
to the score assignment and weights designation [55]. Three criteria were established to
obtain a more consistent pair-wise matrix (pp, LULCC, and slope), which were identified ac-
cording to stakeholder analysis (Figure A1a). Table A1 represents the pair-wise comparison
judgment matrix (A = aij) evaluation of the criteria based on stakeholder analysis.

Comparing all three criteria using the pair-wise comparison matrix provides the
relative importance of each criterion toward others. For example, pp is eight times more
important than slope and two times more important than LULCC.

The weight analysis to determine the degree of importance for each variable in the
agricultural suitability classification confirm our hypothesis that pp is the most important
criterion for agricultural suitability classification (60.4%), followed by the LULCC (32.6%)
and slope (7%) (Table A2).
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Figure A1. The spatial multicriteria decision analysis (SMCDA) model development flow. (a) Identification and contex-
tualization of the problem. Definition of the criteria/metrics that significantly influence the model and definition of its
priorities. (b) Assembling the pair-wise matrix with weights for each metric. Calculation of criteria maps (using fuzzy sets)
to be used as inputs for analytical hierarchy process (AHP) and ordered weighted average (OWA) methods in geospatial
analysis routines. This process generated a continuous map with values from 0 to 1, which is reclassified into suitability
classes (4-highly suitable, 3-moderately suitable, 2-marginally suitable, and 1-unsuitable). At the end of the process, a mask
was made to remove the preservation areas, conservation units, farm reserves, highways, hydrography, and urban areas.
(c) Validation and statistical analysis of the suitability map results.

Table A1. Pair-wise comparison matrix.

Criteria pp LULCC Slope

pp 1 2 8
LULCC 1/2 1 5
Slope 1/8 1/5 1

Sum 1.625 3.200 14.0
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Table A2. Normalized pair-wise comparison matrix.

Criteria pp LULCC slope Weight

pp 0.615 0.625 0.571 0.604
LULCC 0.308 0.313 0.357 0.326

slope 0.077 0.062 0.072 0.070

Sum 1 1 1 1

Appendix A.2. The Multiobjective Decision-Making Process

The AHP method used in this work was proposed by [56] and performs the following
steps to ascertain the weights for each criterion (Figure A1b):

1. Definition of the (n × n) pair-wise comparison matrix according to Table A1, where n
is the number of criteria.

An×n =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 (A1)

2. Computation of the importance weight of each entry in column j of A by the sum of
the entries in column j. This results in a normalized matrix (Awn×n).

Awn×n =


a11

∑ ai1

a12
∑ ai2

. . . a1n
∑ aina21

∑ ai1

a22
∑ ai2

. . . a2n
∑ ain

...
...

. . .
...

an1
∑ ai1

an2
∑ ai2

. . . ann
∑ ain

 (A2)

3. Computation of the ci values as the average of the entries in row i of Awn×n to yield
the column vector Cn×1.

Cn×1 =


c1
c2
...

cn

 =
1
n


a11

∑ ai1
+ a12

∑ ai2
+ . . . + a1n

∑ aina21
∑ ai1

+ a22
∑ ai2

+ . . . + a2n
∑ ain

...
an1

∑ ai1
+ an2

∑ ai2
+ . . . + ann

∑ ain

 (A3)

4. Computation of the vector Xn×1 = An×n × Cn×1, which is the second-best approx-
imation to the eigenvector to estimate the highest eigenvalue of the pair-wise ma-
trix (λmax).

λmax =
1
n

n

∑
i=1

xi
ci

(A4)

5. Computation of the consistency of judgments

According to [57], a positive reciprocal matrix of order n is consistent when the
principal eigenvalue has the value n. When it is inconsistent, the principal eigenvalue
exceeds n. Its difference from n serves as an inconsistency measure by forming a consistency
ratio (CR) between this difference and the average of the corresponding differences from n
of the principal eigenvalues of a large number of matrices of randomly chosen judgments.

Thus, CR (Equation (A6)) was obtained by comparing the consistency index (CI)
(Equation (A5)) with the value of the average random consistency index (RI). CI was
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calculated by using the highest eigenvalue of the pair-wise matrix (λmax), and RI was
obtained from a random simulation [58].

CI =
(λmax − n)
(n− 1)

=
(3.006− 3)
(3− 1)

= 0.003 (A5)

where, again, n is the number of criteria.

CR =
CI
RI

=
0.003

0.5381
= 0.005 < 0.1 (A6)

6. Computation of the ordered weighted average (OWA)

The OWA algorithm was used as an extension of the AHP method by the integration
of fuzzy linguistic operators to generate different risk conditions according to acceptance
by decision-makers. The method used the criterion importance weights and order weights
that were generated from the AHP process (Table A2). The computation of the spatial
ordered weighted average (OWAij) was performed pixel by pixel according to Equation
(A7).

OWAi,j =
n

∑
k=1

wkzki,j
(A7)

where i and j are, respectively, the coordinates of rows and columns of the pixels in the
map region, wk (k = {1, 2, . . . , n} ∀ wk ∈ [0, 1] and ∑n

k=1 wk = 1) is the correspondent ordered
weight for the criteria k, and zki,j

is the pixel value of the map criteria k at the position i and
j, reordered according to wk order [59–61].

