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Abstract: In Ethiopia land degradation through soil erosion is of major concern. Land degradation
mainly results from heavy rainfall events and droughts and is associated with a loss of vegetation
and a reduction in soil fertility. To counteract land degradation in Ethiopia, initiatives such as the
Sustainable Land Management Programme (SLMP) have been implemented. As vegetation condition
is a key indicator of land degradation, this study used satellite remote sensing spatiotemporal trend
analysis to examine patterns of vegetation between 2002 and 2018 in degraded land areas and studied
the associated climate-related and human-induced factors, potentially through interventions of the
SLMP. Due to the heterogeneity of the landscapes of the highlands of the Ethiopian Plateau and the
small spatial scale at which human-induced changes take place, this study explored the value of using
30 m resolution Landsat data as the basis for time series analysis. The analysis combined Landsat
derived Normalised Difference Vegetation Index (NDVI) data with Climate Hazards group Infrared
Precipitation with Stations (CHIRPS) derived rainfall estimates and used Theil-Sen regression,
Mann-Kendall trend test and LandTrendr to detect changes in NDVI, rainfall and rain-use efficiency.
Ordinary Least Squares (OLS) regression analysis was used to relate changes in vegetation directly to
SLMP infrastructure. The key findings of the study are a general trend shift from browning between
2002 and 2010 to greening between 2011 and 2018 along with an overall greening trend between
2002 and 2018. Significant improvements in vegetation condition due to human interventions were
found only at a small scale, mainly on degraded hillside locations, along streams or in areas affected
by gully erosion. Visual inspections (based on Google Earth) and OLS regression results provide
evidence that these can partly be attributed to SLMP interventions. Even from the use of detailed
Landsat time series analysis, this study underlines the challenge and limitations to remotely sensed
detection of changes in vegetation condition caused by land management interventions aiming at
countering land degradation.

Keywords: developing countries; Google Earth Engine; land degradation; Landsat time series
analysis; semi-arid areas; sustainable land management programmes

1. Introduction

Degradation of land and soil affects approximately one third of the global land area
that is used for agriculture [1], involving livelihoods of more than 1.5 million people [2].
Land degradation is of particular concern in developing countries, as this issue poses a
threat to food security for a large number of poor people and to local economic activities [3].
In the United Nation’s Convention to Combat Desertification (UNCCD) (art. 1f) land
degradation is defined as “reduction or loss, in arid, semi-arid and dry sub-humid areas,
of the biological or economic productivity and complexity of rainfed cropland, irrigated
cropland, or range, pasture, forest and woodlands resulting from land uses or from a
process or combination of processes, including processes arising from human activities
and habitation patterns”. Among those processes are soil erosion or long-term loss of
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natural vegetation [4]. In Ethiopia, land degradation results mainly from soil erosion by
water [5] and occurs particularly in the Ethiopian highlands which are inhabited by 88%
of the national population, cover 60% of the national livestock resources and encompass
90% of the area suitable for agriculture [6]. The country’s natural physical conditions are
one of the underlying drivers of land degradation. Ethiopia has always been prone to soil
erosion and droughts due to high rainfall variability, which causes reduced vegetation
cover in dry years and soil loss in subsequent wet years [7]. In Ethiopia’s highlands, soil
erosion is facilitated by steep terrain with slopes in excess of 30% [5]. Moreover, population
pressure, increasing livestock (and with it deforestation), overgrazing (due to uncontrolled
free grazing) and the expansion of agricultural fields into marginal land are underlying
drivers of soil erosion [5,8]. The shortage of fertile cropland led to a shifting of cattle and
livestock grazing activities to areas that are specifically vulnerable to soil erosion such as
deforested, ecologically fragile hillsides with steep slopes. Gully formation, the removal
of soil along drainage lines (channels) by surface water runoff, is one of the apparent
consequences of soil erosion in Ethiopia [8].

The restoration of degraded land and soil, the implementation of sustainable land
management (SLM) and resilient agricultural practices are targeted in the United Nation’s
Sustainable Development Goals (SDG). To address in particular target 15.3 which aims to
combat desertification and restore degraded and soil, UNCCD adopted the Land Degrada-
tion Neutrality (LDN) Target Setting Programme. Achieving LDN will also contribute to
reaching other SDGs including those on poverty reduction, food and water [9]. To counter
desertification and land degradation UNCCD and affected developing countries have set
voluntary targets and implemented National Action Programmes that are supported by
international cooperation, including financial and technical resources [4]. In this context,
developing countries have implemented land management and land restoration projects on
both national and local levels in collaboration with multilateral and bilateral development
partners. To rehabilitate degraded landscapes and scale up SLM in Ethiopia, the Ethiopian
government launched the Sustainable Land Management Programme (SLMP) in 2009
in collaboration with a range of international donors including the World Bank and the
German Development Bank (KfW) [10]. The impact of Sustainable Land Management
(SLM) in Ethiopia has been studied through runoff and soil loss measurements [11] and
analyses within the economics field, for instance by examining household data to assess the
effect on crop yields [12]. A study by Ali et al. used earth observation derived vegetation
indices to estimate the impact of SLM in a single watershed in Ethiopia [13].

Monitoring of land surface dynamics, such as land degradation (‘browning’) or land
recovery (‘greening’) is widely done by implementing earth observation time series analysis.
A plethora of studies have examined long term trends by applying ordinary least square
(OLS) linear regression models, e.g., regressing vegetation indices with time, based on
high temporal resolution data such as from Advanced Very High Resolution Radiometer
onboard National Oceanic and Atmospheric Administration (AVHRR-NOAA) or from
Moderate Resolution Imaging Spectroradiometer (MODIS). For the Sahel, linear trends of
yearly NDVI anomalies derived from AVHRR [14] or linear trends of the seasonal NDVI
amplitude and integral [15] have been examined to monitor vegetation. MODIS NDVI data
have been used to detect land degradation and regeneration processes in the Sahel [16],
Mongolia [17] and Ethiopia [18].

