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Abstract: The pixel-based semantic segmentation methods take pixels as recognitions units, and
are restricted by the limited range of receptive fields, so they cannot carry richer and higher-level
semantics. These reduce the accuracy of remote sensing (RS) semantic segmentation to a certain
extent. Comparing with the pixel-based methods, the graph neural networks (GNNs) usually use
objects as input nodes, so they not only have relatively small computational complexity, but also
can carry richer semantic information. However, the traditional GNNs are more rely on the context
information of the individual samples and lack geographic prior knowledge that reflects the overall
situation of the research area. Therefore, these methods may be disturbed by the confusion of
“different objects with the same spectrum” or “violating the first law of geography” in some areas.
To address the above problems, we propose a remote sensing semantic segmentation model called
knowledge and spatial pyramid distance-based gated graph attention network (KSPGAT), which is
based on prior knowledge, spatial pyramid distance and a graph attention network (GAT) with gating
mechanism. The model first uses superpixels (geographical objects) to form the nodes of a graph
neural network and then uses a novel spatial pyramid distance recognition algorithm to recognize
the spatial relationships. Finally, based on the integration of feature similarity and the spatial
relationships of geographic objects, a multi-source attention mechanism and gating mechanism are
designed to control the process of node aggregation, as a result, the high-level semantics, spatial
relationships and prior knowledge can be introduced into a remote sensing semantic segmentation
network. The experimental results show that our model improves the overall accuracy by 4.43%
compared with the U-Net Network, and 3.80% compared with the baseline GAT network.

Keywords: remote sensing; semantic segmentation; knowledge; spatial relationship; spatial pyramid
distance; GAT

1. Introduction

Currently, the pixel-based methods [1–5] tend to take pixels as recognitions units to
achieve remote sensing semantic segmentation, fuse the information of the area covered by
the convolution kernel through the convolution operation. However, these methods cannot
use high-level semantics, such as spatial relations and other information. Besides, the
receptive fields in convolution are limited (generally 3× 3) [6] and unevenly distributed [7],
so it is hard to integrate context information of a larger area or obtain global information
more evenly.

In response to the above problems, different scholars have carried out fruitful re-
search [8,9]. Although the non-local method [8] can more effectively use the context
information of the sample, it is computationally expensive and lack high-level semantics,
such as spatial relations and other information.
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With the development of graph neural networks, they have attracted increasing
attention in GNN-based semantic segmentation [10–12]. Comparing with the pixel-based
semantic segmentation methods, the current GNNs usually take objects as input nodes,
in which computational complexity is relatively small. Besides, they are free from salt-
and-pepper effects and can carry richer semantic information. However, the following
two problems urgently need to be solved for them to be better applied in remote sensing
recognition:

(1) Confusion of “different objects with the same spectrum”
The phenomenon of “different objects with the same spectrum” is a common problem

in remote sensing analysis. To correctly identify the objects which are disturbed by this
problem, it often requires knowing their surrounding objects. If considering only the
similarity of the spectral features, such as the adjacency matrix based on similarity of nodes
in graph attention network (GAT), the network will be vulnerable to this problem, thereby
resulting in the misclassification of central node. The following figure shows two types of
this problem: the flat_field and the town; the city_grass and the flat_field.

As shown in Figure 1, without the surrounding environment, the spectral of the town
object A is similar to the flat_field object B, and the spectral of the city_grass object D
is similar to that of the flat_field object C. Therefore, it is necessary to fuse the spatial
relationships into the adjacency matrix. However, the spatial relationship derived from an
individual sample often leads to the following problems.

1 
 

 

Figure 1. The phenomenon of “different objects with the same spectrum”. (a,c) are two samples; (b,d) are corresponding
surrounding environment of (a,c).

