
remote sensing  

Article

High-Dimensional Satellite Image Compositing and Statistics
for Enhanced Irrigated Crop Mapping

Michael J. Wellington * and Luigi J. Renzullo

����������
�������

Citation: Wellington, M.J.; Renzullo,

L.J. High-Dimensional Satellite Image

Compositing and Statistics for

Enhanced Irrigated Crop Mapping.

Remote Sens. 2021, 13, 1300.

https://doi.org/10.3390/rs13071300

Academic Editor: Mehdi Hosseini

Received: 26 February 2021

Accepted: 25 March 2021

Published: 29 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Fenner School of Environment and Society, The Australian National University, Canberra, ACT 2601, Australia;
luigi.renzullo@anu.edu.au
* Correspondence: michael.wellington@anu.edu.au

Abstract: Accurate irrigated area maps remain difficult to generate, as smallholder irrigation schemes
often escape detection. Efforts to map smallholder irrigation have often relied on complex classi-
fication models fitted to temporal image stacks. The use of high-dimensional geometric median
composites (geomedians) and high-dimensional statistics of time-series may simplify classification
models and enhance accuracy. High-dimensional statistics for temporal variation, such as the spectral
median absolute deviation, indicate spectral variability within a period contributing to a geomedian.
The Ord River Irrigation Area was used to validate Digital Earth Australia’s annual geomedian and
temporal variation products. Geomedian composites and the spectral median absolute deviation
were then calculated on Sentinel-2 images for three smallholder irrigation schemes in Matabeleland,
Zimbabwe, none of which were classified as areas equipped for irrigation in AQUASTAT’s Global
Map of Irrigated Areas. Supervised random forest classification was applied to all sites. For the
three Matabeleland sites, the average Kappa coefficient was 0.87 and overall accuracy was 95.9%
on validation data. This compared with 0.12 and 77.2%, respectively, for the Food and Agriculture
Organisation’s Water Productivity through Open access of Remotely sensed derived data (WaPOR)
land use classification map. The spectral median absolute deviation was ranked among the most
important variables across all models based on mean decrease in accuracy. Change detection capacity
also means the spectral median absolute deviation has some advantages for cropland mapping
over indices such as the Normalized Difference Vegetation Index. The method demonstrated shows
potential to be deployed across countries and regions where smallholder irrigation schemes account
for large proportions of irrigated area.

Keywords: geomedian; smallholder; irrigation; random forest; high-dimensional

1. Introduction

Mapping and quantifying irrigated areas are critical to local, national, and interna-
tional organizations that aim to understand and govern land and water resources for
food security and sustainable development. National estimates are often based on non-
exhaustive on-ground surveys, or low-resolution remote sensing estimates for continental
scale applications. This can result in a broad range of estimations for a given area. For
example, Vogels et al. [1] recently found that irrigated area across the Horn of Africa was
on the order of two to four times greater than several official estimates.

Irrigated farming in Zimbabwe occurs along a spectrum of scales, from small informal
plots to large commercial operations. Based on government records, Landsat, and MODer-
ate resolution Imaging Spectroadiomater (MODIS) imagery, current estimates of irrigated
area range from 123,900 to 202,600 ha [2,3]. Most of the area included in these estimates
is in Mashonaland where large-scale irrigation schemes are prevalent [4]. Irrigated area
estimates for Matabeleland, where smallholder schemes predominate, are much lower [4].
However, these estimates overlook some irrigation schemes and smallholder activity. It is
hypothesized that official figures underestimate irrigated area, as Vogels et al. [1] observed
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for the Horn of Africa. Agencies in Zimbabwe are interested in detailed irrigated cropland
mapping for the region of Matabeleland, as this would inform natural resource policies
and agricultural research, development, and extension priorities [5]. This region continues
to be affected by drought, poverty, and food and water scarcity, so sustainable irrigation is
critical to development efforts [6,7]. A reliable method of irrigated cropland classification
that accounts for smallholder activity in Matabeleland is therefore required.