Studies of semi-arid areas [19–22] and of Ethiopia [23] have demonstrated a strong
relationship between rainfall and NDVI. Therefore, methods have been developed to
disentangle rainfall-related effects from human-induced effects on land degradation. The
rain-use efficiency (RUE), defined as the ratio of above-ground net primary production
(ANPP) to annual precipitation [24], has been used to detect non-precipitation related land
degradation. The basic assumption involved in the use of RUE is the existence of a constant
linear relationship between vegetation productivity (or ANPP) and precipitation in areas
where land is not affected by human-induced degradation [25]. By normalising for the effect
of interannual rainfall variability on ANPP, human-induced changes can then be singled
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out [26]. RUE has been used as a measure in several studies, e.g., of the Sahel [25,27], South
Africa [19], global drylands [2] and Northern Eurasia [26]. Furthermore, residual trend
analysis, i.e., analysing the residuals from a NDVI-rainfall regression model, was found to
be effective in disentangling the climate effects from human-induced land degradation [28,29].
In areas with steep terrain land degradation can be driven by climate effects such as
high rainfall variability. Hermans-Neumann et al. combined NPP trends, precipitation
variability and census data to identify areas in Ethiopia where high in-migration is coupled
with land degradation, proposing the latter is likely occurred due to human activities [18].

Since the opening of the Landsat archive by the United States Geological Survey
(USGS) in 2008, an increasing amount of studies that exploit medium/high resolution
data for time series analysis has been published [30,31]. In parallel, new change detec-
tion methods that not only account for linear (in this case gradual trends), but also for
abrupt occurrences by separating time series into individual segments, have been devel-
oped. Amongst those are Landsat-based detection of Trends in Disturbance and Recovery
(LandTrendr) and Breaks For Additive Seasonal and Trend (BFAST) which have been widely
used for vegetation monitoring. BFAST has for example been used to detect gradual and
abrupt changes in NDVI and rain-use efficiency [26,32–34] and water-use efficiency [35].
LandTrendr has been widely used for monitoring forest disturbances (fire or stand clearing)
and forest regrowth [36–38], forest biomass [39] and for agricultural and land abandonment
mapping [40].

The aim of this study was to temporally and spatially analyse vegetation dynamics
in degraded land areas in Ethiopia between 2002 and 2018 in relation to management
programmes implemented to counter land degradation. Due the heterogeneity of the
landscapes of the areas examined in this study and the fact that human-induced changes
are expected to take place at a small spatial scale, this study aimed at exploring the
value of using medium resolution Landsat data derived from different sensors for trend
analysis at a spatial and temporal scale compatible with the scale of SLMP interventions.
The investigated areas had gone through interventions aiming at avoiding further land
degradation and increasing vegetation cover. In this context, associated human-induced
and climate-related factors of land degradation and land recovery were examined. The
specific objectives of this study were:

1. The examination of spatiotemporal vegetation trends using Landsat time series and
to analyse their forcing mechanisms (climate-related vs. human-induced).

2. The assessment of the detectability of the impact from typical SLMP interventions on
vegetation conditions from the use of relevant remote sensing data sources available
at no costs.

2. Materials and Methods
2.1. Study Area

The study area consists of 21 major watersheds which are distributed in three different
zones of Ethiopia, in Amhara, Oromia and Tigray, and have mean altitudes between 1200
and 3100 m (Figure 1), mean slopes up to 14.4 degrees and mean annual rainfall between
approx. 600 and 1900 mm per watershed (calculations based on CHIRPS data). The
watersheds are located in semi-arid and sub-humid agro-ecological zones where temperate
to cool climate prevails and are surrounded by low-lying tropical warm to hot savannas
and semidesert regions [18,41]. They are characterised by heterogeneous landscapes,
with croplands and grasslands as the most dominant land cover and hillsides, which
have been degraded and closed for farming and grazing. Agriculture is dominated by
small-scale subsistence mixed farming systems, i.e., crop production mixed with livestock
rearing activities [41]. Crops are mainly grown during the wet period from March through
September with harvest taking place mostly in October to December [18].

The watersheds constitute intervention areas of the Sustainable Land Management
Programme, a multi-donor supported project, first implemented by the Government
of Ethiopia in 2009 and phased out in 2019. SLMP’s overall goal was to “reduce land
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degradation and improve land productivity in selected watersheds in targeted regions
in Ethiopia” [10]. It’s first component, watershed and landscape management, aimed at
reforesting and afforesting degraded communal land, increasing agricultural and livestock
productivity, reducing carbon emission, building climate resilience and increasing water
availability. To achieve these goals, activities such as hillside communal land treatment,
including the prohibition of free grazing, gully rehabilitation and cropland treatment
using biophysical measures, promoting agro-forestry and fodder production, and the
construction of water harvesting structures were supported in the watersheds [10].

The 21 major watersheds each comprise between 6 to 20 micro-watersheds (Figure 1)
with a total of 314 micro-watersheds and an average area of 7 km2. 220 micro-watersheds
(1541 km2) received SLMP support from 2011 to 2019 by KfW with the technical assistance
of the German Agency for International Coorporation (GIZ). In the following, the sup-
ported micro-watersheds are referred to as treatment areas while the remaining 94 micro-
watersheds (543 km2) that did not receive any support are referred to as control areas.
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Figure 1. Overview map of the location of the study areas (i.e., major watersheds) and elevation.