(2) Confusion of spatial distance—“violating the first law of geography”
According to Tobler’s first law of geography, everything is related to everything else,

but near things are more related to each other [13]. However, due to the limitation of
the sample cutting the neighbors of some nodes in the sample may not be complete and
accurate. If the spatial relationship is only considered in the individual sample, it will cause
the distortion of the spatial relationships between the node and their neighbors, and may
lead to the misclassification of the node. The following, Figure 2, shows two objects that
are cut at the corners of samples.
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Figure 2. Two objects that are cut at the corners of samples. (a,c) are two samples; (b,d) are corresponding surrounding
environment of (a,c). The forest object A and the city_forest object B are two objects.
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According to the aggregation principle of GNNs, the neighbor nodes will their in-
fluence on the central node. When considering the spatial relationships, the weight of an
individual object becomes smaller as the distance increases. The following, Figure 3, shows
a central node and its neighbors.
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Figure 3. The schematic diagram of a central node and its neighbors with different spatial distances.

As in the schematic diagram, Oi is the central node, O1
j , O2

k , and O3
l represent the

neighbor node with a spatial distance of 1, 2, and 3, respectively. Then, the aggregation
formula of the central node Oi can be expressed as follows:

O′i = Oi + ∑j∈N1
α1

ij ∗O1
j + ∑k∈N2

α2
ik ∗O2

k + ∑l∈N3
α3

il ∗O3
l , (1)

where N1, N2, N3 represent the set of neighbour nodes with a spatial distance of 1, 2, and 3,
respectively, and α is the aggregation weight.

The farther the distance from the central node is, the more the number of equidistant
neighbor nodes there are, i.e., N1 < N2 < N3. If there are geographic objects with same
category in the far distance, they may accumulate to cause a greater impact on the central
node, even more than the nearby objects. This may lead to the problem of “violating the
first law of geography”, and cause the misclassification of the central node.

Considering these, it is hard for the traditional GNNs to effectively solve the above
two problems because they rely only on the context information of the individual sample.
Therefore, it may require geographic prior knowledge based on the whole research area to
solve them.

Therefore, the KSPGAT network, which is a remote sensing semantic segmentation
model based on prior knowledge, spatial pyramid distance and GAT with gating mecha-
nism is proposed. The KSPGAT network takes geographic objects as the unit of segmenta-
tion. Its computational complexity is relatively small, and it is free from salt-and-pepper
effects. Additionally, it can carry richer and higher-level semantics, such as spatial relations
and the category co-occurrence prior knowledge; thereby, it can better recognize the objects
disturbed by the above two problems.

In summary, the main contributions of this paper are as follows:
(1) A novel spatial correlation recognition algorithm based on the spatial pyramid

distance is proposed.
(2) A gating mechanism based on prior knowledge is proposed to realize the control

of aggregation of neighbor nodes in graph neural network.
(3) A graph neural network model for remote sensing semantic segmentation is

constructed, which effectively integrates the similarity of geographic objects, spatial rela-
tionships and global geographic prior knowledge.

The remainder of this paper is organized as follows: Section 2 discusses related work.
A remote sensing semantic segmentation model based on prior knowledge, spatial pyramid
distance and GAT with gating mechanism is presented in Section 3. The experiments are
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provided in Section 4. In addition, the analysis is presented in Section 5. The conclusion is
provided in Section 6.

2. Related Work
2.1. Geographic Object-Based Image Analysis (GEOBIA)

Unlike pixels, which are usually the smallest unit of RS image analysis, image-objects
are defined by Hay et al. [14] as basic entities, located within an image that are perceptu-
ally generated from H-res pixel groups. As geographic objects can provide rich spatial
relationships information than pixels, the OBIA methods are making considerable progress.

The OBIA methods usually use segmentation algorithm to obtain the objects first and
then use the objects for subsequent image analysis. Currently, the OBIA methods are widely
applied in multi-scale research [15,16], change detection [17] and landslide detection [18].
To better understand ecological patterns, it is also expanded to the species-level mapping
of vegetation [19]. Other research, like References [20,21], presented a comparative evalua-
tion of the pixel-based method and the object-based; especially, Reference [21] compared
the pixel-based support vector machine (SVM) classification and decision-tree-oriented
geographic object-based image analysis (GEOBIA) classification, which indicated that the
GEOBIA classification provided the highest accuracy. Besides, work, like Reference [22],
discussed the idea and method of geographic ontology modeling based on object-oriented
remote sensing technology in detail.