Smallholder irrigation activity in tropical environments remains more difficult to
accurately map than large-scale commercial irrigation. Small and irregular field size and
shape, synchrony of green vegetation phenology in the wet season, cloud cover during crop
seasons, and in-field heterogeneity are major challenges for remote sensing of smallholder
irrigation [8,9]. The Sentinel-2 satellite mission offers increased sensor resolution capability
over the Landsat and MODIS satellites which have been used extensively for land use
classification, including irrigated area, over recent decades. Recent work towards improved
mapping of small-scale irrigation has largely focused on the application of Sentinel-2
imagery [10].

Several classification techniques have been tested for efficacy on small-scale irrigated
areas. Vogels et al. [1] applied a supervised, object-based approach on dry-season mosaic
images, with object symmetry and roundness variables included in the random forest clas-
sification model. Bousbih et al. [11] explored the fusion of Sentinel-2 optical imagery with
a soil moisture product, although the relatively coarse resolution of satellite soil moisture
data limits their application in smallholder contexts. Hollander [12] collected training
polygons in Mozambique to apply a Sentinel-2 supervised learning model, although found
that the ground-collected training data did not include sufficient samples of non-irrigated
areas that shared similar spectral characteristics, such as light seasonal vegetation, to fit a
sound classification model. It is likely that Vogels et al. [1] approach of collecting training
data from visual interpretation produces a better representation of landscape variability,
and, therefore, a more robust supervised classification model.

Combining finer resolution satellite imagery with novel approaches to land use classi-
fication problems offers a path towards more reliable irrigated area detection. Traditionally,
land use classification methods have tended to use a selection of clean images, or sim-
ple composite mosaics of clean images [1,13]. The high-dimensional geometric median,
hereafter geomedian, has been proposed as a way of constructing high-quality, cloud-free
composites whilst preserving high-dimensional relationships between spectral bands [14].
It was developed with the aim of replacing the need for temporal stacks of poorer quality
images, which is a popular means of training complex classification models [1,13–17].
Additionally, high-dimensional statistics of temporal variation [18] may also be impor-
tant predictors of irrigation and other agricultural activity due to the spectral variability
associated with cultivation, crop growth, and harvest activities. Therefore, augmenting ge-
omedian images with high-dimensional statistics of time-series may enhance the accuracy
of land use classification models for irrigated cropland.

Digital Earth Australia, an Open Data Cube (odc) initiative, offers several high-
dimensional statistical products of value for land use classification. For example, an
annual geomedian product derived from Landsat-8 is available for the entire Australian
continent from 2013 to 2018 [14,19]. Additionally, a triple median absolute deviation [20]
product is available for the same period, also derived from Landsat-8 [18,20]. The ratio-
nale for this product is change detection and machine learning for land use classification,
especially over areas that undergo large changes in cover within a year, such as irrigated
croplands [18]. The triple median absolute deviation product has three measures of tempo-
ral variation: the Euclidean median absolute deviation, spectral (cosine) median absolute
deviation (SMAD), and Bray Curtis dissimilarity. Of these, the SMAD is most appropriate
for highlighting areas of change within the period contributing to a given geomedian [18].
Therefore, the SMAD may be an important and useful variable in machine learning models
for cropland mapping.
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The analysis-ready annual products available from Digital Earth Australia make data
acquisition simple, although recalculation of high-dimensional statistics is necessary for
applications beyond the Australian continent. For example, high-dimensional products are
not yet available in Digital Earth Africa, a parallel odc initiative to Digital Earth Australia.
Application of high-dimensional compositing across satellites and continents therefore
requires a methodology that calculates necessary images and statistics from available
reflectance data.

This research paper aims to demonstrate the improvements in irrigation area mapping
resulting from the use of high-dimensional statistics and supervised satellite image classifi-
cation using odc infrastructure. The paper first demonstrates the use of existing geomedian
and SMAD products over a much-studied irrigation scheme in Australia. Secondly, geome-
dian and SMAD are derived from Sentinel-2 imagery through Digital Earth Africa. Finally,
the performance of the high-dimensional dataset approach to classification of smallholder
irrigation schemes is evaluated with reference to existing mapping products.