2.2. Data

Landsat Collection 1 atmospherically corrected Surface Reflectance (SR) Tier 1 prod-
ucts were used for the period 2001–2019 including three different sensor systems: Landsat
5 Thematic Mapper (TM) for the epoch 2001–2012, Landsat 7 Enhanced Thematic Mapper
Plus (ETM+) for the epoch 2001–2019 and Landsat 8 Operational Land Imager (OLI) for
the epoch 2013–2019. Due to the failure of the Landsat-7 ETM+ Scan Line Corrector (SLC)
in 2003, the ETM+ data are reduced by about 22% in each scene [42]. Rainfall estimates
were derived from Climate Hazards group Infrared Precipitation with Stations (CHIRPS)
data. The product is resampled to a spatial resolution of 0.05 degrees [43]. Following Funk
et al. CHIRPS data have been largely used to examine rainfall trends and drought patterns
in Ethiopia. The dataset is affected by uncertainties due to the inverse distance weighting
function that is used for the blending procedure [43].

Polygon shapefiles for the micro-watersheds were provided by GIZ. Furthermore,
between 2012 and 2018, the GFA Consulting Group collected georeferenced location data
of soil and water conservation (SWC) measures that were implemented through SLMP to
monitor the progress in the treated micro-watersheds. These data were used to relate vege-
tation development directly to SWC measure locations. The types of measures included in
the dataset represent combinations of physical SWC constructions and biological activities
(e.g., planting). Personal communication with SWC experts and project leaders during
field visits in 2019 revealed that two types of measures included in the dataset, hillside
terraces and check dams, should have a direct impact on the surrounding vegetation cover,
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within a radius of approx. 500–1500 m. See Appendix A, Table A1 for details regarding the
purpose and the number of geolocations available in the dataset.

2.3. Methods

All remote sensing data were acquired in Google Earth Engine (GEE), a cloud-based
platform for geospatial data processing that stores a large repository of publicly available
data [44]. Data processing and analysis were conducted using Python packages such as
NumPy and Rasterio and the GEE client library (Figure 2).
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2.3.1. Pre-Processing

For both cloud and cloud shadow masking, the C Function of Mask (CFMask),
provided by USGS as pixel quality band as part of the Landsat products [45] was utilised.
Visual inspection showed that using only CFMask proved to be insufficient. Therefore,
clouds were additionally processed by the Google cloud score algorithm and cloud shad-
ows by the Temporal Dark Outlier Mask (TDOM) [46]. Remote sensing analyses that
integrate different sensor data require cross-calibration of the different datasets to ensure
consistency [47–49]. As OLI spectral bands widths are narrower compared to ETM/ETM+,
OLI NDVI values are on average higher [47] and it was therefore necessary to adjust OLI
to ETM/ETM+ NDVI values before temporally aggregating the data. Transformation
functions were developed using ordinary least squares (OLS) regression:

NDVIETM+ = a × NDVIOLI + b (1)

For this purpose, OLI and ETM+ NDVI images were paired based on the closest
available dates. As OLI and ETM+ share the same orbit offset by 8 days, the western
and eastern side of a sensor acquisition are overlapped by the eastern and western sides,
respectively of the other sensor [47]. In these areas where the sensor acquisitions spatially
overlap, image pairs are available with a temporal separation of only one day. To optimise
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the inter-comparison, pixels used to produce the OLS models (Figure A1) were therefore
extracted for the study area where overlap existed. To minimise problems related to chang-
ing surface states and conditions such as different crop cycle stages [47], pairing was done
during the dry season (November to February), i.e., for two seasons, 2013/14 and 2017/18,
for an area including a large range of vegetation densities (including evergreen vegetation).

NDVI has been used extensively for analysis of dryland vegetation [50] as NDVI
saturation that can occur in densely vegetated areas is rarely a concern in drylands [51].
NDVI was here used as a proxy for the vegetation condition during the period of analysis.
Annual NDVI maximum value composites (MVC) were produced based on all cloud-free
available pixels during the period August through October, which represents in the end of
the growing season. As image coverage was insufficient, a three-year (+1/−1 year) moving
maximum window was used to fill data gaps (Figure A2). Annual rainfall composites
were computed using the seasonal rainfall sum (March to September). As agriculture is
primarily rainfed and crop productivity highly dependent on rainfall (MOFED, 2002) [52],
the rain-use efficiency (RUE) was used as a proxy for assessing non-climate related changes
in vegetation conditions [25,26] inherent to the implementation of the SLMP activities to
counter land degradation. As vegetation productivity in the study area is predominantly
determined by seasonal rainfall, RUE was calculated as the ratio of the maximum NDVI,
as an approximation of ANPP, and the seasonal rainfall sum. For this purpose, the rain-
fall composites were resampled from 0.05 degrees to Landsat resolution of 30 m using
bicubic interpolation.

2.3.2. Theil-Sen Regression and Mann-Kendall (MK) Trend Test

The temporal development of NDVI was used as an indicator of land degradation
(‘browning’) and land recovery (‘greening’). Spatiotemporal patterns of NDVI and rainfall
were examined using the non-parametric Theil-Sen median slope [53] to analyse changes
in vegetation condition (climate-related vs. human-induced). The Mann–Kendall (MK)
test [54] was applied to evaluate NDVI trends at the 99% (p < 0.01) and rainfall trends at
the 95% (p < 0.05) significance level. A stricter criterion (p < 0.01) for NDVI trends was
applied due to the temporal smoothing of the Landsat-based NDVI time series. Pixel-wise
slope differences were calculated between the two periods of 2002–2010 and 2011–2018.
The split of the two periods is determined by the timing of the SLMP implementation and
length of time series.

Aggregated NDVI trends were calculated for treatment and control areas using the
median. This was done for the total study area (“regional” scale) as well as for each
major watershed that comprises both treatment and control micro-watersheds (“local”
scale). To assess the effects of treatments, i.e., SLMP interventions, the significance of the
difference in the distribution of per-pixel-NDVI trends between the two sample groups was
evaluated using the Mann-Whitney U test, which is a non-parametric test for independent
samples, non-normally distributed data and different sample sizes [55]. Spatial patterns
were assessed by inspecting trend maps with the additional use of multi-temporal Google
Earth VHR images.

