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1. The Challenges of Urban Planning

We are living in an urban age. The UN predicts that by 2050 around 68% of the
global population will live in urban areas [1]. Global urbanisation rates have distinct
geographic patterns. In general, Global North regions have already high urbanisation rates,
while Global South regions show high urbanisation dynamics (increasing rates) [2]. Many
megacities are very rapidly growing in population numbers and built-up areas [3]. For
example, the urban agglomeration of Delhi (India) might reach a population size of 39
million inhabitants by 2030 [1], similar to the present population of the entire continent of
Oceania. However, many of the fastest-growing urban areas (in terms of growth rates) are
not the primary but secondary cities, as well as urbanising areas (e.g., rural-urban transition
zones) [4]. Living conditions and planning questions are very different, depending on
the context. Rapidly growing cities (e.g., secondary and primary in the Global South) are
facing extreme challenges in terms of matching infrastructure and service provision with
increasing demands. In contrast, stagnant and ageing Global North cities face challenges
in changing demands (e.g., adapting infrastructure to changes in lifestyle patterns) [5].

2. Data Gaps and Evidence-Based Urban Planning

Urban planning combines different sectors and domains, e.g., housing, infrastructure,
services, environment, socio-economic development, and governance. Emerging challenges
relate to sustainable, inclusive, compact, resilient, and smart urban development [6-8]. For
effectively preparing cities to respond to these challenges, short- and long-term strategies
are essential. These require inputs from knowledgeable stakeholders as well as knowledge
derived from Findable, Accessible, Interoperable, and Reusable (FAIR) data [9], both
embedded into a well-functioning governance and planning framework. Evidence-based
planning and policy-making depend on reliable data that support the different stages of
planning processes [10,11], e.g., to explore and analyse a certain situation, design possible
solutions, and implement and iteratively assess these. In all steps of a planning process,
key indicators are required to support these steps as well as to assess how well proposed
and implemented solutions meet normative urban development goals [12]. Such policy
goals, e.g., linked to the Sustainable Development Goals (SDGs) or the New Urban Agenda
(NUA) [2,13], include, for example, the reduction of land consumption, reducing inequality,
providing adequate housing, and implementing sustainable transport infrastructure, as
well as making progress on gender equality and climate targets [14]. Many cities experience
considerable pressure to cope with the multitude of issues. However, both in Global South
and North cities, municipal resources are often limited [15]. This also presents challenges
in keeping data up-to-date. However, supporting planning and decision making with
dated or incomplete evidence might lead to serious economic losses, social inequalities
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and harms, and environmental disasters. Thus, while adequate indicators and reliable,
up-to-date data, to measure and monitor indicators, are key to sustainable urban planning
and decision making and effective communication within a multi-stakeholder environment,
regular in situ data collection is often not feasible due to local conditions [12,16]. Earth
observation (EO) data can, for many planning and decision-making questions, supply
relevant base data and proxies, in particular to support the development, measuring, and
monitoring of urban indicators at different scales [17]. Within this special issue, we aim
to understand and learn about the potential of EO data in support of urban planning
indicators for various fields of applications.

3. The Role of EO to Develop Urban Planning Indicators

EO data offer manifold opportunities for mapping and monitoring urban areas [18-22].
They serve to derive various physical, climatic, and socio-economic indicators in support
of urban planning, emergency response, and decision making [23]. EO data provide
quantitative data that are temporally and spatially more consistent than traditional ground
surveys and census data and often have finer spatial and temporal resolutions. This allows
for analysing and comparing conditions among different urban settlements, cities, and
countries, and for different years. For this reason, EO is also a fundamental data source
for tracking the progress towards the SDGs and monitoring target indicators, as well as
providing actionable information for local, regional, and state governments [19,24-26].
Once translated into regularly updated geospatial information and knowledge, these data
can support strategic planning and interventions responding to the multiple challenges
related to rapid population growth, scarcity of resources, and increasing frequency and
intensity of natural hazards caused by a changing climate.

Multiple data sources have been investigated in the literature, including satellite
data of various resolutions (from very high to moderate resolution), aerial and unmanned
aerial vehicle (UAV) image acquisitions [27,28]. Several research questions are spurring the
scientific community: How can we take full advantage of EO data’s large volumes? How
can we optimally fuse the data from different sensors and sources? Moreover, how can we
automatically extract geospatial information that is reliable and trusted by citizens and
decision makers? To address some of these challenges, researchers often resort to statistical
modelling and machine learning algorithms [29-31]. Such advanced quantitative and
computational methods allow us to process large data volumes effectively and infer maps
and other products. The latest wave of deep learning algorithms, including convolutional
neural networks, recurrent networks, and generative adversarial networks, offer new
strategies for addressing complex geospatial data analysis tasks [29,32]. The ability to
learn sophisticated hierarchical features from multiple data sources allows deep learning
methods to extract meaningful spatial and temporal patterns and infer information about
the physical domain of urban areas and more abstract variables related to their dwellers’
socio-economic conditions and quality of life [33].