On this basis, the GEOBIA methods based on neural networks have attracted an
increasing attention. For example, the research in Reference [23] proposed a novel land use
classification method for high-resolution remote sensing images, and the method is based
on a parallel spectral-spatial convolutional neural network (CNN) and object-oriented
remote sensing technology. On the basis of geographic object-based image analysis, other
works, like Reference [24], presented an artificial neural network (ANN) which integrated
with particle swarm optimization (PSO) to enhance the learning process.

Based on these research, our work attempts to combine the GEOBIA and neural
networks, and explores further in this direction.

2.2. Remote Sensing with GNN

As an important branch of the deep learning family, the strategy based on graph neural
networks [25,26] have grown more and more popular, which achieves the state-of-the-art
performance in both graph feature extraction and classification. Among them, graph convo-
lutional network (GCN) [27] plays an important role. Furthermore, Reference [28] proposes
a novel neural network called graph attention networks (GATs) which can attend over their
neighborhoods’ features and specify different weights to different nodes in a neighborhood,
without requiring any kind of costly matrix operation (such as inversion) or depending on
knowing the graph structure upfront. Inspired by these, applying deep neural networks to
graph structured data has recently been of interest to the vision community. For example,
approaches, such as References [29,30], tried to generalize convolution layers to the graphs.
Other works, like References [31,32], attempted to learn knowledge graphs and use graphs
for visual reasoning.

However, the current GNN networks directly stacking more layers will bring the
problem of over-smoothing, which drives the output of GCN towards a space that contains
limited distinguished information among nodes, leading to a poor expressivity. To solve
this problem, many researchers have recently conducted beneficial explorations. Some of
them try to use used random-walk method [33] or restrict the neighborhood expansion
size [34,35] to solve this issue. There are also some studies alleviate this issue by deleting
the edges in the graph [36] or incorporate multi-hop neighboring context into attention
computation [37].

Apart from these, combining a prior knowledge base with GNN models for vision
tasks also becomes popular. Reference [38] used the knowledge graph to perform zero-shot
classification. References [39–41] used the common-sense or structured prior knowledge to
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improve the performance of deep models. Other works, like References [42–44], tried to
use graph embedding to learn some prior knowledge or relationships between label.

In the research of remote sensing image analysis, as hyperspectral images usually
have large homogeneous regions, some research started to use graph neural networks
(GNNs) to achieve remote sensing images analysis [45–48]. For example, Reference [45]
investigated the use of graph convolutional networks (GCNs) in order to characterize
spatial arrangement features for land use classification and [46] proposed a novel deep
learning-based MLRSSC framework by combining graph neural network (GNN) and
convolutional neural network (CNN) to mine the spatio-topological relationships of the
scene graph. To further improve the detection accuracy, Reference [49] proposed a novel
anomaly detection method based on texture feature extraction and a graph dictionary-based
low rank decomposition (LRD).

Currently, some other scholars have also started to integrate the geographic prior
knowledge into remote sensing analysis. Works, like Reference [50], presented a spatial
location constraint for hyperspectral image classification, which is exploited to incorporate
the prior knowledge of the location information of training pixels. Similarly, to further
improve the recognition performance, Reference [51] proposed a simplified graph-based
visual saliency model for airport detection in panchromatic remote sensing images, which
introduced the concept of near parallelity for the first time and treated it as prior knowledge.

In summary, in remote sensing analysis research, the pixel-based methods are compu-
tationally expensive and cannot contain object-based spatial relationships and geographic
prior knowledge. Most current GNN methods can carry richer semantic and their com-
putational complexities are relatively small, but they rarely consider geographic prior
knowledge. Therefore, to better introduce the prior knowledge into remote sensing analy-
sis, it still needs further exploration.