In order to investigate the spatiotemporal relationship between vegetation and rainfall,
the agreement of NDVI and rainfall trend directions was computed on a pixel-basis for each
period. This method is based on a model which, following Horion et al. [26], interprets the
nature of changes in ecosystem functioning based on the combination of growing season
vegetation and rainfall trends. A decrease in growing season vegetation despite an increase
in precipitation or vice versa is likely to be caused by human activities. In contrast, trend
combinations with the same direction of change are likely to be caused by climate (see
Figure A3 for further explanation). The stronger the magnitudes of change in a given
direction, the more likely the cause attribution [26].
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2.3.3. LandTrendr

In addition to the trend analysis based on fixed time periods (Section 2.3.2), we
conducted an analysis based on the LandTrendr approach in GEE [56]. This was done to
further explore the importance of analysing land degradation and SLMP interventions at
the level of Landsat pixel resolution rather than at coarser spatial resolution (e.g., MODIS
predominantly being used for time series analysis) where subtle vegetation changes at
local scale is likely to go unnoticed. The implementation of SLMP interventions was
conducted at different times during the eight-year epoch 2011–2018 in the different micro-
watersheds. Therefore, human-induced changes through SLMP occurred presumably
within a time period shorter than eight years. Horion et al. argue that abrupt changes
in RUE can indicate significant changes in ecosystem response to precipitation through
human activities [26]. To identify trends with a shorter duration than eight years and
to obtain more information about the types and timing of the changes, LandTrendr was
applied to NDVI and RUE composites. The algorithm was used to fit a model for the period
2002–2018 with a maximum number of three segments (for the sake of simplicity) and a
confidence interval of 95% (p ≤ 0.05) determining the significance of the fitted segments.
For each significant segment, the algorithm returns the magnitude, duration and rate of
change as well as the start year in which the segment was detected, the end year and the
corresponding NDVI value defined by the identified vertices (Figure A4). The Pearson’s
correlation coefficient (r) was used to mask pixels where RUE correlated with rainfall over
the overall period 2002–2018 using a confidence interval of 95% (p < 0.05). This was done,
as the use of satellite-based RUE time series to identify non-precipitation related land
degradation/recovery is problematic for pixels where RUE remains correlated with NDVI,
as this suggests NDVI changes still to be controlled by changes in precipitation [25,57,58].

2.3.4. Effect of Soil and Water Conservation (SWC) Measures on Vegetation Trends

OLS regression was used to estimate the effect of SWC measures on vegetation trends
where the trend represents the dependent variable and the distance to the SWC points the
explanatory variable. To investigate the influence of SWC distance on the trends, buffers
were created based on the geolocations of the different SWC types and implemented based
on three different sizes: buffers with a 250 m and 500 m radius, both with a zone width
of 50 m (Figure A5), and buffers with a 1000 m radius and a zone width of 100 m. Within
each zone the trend results were aggregated in two ways; first, by using the median of all
Theil-Sen trends and second, by using the proportion of the significant Theil-Sen as well as
LandTrendr increases. The aggregated results were regressed against the corresponding
distance value of the zone.

3. Results

MK trend test revealed that rainfall trends were not significant in any of the sub-
periods apart from 0.3% of the study area with increasing trends in 2002–2010 (p < 0.05).
Over the entire study period 2002–2018, monotonic increasing trends were found for 17%
and decreasing trends for 1.3% of the total area. When considering all rainfall trends,
increasing trends were observed in 91% of the entire study area for the sub-period 2002–
2010, 54% for the sub-period 2011–2018 and 78% for the entire study period 2002–2018.

The increasing rainfall trends during 2002–2010 had a median annual change of
15.2 mm and occurred with mainly decreasing NDVI trends (Figure 3a). During 2011–
2018 rainfall experienced almost no or little changes (median annual change of 1.5 mm)
while NDVI was predominately increasing (Figure 3b). Over the entire study period 2002–
2018, minimal increases in rainfall with a median annual change of 4.2 mm occurred with
increases in NDVI (Figure 3c). When considering only significant rainfall trends for this
period (Figure 3d), the agreement shows a more pronounced pattern of positive significant
monotonic NDVI and rainfall increases with an annual change rate of 15.8 mm per year.



Remote Sens. 2021, 13, 1297 8 of 20Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 22 
 

 

 
Figure 3. Spatial agreement of all annual rainfall trends and significant NDVI trends (p<0.01) as density plots for the total 
study area for (a) the period 2002–2010, (b) 2011–2018 and (c) 2002–2018, and for (d) 2002–2018 with significant rainfall 
trends (p<0.05). 

3.1. Treatment and Control Areas 
3.1.1. Theil-Sen Trends 

In the period 2002–2010 the median trend in NDVI was negative with an annual de-
crease of -0.0065, while in 2011–2018 NDVI annually increased by 0.009 (Figure 4a). The 
proportion of pixels where significant NDVI trends occurred in both periods accounted 
for 2.6% (treatment) and 2.8% (control). The distributions of the trend differences of these 
pixels are left-skewed for both treatment and control areas and have a median of 0.019 
(treatment) and 0.018 (control) (Figure 4b). 

The most common trend was a shift from negative to positive (Figure 4c). The pro-
portion of significant negative-positive trends was slightly higher for treatment areas 
(1.84%) than for control areas (1.79%) (Figure 4c). The overall trends (all trend types in-
cluded), the negative-positive trends, and trends with the same sign in both sub-periods 
all had a positive median trend (Figure 4d). The median trends were similar for both sam-
ple groups. 

The results of the individual watersheds reveal that cases where treatment areas have 
larger trends than control areas dominated (Table A2). When treatment and control micro-
watersheds from all major watersheds were treated as two large sample groups, the over-
all NDVI trend was larger for treatment (0.019) than for control (0.0183). 