2. Materials and Methods
2.1. Site Selection and Information

The Ord River Irrigation Area (ORIA) surrounding the town of Kununurra in Western
Australia was chosen for validating the Digital Earth Australia products (Table 1). This
was because it is a well-studied, irrigated area, and shares similar biophysical and climatic
characteristics to irrigation schemes in southern Africa, with frequent cloud cover in the
monsoonal wet season [21]. Furthermore, the ORIA supports numerous annual crops in
addition to perennial tree crops, despite having less within-field heterogeneity and much
larger field size than smallholder irrigation schemes [22].

In total, three sites in Zimbabwe were selected from active irrigation schemes covered
by phase 2 of the Transforming Irrigation in Southern Africa (TISA) project, funded by the
Australian Centre for International Agricultural Research (ACIAR). The three sites: Silalat-
shani, Nabusenga, and Lungwalala, are geographically disparate within Matabeleland
and vary in scale (Table 1). Furthermore, they are surrounded by various other land types
including dryland (rainfed) cultivation, water bodies, and natural vegetation. Locations
were confirmed by TISA project leaders [23].

Table 1. Irrigation schemes used for irrigated land use classification, their location, coordinates, and
approximate area.

Irrigation Scheme Location Coordinates Area Equipped for
Irrigation (ha)

Ord River Irrigation
Area

Kununurra, Western
Australia −15.601, 128.762 14,000 [24]

Silalatshani Matabeleland South
Province, Zimbabwe −20.799, 29.296 442 [25]

Nabusenga Matabeleland North
Province, Zimbabwe −17.462, 28.063 19 (measured)

Lungwalala Matabeleland North
Province, Zimbabwe −17.938, 27.561 132 (measured)

2.2. Data Collection and Preprocessing-Digital Earth Australia

Data for the ORIA were collected within the Digital Earth Australia ‘sandbox’, which
provides access to odc products in a Jupyter Notebook environment. The Landsat-8
geomedian product (ls8_nbart_geomedian_annual) was generated at 25-m resolution for
the year 2017. The triple median absolute deviation product (ls8_nbart_tmad_annual) was
derived with the same resolution, extents, and period. Then, three indices were calculated
on the geomedian product: Normalized Difference Vegetation Index (NDVI), Normalized
Difference Water Index (NDWI), and Bare Soil Index (BSI) using the Digital Earth Australia
indices package [26]. The geomedian and triple median absolute deviation datasets were
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then merged to form a 12 variable classification dataset comprising six spectral bands, three
indices, and three measures of temporal variation (Table 2).

Table 2. Variables used for irrigated land use classification for the Ord River Irrigation Area site.

Group Variable Band or Source

Spectral bands

Blue B1
Green B2
Red B3

Near Infrared B4
Shortwave Infrared 1 B5
Shortwave Infrared 2 B6

Indices
Normalized Difference Vegetation Index (NDVI) [27]

Normalized Difference Water Index (NDWI) [28]
Bare Soil Index (BSI) [29]

Temporal variation
Spectral median absolute deviation (SMAD) [18]

Euclidean median absolute deviation (EMAD) [18]
Bray-Curtis Dissimilarity (bcdev) [18]

2.3. Data Collection and Preprocessing-Digital Earth Africa

Data for the three Matabeleland sites were generated and collected from the Digital
Earth Africa ‘sandbox’, a parallel initiative to Digital Earth Australia. All available cloud
optimized Sentinel-2 (s2_l2a) images were collected in 10-m resolution over each site for
the year 2019 [30]. This means that cloudy pixels were attributed as missing values and
thus ignored in the calculation of high-dimensional composites and statistics.

The two classification datasets were retrieved for each Matabeleland site: an annual
geomedian composite, and a stack of four (January–March, April–June, July–September,
October–December) geomedian composites. Cloud effects in wet season months meant that
complete geomedian composites could not be generated for each month, so the 3-monthly
(quarterly) approach was taken. Annual and quarterly geomedian images were calculated
with the odc package using the command ‘xr_geomedian’ which computes geomedians
from a defined image stack [31]. The geomedian (g) was calculated on a collection of
images (x, . . . , xn), based on Roberts et al. [14], as:

g =
argmin

x

n

∑
i=1
||x − xi|| (1)

where argmin is the “argument of the minima” [14,18].
The SMAD was calculated on the six spectral bands for Sentinel-2 (Table 3). The

SMAD was defined, based on Roberts et al. [18] as:

SMAD = median(cosdist(x(t),g), t = 1, . . . ,n) (2)

where x is a temporal stack dataset of images over a given period (t) contributing to the
geomedian (g). The cosine distance was calculated as:

cosdist(x,g) = 1 − xTg/(||x||· ||g||) (3)

where the numerator on the righthand side of Equation (3) is the dot product of spectral
data for vectors x and g and ||·|| is the product of the L-2 norms of each vector.