3. Methodology

In this chapter, the overall structure of the KSPGAT network is introduced first in
Section 3.1. To solve the problem of “different objects with the same spectrum”, a novel
spatial pyramid distance algorithm is presented in Section 3.3. Further research shows that
only rely on the spatial relationships between geographic objects cannot effectively solve
the problem of “violating the first law of geography”. For this reason, a gating mechanism
which embeds geographic prior knowledge into the GAT model is then introduced in
Sections 3.4 and 3.5, and it can solve the two problems to some extent. Finally, considering
the problem of over-smoothing in graph neural networks, we design the network depth
into two layers, and incorporate the effect of co-occurrence knowledge in the loss function
in Section 3.6.

3.1. Network Structure

The KSPGAT network is designed as the encoder-decoder structure and consists of
four modules, of which the superpixel clustering module, feature extraction module, and
spatial correlation recognition algorithm together constitute the encoder, the knowledge-
based gating mechanism is the decoder. The details are shown as follows:

As shown in Figure 4, in our network, a super-pixel clustering module and a feature
extraction module are proposed to obtain the object features from the input remote sensing
image first. Then, a spatial pyramid distance recognition algorithm is provided to recognize
the spatial relationship between objects. Finally, on the basis of fusing the feature similarity
and spatial relationship, a multi-source attention mechanism and a gating mechanism are
presented to aggregate neighbor nodes more accurately. Specifically, the network contains
the following modules.
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3.1.1. Superpixel Clustering Module

The region merging segmentation method proposed in References [52–54] is used to
perform superpixel clustering of remote sensing images, so each sample can obtain several
superpixel blocks. Then, these superpixel blocks are used to provide masks for feature
extraction module and spatial correlation recognition algorithm.

3.1.2. Feature Extraction Module

The feature extraction module of the network takes the remote sensing image and the
object mask as input to obtain object features. First, the remote sensing image is extracted
through a convolutional neural network (CNN) to obtain the global feature. Then, the
mask is used to obtain the feature of each object. Finally, the node of the graph neural
network is generated through the object feature.

3.1.3. Spatial Correlation Recognition Algorithm Based on Spatial Pyramid Distance and
Multi-Source Attention Mechanism

In this module, we propose a novel spatial correlation recognition algorithm. First,
we design the location coding method based on pyramid pooling to obtain the location
coding vector of each object, and then we use the vector to identify the spatial distance
between objects, which is simple and efficient enough to generate the spatial correlation
between nodes. Finally, the similarity of features and the spatial correlation between nodes
are combined to design and implement the multi-source attention mechanism.

3.1.4. Gating Mechanism Based on Prior Knowledge of Category Co-Occurrence

The gating mechanism uses category co-occurrence knowledge to train control gates
corresponding to different spatial pyramid distances (spatial relations). It realizes the ag-
gregation method that integrates knowledge, spatial relations and node similarity, thereby
improving the classification accuracy of the central node.
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The following subsections will expand on each module of the network.

3.2. Superpixel Clustering Module and Feature Extraction Module

First, the region merging segmentation method proposed in References [52–54] is used
to perform super-pixel clustering of remote sensing images so each sample can obtain
several superpixel blocks. Each superpixel block is a geographical object with geographic
semantics, which can be used as a H

4 ×
W
4 mask. Then, the feature extraction module
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is adopted to extract object features with this mask. The following, Figure 5, shows the
structure of feature extraction module:
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As shown in Figure 5, the feature extraction module first takes the remote sensing
image (W × H × 3) and the object masks (N × W/4 × H/4) as input, where N is the
number of objects. Then, the remote sensing image is passed through a CNN to obtain
the global feature, which is multiplied by the mask to obtain the masked object features
(N ×W/4 × H/4 × C), where C is the hidden dimension. The masked object features are
sent to two branches, respectively, and then concatenated to obtain the final feature Feat,
which has dimension N × (C + 49), and is used as the initial node feature h of the graph
network.

The calculation formula of this module is as follows:

h = G((F(x).Mask)), (2)

where x is the input image, F(.) is the global feature extraction function, which consists
of two convolutional layers and pooling layers, Mask is the object mask, and G(.) is the
feature extraction function, which consists of two branches, one a global average pooling
(GAP) layer, and the other a max pooling layer with convolutional layer.