 
Figure 4. Theil-Sen NDVI trends. (a) Distribution of statistically significant (p<0.01) trends for both sub-periods for the 
total study area; (b) Distribution of NDVI trend differences (slope of 2011–2018 minus slope of 2002–2010) for treatment 
and control areas; (c) Proportion of each type of change for all significant pixels and (d) Median of NDVI trend differences 
(slope of 2011–2018 minus slope of 2002–2010) for the overall trend and for each type of change constellation. 
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Figure 3. Spatial agreement of all annual rainfall trends and significant NDVI trends (p < 0.01) as density plots for the total
study area for (a) the period 2002–2010, (b) 2011–2018 and (c) 2002–2018, and for (d) 2002–2018 with significant rainfall
trends (p < 0.05).

3.1. Treatment and Control Areas
3.1.1. Theil-Sen Trends

In the period 2002–2010 the median trend in NDVI was negative with an annual
decrease of −0.0065, while in 2011–2018 NDVI annually increased by 0.009 (Figure 4a). The
proportion of pixels where significant NDVI trends occurred in both periods accounted for
2.6% (treatment) and 2.8% (control). The distributions of the trend differences of these pixels
are left-skewed for both treatment and control areas and have a median of 0.019 (treatment)
and 0.018 (control) (Figure 4b).

The most common trend was a shift from negative to positive (Figure 4c). The propor-
tion of significant negative-positive trends was slightly higher for treatment areas (1.84%)
than for control areas (1.79%) (Figure 4c). The overall trends (all trend types included),
the negative-positive trends, and trends with the same sign in both sub-periods all had a
positive median trend (Figure 4d). The median trends were similar for both sample groups.

The results of the individual watersheds reveal that cases where treatment areas have
larger trends than control areas dominated (Table A2). When treatment and control micro-
watersheds from all major watersheds were treated as two large sample groups, the overall
NDVI trend was larger for treatment (0.019) than for control (0.0183).
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of 2011–2018 minus slope of 2002–2010) for the overall trend and for each type of change constellation.

3.1.2. LandTrendr

A LandTrendr-based approach was used to refine the Theil-Sen trend analysis that
was based on two fixed time periods defined by the major scheme of SLMP support.
LandTrendr detected for 46% of both treatment and control areas statistically significant
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(p ≤ 0.05) changes in NDVI for the entire study period 2002–2018, that were subsequently
analysed as a function of change types. For 92% of the study area pixels showed negative
correlation of RUE and rainfall and were therefore not included in the change type analysis
(Section 2.3.3). The remaining significant RUE changes (that were not correlated with
rainfall changes) accounted for 2% of treatment and 3% of control areas.

The most frequent NDVI change type (amongst the 46% of statistically significant
pixels) consisted of one decreasing followed by an increasing trend for 29 and 28% of all
significant pixels in treatment and control areas, respectively (Figure 5a). The second most
frequent change type were two consecutive increasing trends (24 and 26%, respectively).
For RUE, the most common trends were of the same type as for NDVI, however with a
larger share of two consecutive increasing trends (44 and 42%, respectively).

To examine the timing of detected trend segments for treatment and control areas, the
onset of the decreasing and increasing trend segments with the greatest rate were extracted
from each pixel (i.e., from each trend sequence) and aggregated in two groups, respectively.
Generally, treatment and control areas showed the same pattern in the timing of trends
without any pronounced differences. For both sample groups, the timing of the onset of
approx. 90% of both NDVI and RUE decreasing trends was in 2002 (Figure 5b). In contrast,
only approx. 40% of the NDVI increasing trends for both groups occurred in this year. For
RUE increasing trends the proportions amounted to 53% (treatment) and 51% (control).
The remaining NDVI and RUE recoveries occurred proportionally more equally distributed
over the years after 2002 (2–10% in the remaining years of the time series).
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Figure 5. LandTrendr results for treatment and control areas, respectively; (a) Change types detected by LandTrendr with
“+” indicating increasing and “-“decreasing trends. As the change types resulted from fitting either one, two or three
segments into the time series, different combinations of trends existed. For example, while “-“ indicates a decreasing trend
over the entire study period, “- + +” indicates one decreasing trend followed by two increasing trends; (b) Timing of NDVI
and RUE trends.

3.2. Visual Inspections of Trends Using Google Earth

Google Earth imagery was used to inspect all 21 major watersheds and showed that
the limited amount of significant RUE trends to a wide extent occurred in areas where
tree plantations have been established extensively. The watershed of Banja was selected as
an exemplary case of illustration (Figure 6) to link interventions on the ground with the
trends captured by the remote sensing time series data. Here, the positive trend differences
represent pixels where trees have been planted between 2011 and 2018 and negative trend
differences were mostly found in croplands, while grazing land showed no change in
NDVI (Figure 6a). NDVI recoveries (an increasing trend segment) detected by LandTrendr
were observed to be more dispersed in time (Figure 6c) and space (Figure 6d) as compared
the RUE (Figure 6e). The higher uniformity of the RUE results at the pixel level can be
explained by the coarser resolution of the CHIRPS rainfall data used to compute RUE time
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series at the scale of Landsat NDVI data. The strongest changes in RUE were therefore more
likely to be found in the same year for different pixels as compared to changes in NDVI.
RUE recoveries were mostly detected between 2013 and 2014 (Figure 6c) and represent
pixels where trees have been grown on former cropland or grazing land (Figure 6e). This is
exemplified in the time series (Figure 6b) at the point of interest (POI) where LandTrendr
detected the strongest NDVI recovery in 2012 that continued until 2017 with a rate of 0.07
per year. The rather high NDVI and low rainfall in 2015 led to high RUE in this year;
hence the detection of a positive RUE trend in 2013 with a rate of 0.09 per year. The VHR
images show that while agricultural fields and grazing lands were largely unterraced in
2005 (Figure 6f), benches of terraces were fully established in 2013 (Figure 6g). From this
year on, tree cover expanded until 2020 (Figure 6h).
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Figure 6. Watershed of Banja. (a) NDVI trend differences (slope of 2011–2018 minus slope of 2002–2010); (b) Time series at
the POI; (c) Timing of the largest NDVI and RUE recoveries in the AOI; (d) Spatial distribution of the timing of the largest
NDVI recoveries and of (e) RUE recoveries in the AOI; VHR images showing (f) mainly unterraced hillside in 2005, (g) the
establishment of terraces in 2013 and (h) expanded tree cover area in 2020.