The SMAD calculation used to collect data for Matabeleland sites was validated
against the existing Digital Earth Australia SMAD product over the ORIA before application
in Digital Earth Africa. SMAD was chosen over other high-dimensional deviation statistics
due to its relative capacity to highlight change within periods of interest [18]. The NDVI,
NDWI, and BSI were calculated for each geomedian image with the Digital Earth Africa
indices package [32].
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The collection process resulted in an annual dataset of 10 variables comprising six
spectral bands, three indices, and SMAD for each site (Table 3). Consequently, the stacked
classification dataset of four quarterly geomedians comprised 40 (4 quarters per year × 10
variables) classification variables.

Table 3. Variables used for irrigated land use classification for three irrigation schemes in Matabeleland.

Group Variable Formula Band or Source

Spectral bands

Green B1
Red B2
Blue B3

Near Infrared (NIR) B4
Shortwave Infrared 1 (SWIR1) B5
Shortwave Infrared 2 (SWIR2) B6

Indices

Normalised Difference
Vegetation Index (NDVI) (NIR − Red)/(NIR + Red [27]

Normalised Difference Water
Index (NDWI) (NIR − SWIR)/(NIR + SWIR) [28]

Bare Soil Index (BSI) ((Red + SWIR) − (NIR + Blue))/((Red + SWIR) +
(NIR + Blue)) [29]

Temporal variation Spectral median absolute
deviation (SMAD) Equation (2) [14]

2.4. Data Sampling and Classification

Approximately 100 polygons were drawn over each image and labeled as either
‘irrigated’ or ‘other’ based on visual interpretation as shown in Figure 1. The rule for
labeling a field as ‘irrigated’ was the appearance of bright green vegetative crop in at least
one of the single-time images within the year of interest. For the ORIA, this was generally
in the dry-season when water from channels is applied to crops [22]. For the Matabeleland
schemes, each site has been studied as part of the TISA project and are known to be irrigated
from channels, especially in the late dry-season. However, visual inspection of the image
time-series ensured only actively irrigated fields were included. The polygon shapefiles and
geomedian images were then read into R and 80% of polygons were sampled as training
polygons, with the remaining 20% retained as validation polygons. The sp package was
used to randomly sample 80,000 pixels from within the training polygons and 20,000 pixels
from the validation polygons [33]. The caret package was then used to partition the sample
into 80% training data and 20% validation data [34]. The classification was therefore
pixel-based, although training and validation data were sampled from separate polygons.

The randomForest package was used to train the classification model with 500 trees.
Variable importance for the random forest model was reported using mean decrease in
accuracy. The caret package was used to generate confusion matrices, overall accuracies,
and Kappa coefficients for model performance on the validation data [34,35]. Finally, the
relevant classification model was applied to the entire extent for each site to classify pixels
not included within either training or validation datasets.
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Figure 1. Annual geomedian image of the Ord River Irrigation Area overlaid with hand-drawn
polygons labeled as either ‘Irrigated’ or ‘Other’ by visual interpretation, from which 80,000 training
and 20,000 validation pixels were randomly sampled for classification.

2.5. Comparison to Existing Products

The Global Map of Irrigated Areas was inspected on the AQUAMAPS web applica-
tion [36–38]. As none of the Matabeleland sites were classified as equipped for irrigation
in the Global Map of Irrigated Areas, no further comparisons were made. For the ORIA,
the AQUAMAPS product ‘percent of area equipped for irrigation’ was downloaded for
comparison to classification results.