7. Risk of multicriteria analysis

Measuring the degree of risk involved in a multicriteria analysis is particularly impor-
tant to guide decision-making properly. The degree of risk involved in the decision can
determine whether the decision made is risk-averse or risk-taking. In applying the OWA,
operators can assess the degree of risk in decision-making. orness is a significant measure
associated with OWA operators; it estimates how close an OWA operator is to the max
operator. In contrast, andness, dual to the measure of orness, is a metric of how close the
OWA operator is to the min operator. Detailed explanations can be found elsewhere [59–61].
The andness is calculated using Equation (A8):

andness =
1

n− 1

n

∑
k=1

(n− k)wk = 0.767 (A8)

where n is the total number of criteria, and wk (k = {1, 2, . . . , n} ∀ wk ∈ [0, 1] and ∑n
k=1 wk = 1)

is the corresponding ordered weight for the criteria k. orness is computed using Equa-
tion (A9):

orness = 1− andness = 0.233 (A9)

Orness values greater than 0.5 imply that the decision maker tends to risk-taking
decisions. Orness values below 0.5 mean that the decision maker tends to risk-avoiding
decisions, while orness values equal to 0.5 indicate neutrality in the decision-making. The
decisions are risk-taking when a pixel has low values for at least one criterion, even if the
other evaluated criteria are acceptable, which produces a favorable decision. Simultane-
ously, the risk-averse decision only classifies a pixel as suitable if all the criteria are suitable,
which produces a pessimistic decision.

In addition to orness, the Tradeoff metric was used to measure the compensation
between the criteria (poor performance of an alternative with respect to one criterion is
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compensated by high performance on other criteria). The Tradeoff metric is computed
using Equation (A10) and is discussed below.

Tradeoff = 1−

√√√√ n
n− 1

n

∑
k=1

(
wk −

1
n

)2
= 0.538 (A10)

The normalized dispersion (H, Equation (A11)) is similar to the Tradeoff metric but
measures ordered weights entropy. This indicator measures the amount of information
used in each argument, which means that the more dispersed the weighted vector is, the
more information about each criterion is being used in the aggregation process [62]. The
interpretation of the value obtained, 0.857, is discussed below.

H(W) = −
n

∑
k=1

wk ln wk = 0.857 (A11)

8. Interpretation of the multiobjective decision-making process results

The AHP assessment is acceptable if CR is below 0.1 [63]. The value obtained (0.005,
or 0.5%) means that the set of judgments of the criteria in the pair-wise matrix is 99.995%
reliable.

The position of OWA on the continuum was identified by the calculation of the degree
of orness (or andness). The results of andness (0.767) and orness (0.233) operators show that
decision-making was much more risk-averse (conservative solution) rather than risk-taking.
The interpretation of this result is that the areas described by the methodology as being
suitable are likely to present acceptable (good) values for all three evaluated variables.
If one of the criteria has a low value, that pixel is classified as unsuitable, even if the other
two variables were acceptable.

The calculated Tradeoff (0.538) is related to the degree of dispersion in the order
weights. The continuum also shows that 0.5 is the central value for Tradeoff, which
represents quantitatively that the results have low dispersion and low compensation.
Therefore, the recommended way to evaluate dispersion is using the dispersion equation
(Equation (A11)). The dispersion equation result (0.857) shows that in the process of criteria
combining, the criteria used contain most of the necessary information.

Comparing all three criteria using the pair-wise comparison matrix and the weight
analysis confirmed that pp is the most important criterion for agricultural suitability classi-
fication, followed by the LULCC and slope (Table A2). The agricultural suitability map
of 1990 and 2020 (Figure A2) was generated by combining the weights (Table A2) with
the maps of pp, slope (Figure A3), and the respective LULCC maps of 1990 and 2020. The
most evident potential suitability sites have an optimum rainy period, low cost for land
conversion, and smooth, wavy slopes (Figure A2).
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Figure A2. Agricultural suitability maps of Western Bahia. (a) The 1990 agricultural suitability
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suitability in the Western Bahia region.

Appendix A.3. Fuzzy-Set Values Used in the SMCDA Criteria

Figure A3 shows the spatial fuzzy-set map for the pp (Figure A3a) and the slope
(Figure A3b). These maps are used in the SMCDA analyses and were developed according
to the criteria described in Table 2. Figure A3a shows the classification of Western Bahia
lands according to the average rainy season duration. Pixels where the average rainy
season duration is greater than or equal to 120 days in 100% of the years from 1993 to 2016
(pp = 100%) receive a high priority value (highly suitable); pixels that meet this criterion
between 80% and 100% of the time receive a moderate priority value (0.9); pixels that meet
this criterion between 50% and 80% of the time receive a marginal priority value (0.5); and
pixels where pp < 50% receive a priority value close to zero (unsuitable). Figure A3b shows
the patterns of slope in Western Bahia. The areas with high priority values (closer to 1)
range from having the lowest slope values (flat topography) up to the limit of 30% (very
wavy). Above this threshold, the pixels receive values close to zero (unsuitable).
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