Furthermore, an inspection of Google Earth imagery from the watershed Yilmana
Densa (Figure 7a) revealed that positive vegetation trends occurred mainly outside agri-
cultural fields. Generally, the timing of NDVI recoveries in this watershed was equally
distributed over the entire study period while RUE recoveries occurred mainly in 2009,
2011 and 2013 (Figure 7b). Recovery trends detected after 2010 were mainly detected along
riverbanks, on steep hillsides, and on land affected by gully erosion. This is shown in area I
(Figure 7c) and area II (Figure 7d) which accordingly showed positive trend differences that
were associated with a trend shift of significant monotonic negative-positive trends. The
two VHR images of the river in area I show that this development is related to a decline in
eroded soil from 2013 to 2016. For area II, the VHR images show that while the hillside
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was largely covered by degraded soil in 2014, it was revegetated in 2019 which explains
the positive NDVI trends. Furthermore, area III (Figure 7e), characterised by degraded
land and affected by gully formation, increased in vegetation cover between 2005 and 2019
which is reflected by the positive NDVI trend differences. This result also coincides with
the evaluation through the performance assessment by GFA Consulting Group in which
the area of the corresponding micro-watershed was described as “reclaimed land from
gully erosion transformed into forage production and other economic activities” (personal
communication with GFA’s SLMP team leader).
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Figure 7. Watershed of Yilmana Densa. (a) NDVI trend differences (slope of 2011–2018 minus slope of 2002–2010); (b) Timing
of the largest NDVI and RUE recoveries; Zoom-in areas showing (c) a decline of eroded soil at a riverbank (area I), (d) an
increase in vegetation along a hillside (area II) and (e) an increase in vegetation in and nearby a gully (area III) with
corresponding trend patterns.

3.3. Effect of SWC Measures on Vegetation Trends

The regional regression results (results based on the available SWC data in the entire
study area) showed strong negative relationships of trends and distance particularly for
check dams. The strongest relationships were found between the distance and the median
trend differences (slope of 2011–2018 minus slope of 2002–2010) within 250 m (r = −0.97 **,
r2 = 0.94) and 500 m (r = −0.98 ***, r2 = 0.8) (Figure A6a, Table 1) as well as between the
distance and the proportion of significant increases 2011–2018 within 250 m (r = −0.97 **,
r2 = 0.93) and 500 m (r = −0.95 ***, r2 = 0.91) (Figure A6b, Table 2). For the latter type of
trends, terraces showed strong negative relationships within 500 m (r = 0.87 **, r2 = 0.76)
and 1500 m (r = 0.85 ***, r2 = 0.73) radius (Table 2). Otherwise, linear relationships within
1500 m buffers were for both SWC types predominately weak.
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Table 1. Regional OLS regression results for median trend differences (all trends).

SWC Type
Buffer Option 1 (250 m) Buffer Option 2 (500 m) Buffer Option 3 (1500 m)

Slope r r2 Slope r r2 Slope r r2

Check dams −1.7 × 10−5 −0.97 ** 0.94 −8.60 × 10−6 −0.98 *** 0.8 −4.00 × 10−7 0.23 0.05
Terraces −2.0 × 10−7 −0.02 0 −2.00 × 10−7 −0.06 0 −8.00 × 10−7 −0.58 * 0.34

Differences exist with different significance levels (* p < 0.05, ** p < 0.01, *** p < 0.001).

Table 2. Regional OLS regression results for the proportion of significant positive trends in the period 2011–2018.

SWC Type
Buffer Option 1 (250 m) Buffer Option 2 (500 m) Buffer Option 3 (1500 m)

Slope r r2 Slope r r2 Slope r r2

Check dams −0.046 −0.97 ** 0.93 −0.03 −0.95 *** 0.91 −0.007 −0.79 *** 0.63
Terraces −0.035 −0.64 0.42 −0.029 −0.87 ** 0.76 −0.010 −0.85 *** 0.73

Differences exist with different significance levels (** p < 0.01, *** p < 0.001).

The results showed stronger correlations for a few local regressions models (results of
the individual watersheds). An example is the watershed of Tahtay Koraro that experienced
increasing trends particularly along the micro-watershed borders where steep slopes exist.
Strong negative relationships of trends and the distance to both check dams and terraces
were observed. Significant increases between 2011 and 2018 clustered at the location of
two check dams and one terrace (Figure 8a). The strongest relationship was found within a
250 m radius (r2 = 0.98) with a decreasing proportion of significant trends from 74% at 50 m,
to 36% at 250 m and to 13% at 1500 m (Figure 8b). The VHR images reveal that the hillsides
were, in accordance with the SWC data, terraced in 2016 and increased in vegetation cover
up to 2019 (Figure 8c).
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Figure 8. OLS regression of trends and the locations of SWC measures in the watershed of Tahtay Koraro. (a) Significant
NDVI trends 2011–2018 with SWC points showing the year of completion; (b) Combined regression model for all check
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Another example of spatial correlations of increasing NDVI trends and SWC measure
locations was observed for the watershed of Gudeyabila where the trend differences
(Figure 9a) and recovery trends detected after 2010 (Figure 9b) clustered in close proximity
to a check dam. Here, a decrease of the median NDVI from 0.015 at 50 m to 0.005 at 250 m
(r2 = 0.85) was observed (Figure 9c). The VHR images show the existence of a gully as
well as mainly unterraced hillside in 2013 (Figure 9d). The construction of the check dam,
which was completed at the gully in 2015, was accompanied by treatment through terraces
of the surrounding hillside area including grazing land and cropland.
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Figure 9. OLS regression of trends at a check dam location in the watershed of Gudeyabila; (a) Trend differences (slope of
2011–2018 minus slope of 2002–2010); (b) Timing of recovery trends; (c) Regression model of the median trend difference for
the check dam location; (d) Google Earth VHR images showing mainly unterraced hillside in 2013 and the construction of
terracing in 2015. * p < 0.05, ** p < 0.01.