3.3. The Spatial Correlation between Objects: The Spatial Pyramid Distance

In this section, we introduce a novel location encoding method based on pyramid
pooling, and on this basis, we propose the spatial pyramid distance to represent the spatial
correlation between objects. The details are as follows.

3.3.1. The Location Encoding Method Based on Pyramid Pooling

Pyramid pooling is used to encode the two-dimensional position information of the
object mask. The object mask is passed through 3-level pyramid average pooling (28 × 28,
14 × 14, 7 × 7) to obtain multiscale spatial location features. We use the area ratio of the
mask in the pooling kernel to calculate the pooled value, which includes the semantic of
object’s area. The formula of average pooling is as follows:

ck
pq =

∑
p+k
i=p ∑

q+k
j=q Maskij

k× k
, (3)

where k is the size of pooling kernel, Mask is the object mask, p is the start index in row,
q is the start index in column, and cpq is the value after pooling.
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Then, the location features are encoded into a one-dimensional vector by quadtree-
encoding. The vector e can be defined as follows:

ek =
{

ck
pq

}
, (4)

e = concat(ek, . . .), (5)

where k represents the size of pooling kernel, and k ∈ 28, 14, 7. {.} represents the quadtree-
encoding, concat(.) means vector concatenation.

In this way, the approximate location of each object can be obtained, and the value
of each grid represents the semantic of object’s area. The following, Figure 6, shows two
object masks’ position vector after spatial pyramid pooling.
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After the pooling of three scales, there exists a significant difference between the en-
coding vectors of the two objects with long distance, which is conducive to the subsequent
spatial distance recognition.

3.3.2. Spatial Pyramid Distance

On the basis of the above location encoding method, to describe the spatial relation-
ships between nodes, we define the spatial pyramid distance to discretely represent them.
According to the number of other interval objects between node i and j, interval_number = 0
means that the two nodes are directly adjacent, interval_number = 1 means that there is
only one object between them, and interval_number ≥ 2 means that there are multiple
objects between them. Based on this, the spatial pyramid distance sp_mapij between node
i and j is defined as Table 1:

Table 1. The value of spatial pyramid distance.

Interval_Number 0 1 ≥2

sp_mapij 1 2 3



Remote Sens. 2021, 13, 1312 9 of 31

Therefore, the three different values of sp_mapij represent spatial adjacency, spatial
separation (near), and spatial separation (far), respectively.

3.3.3. The Spatial Correlation Recognition Algorithm Based on Spatial Pyramid Distance

Based on the location encoding method and spatial pyramid distance, we design a
spatial correlation recognition algorithm. The algorithm is used to describe the spatial
distance between geographical objects discretely according to three different values, where
1 represents spatial adjacency, 2 represents spatial separation (near) and 3 represents spatial
separation (far).

The algorithm is denoted by the Algorithm 1:

Algorithm 1 For recognizing the spatial pyramid distance

Input: mask of object i maski, mask of object j maskj
Output: distance feature vector sp_vecij, spatial pyramid distance sp_mapij

1 Begin
2 For t← 1 to 3 step←1; do
3 k← 56

2t ; // calculate the pooling size k
4 ei

k ← avgpoolingk(maski) ; // encode the position vector of maski with pooling size k
5 ej

k ← avgpoolingk

(
maskj

)
; // encode the position vector of maskj with pooling size k

6 End For
7 concatenate all ei

k to obtain the multiscale location features ei of maski;
8 concatenate all ej

k to obtain the multiscale location features ej of maskj;
9 vij ← ei − ej ; // subtract the position encoding vectors of maski and maskj

10 sp_vecij ← f c1

(
vij

)
;

11 sp_mapij ← f c2

(
sp_vecij

)
;

12 Return sp_vecij, sp_mapij;
13 End

Then, we design a network to accomplish the algorithm, the structure of the network
is as Figure 7:
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The network takes the mask of each pair of objects as input, which can be expressed
as (N×N)× H