The FAO portal for monitoring Water Productivity through Open access of Remotely
sensed derived data (WaPOR) [39] was used as comparison for the Matabeleland sites.
The continental scale, 250-m resolution, WaPOR land use classification product was down-
loaded from the WaPOR database [40] and cropped to the extent of each site. As the product
comprises 24 land use classes, all classes except ‘cropland, irrigated’ were combined to
form an ‘other’ class for ease of comparison. Confusion matrices were then generated
for the WaPOR classification against the validation (20,000 pixels) dataset using the caret
package [34]. Accuracy statistics for the WaPOR classification were compared with those
for the high-dimensional classification method.

3. Results
3.1. Calculation of Geomedian and Spectral Median Absolute Deviation

Geomedians and SMAD were derived as existing Landsat-8 based datasets from
Digital Earth Australia and recalculated from Sentinel-2 images in the Digital Earth Africa
platform. Visual inspection of SMAD plotted as a single band image demonstrates its
potential for use in classifying cropland areas, along with other established predictors such
as NDVI (Figure 2).



Remote Sens. 2021, 13, 1300 7 of 19

Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 19 
 

 

platform. Visual inspection of SMAD plotted as a single band image demonstrates its po-
tential for use in classifying cropland areas, along with other established predictors such 
as NDVI (Figure 2). 

 
(a) (b) (c) 

 
(d) (e) (f) 

 
(g) (h) (i) 

Figure 2. Cont.



Remote Sens. 2021, 13, 1300 8 of 19Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 19 
 

 

 
(j) (k) (l) 

Figure 2. Images of the (a–c) Ord River, (d–f) Silalatshani, (g–i) Nabusenga, and (j–l) Lungwalala irrigation schemes show-
ing (a,d,g,j) the calculated geomedian true color composite image, (b,e,h,k) a single band image for Normalized Difference 
Vegetation Index (NDVI) calculated on the geomedian, and (c,f,i,l) a single band image for the calculated spectral median 
absolute deviation (SMAD). 

3.2. Irrigated Area Classification 
Confusion matrices and prediction statistics for each classification model show 

model performance on validation data (Table 4). All models accurately classified irrigated 
areas for all sites, with each model giving overall accuracy levels greater than 84% and 
Kappa coefficients greater than 0.6. The stacked quarter datasets gave better accuracy re-
sults than the annual datasets. 

  

Figure 2. Images of the (a–c) Ord River, (d–f) Silalatshani, (g–i) Nabusenga, and (j–l) Lungwalala irrigation schemes
showing (a,d,g,j) the calculated geomedian true color composite image, (b,e,h,k) a single band image for Normalized
Difference Vegetation Index (NDVI) calculated on the geomedian, and (c,f,i,l) a single band image for the calculated spectral
median absolute deviation (SMAD).

3.2. Irrigated Area Classification

Confusion matrices and prediction statistics for each classification model show model
performance on validation data (Table 4). All models accurately classified irrigated areas
for all sites, with each model giving overall accuracy levels greater than 84% and Kappa
coefficients greater than 0.6. The stacked quarter datasets gave better accuracy results than
the annual datasets.

Table 4. Confusion matrices, overall accuracy, and Kappa coefficients for classification model
performance on validation data (20,000 pixels) for all datasets used.

Ord River Irrigation Area Observed

Predicted Irrigated Other
Irrigated 8382 351

Other 2820 8447

Overall accuracy (%) 84.1
Kappa coefficient 0.69

Silalatshani

(A) Annual dataset Observed
Predicted Irrigated Other
Irrigated 2583 226

Other 1554 15,637

Overall accuracy (%) 91.1
Kappa coefficient 0.69

(B) Stacked quarter dataset Observed
Predicted Irrigated Other
Irrigated 3498 0

Other 627 15,860

Overall accuracy (%) 96.8
Kappa coefficient 0.90
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Table 4. Cont.