4. Discussion

During the entire period 2002–2018 and during the second sub-period 2011–2018, the
study area showed more pixels of NDVI increase than decrease and vice-versa during the
sub-period 2002–2010 (Figures 3 and 4a). The browning trends in the latter period coincide
with previous findings by Hermans-Neumann et al. who identified declining net primary
production between 2000 and 2009 in the highlands of Amhara and Oromia [18]. Besides
the greening trends between 2002 and 2018, several results of this study indicate a shift
from browning to greening within the same period. On the one hand, this was indicated
by the results from the Theil-Sen trend analysis with a shift from decreases to increases
in 2011 (Figure 4c), on the other hand, browning to greening was also expressed by the
LandTrendr results showing a relatively large number of the negative-positive change
types (Figure 5a). For RUE, this change type was the second most common one. The
general shift from negative to positive trends was also in agreement with the timing of
increases and decreases, as decreases occurred mainly in 2002 and increases mainly after
2010 (Figure 5b).
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14% of the study area experienced a significant increase in both NDVI and rainfall in
the overall study period 2002–2018. This spatiotemporal pattern indicates climate-related
greening [26]. In the first epoch 2002–2010, the study area presented mainly negative rates
of change in NDVI despite increasing (but not significant) rainfall trends (Figure 3a). Even
though this pattern indicates human-induced browning, evidence of this is not provided
due to the insignificance of the rainfall trends and the results rather suggest that declining
NDVI was not related to a long-term change in rainfall. Rainfall variability in North, West
and central Ethiopia increased during the period 1983 to 2012 [59]. As extreme weather
conditions pose major challenges to agricultural activities through reduced crop yields
and intensified soil erosion [59], changing intra-annual patterns are overlooked by using
seasonally summed rainfall and the results could possibly be improved by examining
trends in rainfall intra-annual variability [60].

4.1. Treatment and Control Areas

The Mann–Whitney U test results showed larger median NDVI trends between 2011
and 2018 for treatment areas than for control areas at the regional level with most local
test results (i.e., within each individual major watershed) indicating this as well (Table A2).
However, the medians differed only marginally and the significant differences in the
distributions of the per-pixel trends were not immediately apparent in the trend maps. The
significance of test results may be attributed to large sample sizes facilitating distributions
to be significant.

The LandTrendr results did not reveal any substantial differences in the types and
timing of changes between treatment and control areas (Figure 5); hence did not provide
evidence for an improved development of treatment than control areas. However, it should
be considered that this result may be tied to the applied methodology, particularly the use
of the maximum NDVI which may not fully capture effects of interventions. This may be
the case if the impact of interventions show an increase in crop yield that might be reflected
better as an increase in the integral of the phenological crop cycle curve (integrated NDVI)
or if the impact is the reduction of eroded soil in the end of the rainy season which could
lead to higher NDVI values in the end of the phenological cycle, rather than causing an
increase in maximum NDVI. Future research should, provided that the data availability
will be sufficient (e.g., Sentinel-2), therefore include seasonal metrics when examining
changes in vegetation condition related to SLM interventions.

4.2. Visual Inspections of Trends Using Google Earth

Whereas the previously discussed results based on the analysis conducted and re-
ported at the level of watersheds did not indicate strong differences in vegetation develop-
ment between treatment and control areas, closer visual examination of the trend maps
showed that human-induced land improvements can be detected from the Landsat-based
approach developed, though at localised scales rather than consistently spread through-
out entire watersheds. For a few major watersheds, particularly for Banja and Sekela in
Amahara region, the VHR images supported that RUE increases between 2012 and 2014
were due to the establishment of tree plantations (Figure 6). Following Mekonnen et al.,
communal and private lands in rural areas in Amhara region have been extensively used
for the expansion of Eucalyptus and Acia plantations due to the demand for wood re-
source [61]. Furthermore, the government has been promoting tree planting widely through
the introduction of campaigns. Consequently, woodlots, home gardens, trees on cropland
and farm boundary plantations have become common agroforestry practices [61] which
may explain the general emergence of small tree patches in various watersheds.

Furthermore, from visual inspection it was observed that notable changes occurred
outside cultivated fields as patches of increasing trends in vegetation cover, particularly
at hillside locations and along streams and gullies (Figure 7). These clusters of pixels
were characterised by a negative-positive trend shift (MK) and were in agreement with
LandTrendr recoveries of which the largest were detected after 2010. Since in these instances
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VHR images could verify the regrowth of vegetation, these negative-positive trend shifts
can be linked to anthropogenic land improvement where degradation previously occurred.
Moreover, findings of positive development could be confirmed by results from the GFA
Consulting Group performance assessment (Section 3.2).

4.3. Effect of SWC Measures on Vegetation Trends

The OLS regression results demonstrated that positive changes in NDVI could be
attributed to the impact of SLMP infrastructure. Visual inspection showed that this was
visible in the spatial patterns for several locations at check dams and terraces, as shown
in the case examples (Figures 8 and 9). This coincides with results from a study by Ali
et al. who used NDVI and other satellite derived indices to evaluate the impact of SWC
measures on different land use (i.e., on cultivated land and non-cultivated land such as
degraded hillsides), and found that biophysical measures had a particular high impact on
non-cultivated land [13].