4. The Contribution of Papers of the Special Issue

In this special issue, we have invited contributions to remote-sensing-based planning
indicators across the world. The received contributions show a mix between Global North
and South studies, approximately ! /3 to 2/3, respectively. A large share of the papers focus
on the rapidly growing urban areas in Asia (Figure 1), while other global regions have
relatively equal attention.
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REGIONAL DISTRIBUTION OF CASE STUDIES IN %
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Figure 1. Regional percentages of case studies used in the special issue papers (N = 13).

The contributions and their EO-based indicators cover different planning-related
sectors and domains (Table 1). The majority of indicators relate to land and environmental
issues (e.g., [34,35]), while only a few indicators provide information that is more complex
to derive from EO data, e.g., information on urban services or socio-economic conditions
(e.g., [36,37]). In these sectors, there is still much scope for EO data to fill information
gaps, e.g., with the recent advances in machine learning to provide data on complex urban
classification problems. However, this would require the solution of a large bottleneck for
urban EO applications, namely the availability of large sets of training data shared for cities.
Presently there are no easily accessible repositories for in situ data for a large number of
urban areas (for some recent developments see, e.g., [38]), for example, the around 13,000
urban centres as defined by the Global Human Settlement Layer (GHSL) database [3]. In
the absence of such in situ data, researchers have to produce their own training data, often
without sufficient ground validation due to high data collection costs. These practices also
limit the usability of data for planning questions as uncertainties cannot sufficiently be
quantified.

The contributions also show that other urban planning sectors and domains that could
further benefit from EO data are urban governance and participation (e.g., interaction with
stakeholders), urban hazards, and climate actions. Very-high-resolution (VHR) imagery can
support the development of 3D models that can improve communications with multiple
stakeholders [39,40]. Climate action could largely benefit from the integration of EO data
with local planning models to simulate impacts of changing climate conditions and their
interaction with the urban morphology in 2D as well as in 3D [41,42]. Thus we can conclude
that there is huge potential for EO to provide routine, accurate, and cost-efficient data in
support of urban planning indicators. However, data and methodological questions need
further development and better responding to local user needs [43]. This calls for action
within the EO community to better engage with local to global (potential) users of EO data
and provide data for purpose.
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Table 1. Urban planning indicators supported by Earth observation (EO) data within publications of the special issue (* based on EO

data).
Urban Sectors Indicators/Planning Instruments Type of EO Data References
M Built-up indices
| Nor(:rlpe}llsgd cihfferelrsce c;)ncrete B WorldView
Housing condition index (NDCCI) - Landsat [34,37,44]
B % change in temporal housing (slums)
M Built-up density
B Street density B Orthophotos
) B Distance to roads/accessibility B WorldView
Infrastructure/Services B Access to services B PlanetScope [36,45,46]
B Night lights/streets B  DMSP-OLS/VIIRS
B WorldView
B Aster (DEM)
B Land susceptibility B RapidEye
. B Surface temperature B Urban Atlas *
Environment/Hazard B Green infrastructure indicators B Orthophotos [19,47-49]
B % of open/green spaces B Landsat
B Google Earth
B DMSP-OLS/VIIRS
B Multiple deprivation index W WorldView
B %ofsl B PlanetScope
Socio-economic conditions /o 0 §un1fs e indi B Pleiades [36,37,44,49]
B Quality-of-life indicators B Urban Atlas *
Urban B 3D models B  Video/camera
R [40]
governance/Participation
: Bark:d use/ co;ier change (drivers) B Orthophotos
Land use—territorial - rban fgrowt‘ di B Landsat [19,34,35,50]
planning Urban form indicators B Rapideye 7599,

(e.g., compactness)

5. Conclusions and Directions for Further Research

EO data and data products are increasingly available but are often not easily acces-
sible to key stakeholders in urban planning and decision making. This friction relates to
technological challenges and communication challenges. For example, neither are ready-
to-use data available (i.e., easy to be combined with municipal databases) nor are they
documented for non-EO experts. This calls for strengthening the collaboration between
urban planners and EO experts to conceptualise actionable information and overcome
implementation gaps of utilising RS-based products. Well-documented EO data repos-
itories are required that provide guidance to non-EO experts in the use of EO data and
products (a recent example of such an initiative is the EO Toolkit for Sustainable Cities and
Communities: [14]). Ease of access and well-documented datasets need to be combined
with rich quantitative and qualitative data that can add contextual information and support
urban information needs, e.g., building on citizen science approaches, to understand how
to contextualise numeric data. Such solutions will improve our understanding of complex
urban sector relations and support evidence-based urban planning.
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