Nabusenga

(A) Annual dataset Observed
Predicted Irrigated Other
Irrigated 4284 0

Other 583 15,133

Overall accuracy (%) 97.1
Kappa coefficient 0.92

(B) Stacked quarter dataset Observed
Predicted Irrigated Other
Irrigated 4789 0

Other 161 15,050

Overall accuracy (%) 99.2
Kappa coefficient 0.98

Lungwalala

(A) Annual dataset Observed
Predicted Irrigated Other
Irrigated 4411 46

Other 41 15,502

Overall accuracy (%) 99.6
Kappa coefficient 0.99

(B) Stacked quarter dataset Observed
Predicted Irrigated Other
Irrigated 4452 0

Other 0 15,548

Overall accuracy (%) 1
Kappa coefficient 1

Visual inspection of classification maps (Figure 3) for the annual datasets supports
the high accuracy statistics. These plots depict the probability of a given pixel being
classified as irrigated, calculated as the proportion of 500 trees in the random forest giving
an ‘irrigated’ vote. Pixels with a probability greater than 0.5 are classified as ‘irrigated’.
Brighter areas are classified as ‘irrigated’ with higher model confidence. While pixels with
values less than 0.5 are classified as ‘other’, brightness levels identify some landscape
features, such as riparian vegetation, which are prone to misclassification.
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3.3. Variable Importance for Irrigated Area Classification

Variable importance analyses for the classification results shown in Table 4 and
Figure 3 showed that SMAD was the most important variable for all classification mod-
els, except Silalatshani, applied to annual datasets based on mean decrease in accuracy
(Figure 4). Higher values indicate a greater decrease in model accuracy if that variable is
omitted from the model. The mean decrease in accuracy can therefore be interpreted as a
test or summary statistic for variable importance in a random forest classification model.
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Figure 5 shows the variable importance plots for the stacked quarterly (4 geomedian
images x 10 predictors described in Table 2 = 40 predictors) classification datasets. The
SMAD variable for each quarter appeared in the top 15 most important variables of 40 for
each site. Like the annual datasets, the importance of indices and spectral bands varied
between sites. There was no discernible trend for the importance of specific quarters in any
classification model (Figure 5).
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3.4. Comparison to Existing Products

Comparing the classification results detailed in Table 4 and Figure 3 with existing
irrigated land maps illustrates differences in accuracy and resolution. Figure 6 compares the
classified image of ORIA predicted on the random forest classification model for the annual
Digital Earth Australia products with the Global Map of Irrigated Areas. Notably, this map
product classified none of the Matabeleland sites as irrigated. Instead, the Matabeleland
sites are compared with the WaPOR land use classification product for the African continent
(Figure 6).

The confusion matrices for the WaPOR classification against training and validation
data (Table 5) can be compared with those in Table 4. The high-dimensional method on
annual datasets produced overall accuracy of 95.9% on average across the three sites,
while the average for WaPOR was 77.2%. The average Kappa coefficient of 0.87 was also
higher than the WaPOR average of 0.12. The discrepancy between 250-m resolution for the
continental WaPOR product and 10-m resolution for the Sentinel-2 dataset contributes to
the accuracy results, as illustrated in Figure 6.
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Figure 6. True color geomedian composites overlaid with a transparent layer showing classification results for the random
forest models trained on annual datasets for (a) the Ord River Irrigation Area, compared with (b) AQUASTAT’s Global Map
of Irrigated Areas [37]. Transparent classification layers over true color geomedian composites derived from Sentinel-2
data for (c) Silalatshani, (e) Nabusenga, and (g) Lungwalala are compared with Water Productivity through Open access of
Remotely sensed derived data (WaPOR) [40] classification (d,f,h).
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Table 5. Confusion matrices, overall accuracy, and Kappa coefficients for the Water Productivity
through Open access of Remotely sensed derived data (WaPOR) classification product [40] perfor-
mance on combined training and validation data (20,000 pixels).

Silalatshani

Observed
Predicted (WaPOR) Irrigated Other

Irrigated 489 1919
Other 3644 13,948

Overall accuracy (%) 72.2
Kappa coefficient −0.003

Nabusenga

Observed
Predicted (WaPOR) Irrigated Other

Irrigated 0 0
Other 4867 15,133

Overall accuracy (%) 75.7
Kappa coefficient 0

Lungwalala

Observed
Predicted (WaPOR) Irrigated Other

Irrigated 1174 0
Other 3278 15,548

Overall accuracy (%) 83.6
Kappa coefficient 0.36

4. Discussion
4.1. High-Dimensional Geomedians and Statistics for Irrigated Cropland Mapping

The collection of geomedian images overcomes the need for temporal stacking of
poorer quality, cloud-contaminated images for land use classification. Furthermore, annual
geomedian composites are sufficient for cropland mapping as results show negligible
improvement in accuracy compared to using a stack of seasonally derived geomedian
composites for the given year (Table 4). Marginal improvement in accuracy is likely to be
outweighed by the several-fold increase in the number of predictor variables which may
lead to model overfitting. Therefore, the existing annual geomedian and SMAD products
reduce the dimensionality of classification problem and represent useful data sources for
cropland mapping.