In general, the most significant positive changes in NDVI were observed within the
smallest buffer zone; i.e., the decrease in the medium change rate or density of change
occurrence was mainly observed within 250 m distance from the location, in few cases
within 500 m (Tables 1 and 2). At distances larger than this and up to 1500 m, trends
levelled off or even increased again. Field visits showed that gullies typically pass through
cultivated fields and in these cases revegetation efforts are conducted mainly directly at
the gully only. Hence, for land restoration of gullies dense vegetation regrowth does not
often take place across larger distances from the restoration activities. Land improvement
in proximity to check dams could therefore also occur as a line type pattern in the trend
map. In this case, circular buffer zones will not help explaining vegetation trends. Apart
from this, it should be considered that rehabilitation activities can occur at a smaller
scale than Landsat’s spatial resolution of 30 × 30 m, in which cases changes would not
easily be detected. The spatial scale of the impact of SWC interventions as implemented
in Ethiopia therefore underlines the challenge of detecting changes related to improved
land management in developing countries based on the use of traditional remote sensing
methods for change detection.

5. Conclusions

The aim of this study was to examine vegetation dynamics between 2002 to 2018 in
degraded areas in the Ethiopian highlands and assess the impact of SLMP interventions. To
examine vegetation dynamics in complex landscapes in Ethiopia on a detailed spatial scale,
we investigated the potential of combining remote sensing data from different Landsat
sensors using cloud-based geospatial processing supporting a high-resolution time series
analysis. The vegetation dynamics in the study areas showed a shift from

browning (2002–2010) to greening (2011–2018) along with an overall greening trend
over the full period (2002–2018). From the spatiotemporal patterns of NDVI and rainfall it
could be concluded that the browning trend was not explained by long-term changes in
rainfall. In contrast, the greening trend over the full period could—for 14% of the study
area—be explained by increases in rainfall. Overall, no clear patterns of anthropogenic
induced changes in vegetation were found when aggregating results at the catchment scale,
as NDVI median trends did not clearly indicate better development in SLMP intervention
areas than in control areas. Visual inspection based on multi-temporal Google Earth
imagery showed that the changes in NDVI and rain-use efficiency did spatially overlap
areas of small-scale land improvements related to human management, however, on a
smaller scale than a micro-watershed (the smallest aggregation level). The OLS regression
results provided evidence of land recovery that could be attributed particularly to SLMP
infrastructure (check dams and terraces). Positive impacts on vegetation were found to
be contributing to improving the rehabilitation of degraded hillside areas and gullies.
These findings underline that the little differences found between treatment and control
areas when aggregated to the level of (micro-)watersheds are rooted in a scale issue, and
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highlight the need for per-pixel trend analysis using sensor systems like Landsat, or higher
spatial resolution, to be able to remotely capture the effect of SLMP interventions.

The ecological improvements through SLMP, identified here at the per-pixel level from
the use of Landsat time series, are an important contribution to restore terrestrial ecosystems
as targeted in the Sustainable Development Goals. Continuous efforts in developing means
for improved monitoring of human-induced vegetation restoration of degraded lands will
be essential to maintain rehabilitated land, prevent further land degradation and support
environmental sustainability.
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Appendix A

Table A1. Description of soil and water conservation (SWC) measure data.

Type of SWC Measure Purpose Number of Geolocation Points

Hillside terraces Terraces are built to stabilise cultivated land, or to stabilise area. 11

Check dams

Check dams are obstruction walls constructed at the bottom of a
gully, small streams or trenches in order to reduce run-off volume

and prevent further widening of the gully channel [62]. These
treatment measures are typically combined with revegetation
activities to gain higher run-off infiltration into the sediments.

43

Figure A1. Landsat cross-calibration. (a) Distributions of ETM+ and OLI NDVI values; (b) OLS regression of ETM+ NDVI
against OLI NDVI values. For a given OLI NDVI value, the corresponding ETM+ value is usually lower.
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Table A2. Mann-Whitney U results with the sample size N (number of significant pixels), the median
NDVI trend, and U indicating whether treatment areas have significantly 1 larger or smaller trends
than control areas. Watersheds that did not include any control micro-watersheds are not included.

Major Watershed
Treatment Control

U
N Median N Median

Laelay Adyabbo 2091 0.0128 750 0.0116 -
Tahtay Koraro 6627 0.0203 604 0.0165 Larger ***

Emba Alaje 1080 0.0089 34 −0.0091 Larger ***
Gondar Zuriya 693 0.0137 491 0.0172 Smaller **

Takusa 2182 0.0208 2526 0.0130 Larger ***
West Estie 5248 0.0252 1203 0.0237 Larger ***

Hagere Mariam 1060 0.0065 60 0.0164 Smaller ***
Sinan 2135 0.0213 1324 0.0218 -

Aneded 3517 0.0292 2387 0.0270 Larger ***
Yilmana Densa 2539 0.0242 2204 0.0193 Larger ***

Sekela 2384 0.0212 972 0.0196 Larger **
Quarit 2000 0.0222 1220 0.0183 Larger ***
Banja 2370 −0.0003 2974 0.0052 Smaller ***
Ale 861 0.0112 131 0.0117 -

All watersheds 43,984 0.0190 16,880 0.0183 Larger *
1 Differences exist with different significance levels (* p < 0.05, ** p < 0.01, *** p < 0.001).
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Figure A6. Regional OLS regression models for check dams with (a) the median of all trend differences and (b) the
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the linear slope when including zones up to 250 m distance, the blue line when including zones up to 500 m. ** p < 0.01,
*** p < 0.001.
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