The SMAD, as a high-dimensional temporal variation statistic, is critical to the appli-
cation of annual geomedian composites to cropland mapping. SMAD featured as a key
variable to the accuracy of all classification models tested (Figures 4 and 5). Additionally,
visual inspection of true color images against the single band image for SMAD in Figure 2
demonstrates that SMAD corresponds strongly to irrigated croplands. Importantly, SMAD
also shows greater deviation from surrounding landscapes than the NDVI. Synchrony of
crop phenology with surrounding grasslands in the semi-arid tropics is a key limitation
to accurate cropland mapping [9,15]. This is especially evident for the Silalatshani site
where leakage from irrigation dams and channels [25], and seepage from irrigation plots
appears to cause greenness and high NDVI values for surrounding vegetation (Figure 2).
The inability to distinguish between rainfed cropland, irrigated cropland, and other green
vegetation has been recognized as a limitation of the NDVI [11]. Therefore, the SMAD has
desirable properties for irrigated area classification which overcomes some limitations of
the NDVI.

Observation of the true color, SMAD, and NDVI plots for the ORIA reveals some
further properties of the SMAD. Fields which appear dark green in the true color image
show very high NDVI values but are not discernible from the surrounding landscape in the
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SMAD plot (Figure 2). Conversely, fields on the north-west corner of the ORIA show low to
moderate NDVI values but very high SMAD values. It was hypothesized that high NDVI
values and low SMAD values corresponded to fields with perennial tree crops, and that
annual cropping was conducted on fields that showed low to moderate NDVI values and
high SMAD values. This observation was confirmed by a farmer in the ORIA [41]. Cyclical
land cover changes associated with annual crop production give high SMAD values, and
fallow periods mean that perennial vegetation may have higher NDVI values in annual
geomedian composites than seasonally or annually cropped fields. This means that in
addition to cropland mapping, the simultaneous use of SMAD and NDVI may be useful
for crop type classification within irrigation schemes.

Beyond SMAD, differences in variable importance between schemes show that in-
dices vary spatiotemporally in their contribution to distinguishing irrigated cropland
(Figures 4 and 5). Figure 4 shows that NDWI was an important variable in classifying the
ORIA, Silalatshani, and Lungwalala sites but was relatively unimportant for the Nabusenga
site. This may be because periodically flood-irrigated fields in the former sites sit within
a relatively dry landscape, whereas Nabusenga sits among a wetter landscape meaning
NDWI is not an important distinguisher [42]. Additionally, BSI features as an important
variable in the Nabusenga classification model, meaning fallow periods in the irrigation
scheme may contribute to distinguishing fields from surrounding green vegetation. The
modeling results show that indices vary in their relevance to cropland mapping, even
within regions and timeframes. Therefore, indices should be selected for irrigated cropland
classification with consideration for their relevance to the area of interest.

While all models tested gave very high accuracy statistics, some areas remain prone
to confusion and misclassification. The probability of being classified as irrigated maps
in Figure 3 show that pixels in the riparian zones of watercourses are subject to misclassi-
fication as irrigated. Vegetation in these locations exhibit similar spectral characteristics
to irrigated vegetation, given that seasonal waterlogging is likely to occur due to wet
and dry extremes of the semi-arid tropics. Noise reduction based on pixel neighborhood
information could remove this misclassification.

4.2. Application to Irrigated Area Mapping

Generating geomedian composites and high-dimensional statistics shows potential
for mapping smallholder irrigation schemes in southern Africa. However, the small scale
of these schemes still limits the accuracy of mapping. Figure 6 shows a cleaner classified
image for the larger scale ORIA than for any of the Matabeleland schemes, despite the
higher resolution of the Matabeleland images. Furthermore, indistinct field boundaries and
in-field heterogeneity limit image cleanness for Matabeleland sites [15,25]. Within schemes,
there may also be a proportion of fields that are inactive and abandoned at any given time;
this proportion ranged from 40 to 60% at Silalatshani from 2013–2018 [43]. These factors
contribute to scattering in the classified images shown and continue to limit the accuracy
of irrigated cropland mapping across southern Africa. Despite the limitations, the method
demonstrated is a substantial advancement on current official irrigated area estimates.

The misclassification of all three Matabeleland sites in the Global Map of Irrigated Ar-
eas demonstrates the likely underestimation of official irrigated area statistics in Zimbabwe.
Sound classification of the ORIA demonstrates that this product is effective over large-scale
schemes in the tropics, but the nature of smallholder Matabeleland schemes means other
methods are necessary. Importantly, the AQUASTAT product developers acknowledge this
in rating the ‘area equipped for irrigation’ map quality as ‘good’ for Australia, and ‘poor’
for Zimbabwe [38].

The continental-scale WaPOR land use classification product performs more accurately
than the Global Map of Irrigated Areas, though may still underestimate irrigated area.
However, AQUASTAT is generally referred to for official irrigated area statistics over
WaPOR [38]. Our results show WaPOR would provide a more accurate estimate for
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Zimbabwe, and likely the African continent, and the demonstrated method would be
preferable for regional and country scale mapping.

The demonstrated method has potential to be deployed across the semi-arid tropic
areas of sub-Saharan Africa, and other global areas where smallholder irrigation schemes
predominate. Geomedians and high-dimensional statistics such as the SMAD can be
calculated in Digital Earth Africa or other platforms, although additional computational
resources may be required for larger-scale applications. Obtaining training and validation
data from additional sites would enhance robustness, as would ground-collected data from
within irrigation schemes. However, training data for all other land uses may need to be
collected from visual inspection of satellite images due to difficulties obtaining non-biased
training data for entire regions using ground surveys [12].

While this method accurately maps smallholder irrigation schemes at known loca-
tions, an important limitation is that its ability to detect farmer-led, informal irrigation is
unquantified. This form of irrigation generally occurs on dambo landforms; wetlands at
the headwaters of river systems where water tables are easily accessible [44]. Field sizes are
likely to be smaller than in smallholder schemes and fields are unlikely to be contiguous.
Cropping is also likely to be integrated with livestock production and husbandry [45].
These factors combine to make detection of farmer-led irrigation difficult [12]. An extensive
ground-collected training dataset for informal irrigation would be required to quantify
performance on these areas and further develop the method.

5. Conclusions

Annual geomedian composite images combined with high-dimensional statistics of
time-series are useful products for irrigated cropland mapping. Digital Earth Australia’s
geomedian and SMAD products were validated for irrigated cropland classification over
the ORIA in north-west Australia. Recalculating annual geomedian composites and the
SMAD on Sentinel-2 imagery in Digital Earth Africa generated useful datasets for cropland
mapping over Matabeleland, Zimbabwe. Supervised classification using random forest for
three pilot sites confirmed that SMAD is a critical variable for irrigated area detection and
has advantages over traditionally used vegetation indices such as the NDVI. It may also
be useful for differentiating between annual and perennial crops, and detecting cropping
activity within a year, season, or other period.

While the Digital Earth Australia analysis-ready products were useful and reduced
computation time in this instance, geomedian and high-dimensional statistic calculation
packages which allow data collection across continents and satellites may be more valuable.
This would negate the need for manual calculation of the SMAD.

The method piloted in this study can be deployed across the entirety of Matabeleland
with additional training and validation data. It may also be useful for regional and national
mapping in other areas where smallholder irrigation schemes comprise a large portion
of irrigated area. Inherent characteristics of smallholder irrigated farming in Zimbabwe
continue to limit the accuracy of cropland mapping. However, the application of this
method at the regional scale would be an advancement on existing maps and information
and has the capacity to reveal previously unrecorded areas of irrigation activity.
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