4 ×
W
4 × 2. Then, the location encoding method based on pyramid pooling

is used to obtain the spatial location vectors at different scales. To fuse these features, they
are, respectively, coded into one-dimensional vectors and obtain the multiscale location
features Position Features. Then, two Position Features subtract to obtain the distance
features and passes through a Multi-layer Perceptron (MLP) layer to obtain the distance
feature vector Sp_Vec between each pair of objects, and finally passes through another
MLP layer to obtain the spatial pyramid distance Sp_Map.
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In our dataset, the overall accuracy of the algorithm reaches 83.6%, which can basically
describe the spatial distance between objects. Therefore, it can provide a favorable basis for
subsequent node classification.

Compared with the spatial relationship analysis method in GIS or other neural net-
works, our method contains the following advantages:

(a) As it uses the area ratio of the mask in the pooling kernel to calculate the pooled
value, it contains richer semantics of object’s area;

(b) Unlike the method based on the centroid distance between objects, it is easy to be
implemented;

(c) Compared with other neural networks based on object detection, it does not require
complex computations, which reduces the network pressure and therefore improves the
generalization ability.

In summary, this algorithm can efficiently construct the adjacency matrix between
nodes and quickly provide reliable input for the graph neural network. Based on the
algorithm, the KSPGAT network then combines the spatial relationship and the similarity
of features to design and implement the following multi-source attention mechanism.

3.4. Multi-source Attention Mechanism Based on Similarity of Spectral Features and Spatial
Relationships of Geographic Objects

In this section, we first analyze the problem of the attention mechanism in the baseline
GAT, and then we propose our multi-source attention mechanism.

3.4.1. Attention Mechanism in the Baseline GAT

The attention mechanism in the baseline GAT only considers the similarity of the
spectral features between nodes. Assuming that the original node feature is h, first the
node feature is multiplied by a weight Wh to project the feature into a new space. Then,
to consider the feature similarity between nodes i and j, the transformed features of two
nodes are concatenated, and the feature similarity is calculated through a weight a. Finally,
the correlation between the two nodes, which is defined as αij, can be obtained through a
softmax function. The specific calculation formula is as follows:

eij = a(Wh.hi
∣∣∣∣Wh.hj), (6)

αij = s.so f tmax
(
eij
)
, (7)

where Wh is a learnable weight to project the spectral features of nodes, || represents
vector concatenation, softmax is the normalized function by row, and s is the scaling factor
to prevent the weight of neighbours from being too small.

As this mechanism is more rely on spectral similarity to aggregate neighbor nodes,
it cannot solve the problem of “different objects with the same spectrum”. Therefore, it is
necessary to integrate spatial relationships into the attention mechanism to improve it.
The improved algorithm is as follows:

3.4.2. Multi-Source Attention Mechanism Based on Geographic Object Feature Similarity
and Pyramid Distance

In the multi-source attention mechanism, to solve the problem of “different objects
with the same spectrum”, we consider not only the similarity of the spectral features
between the geographic objects, but also the spatial pyramid distance between them.
We multiply the distance feature Sp_Vecij of nodes i and j by a weight Ws to project the
distance feature into the same space as spectral features and then concatenate it with the
transformed spectral features of nodes i and j. Therefore, the algorithm for calculating
attention becomes as follows:

eij = a
(
Wh.hi

∣∣∣∣Wh.hj
∣∣∣∣Ws.sp_vecij

)
, (8)
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αij = s.so f tmax
(
eij
)
, (9)

where Wh is a learnable weight to project the spectral features of nodes, Ws is a learnable
weight to project the distance features, || represents vector concatenation, softmax is the
normalized function by row, and s is the scaling factor to prevent the weight of neighbours
from being too small.

However, due to the problem of “violating the first law of geography” discussed
in Section 1, the aggregations of neighbor nodes are still under great limitations even
considering the spatial relationship. At this time, the following gating mechanism based
on category co-occurrence knowledge is represented to control the aggregation of neighbor
nodes more accurately.

3.5. Knowledge-Based Gating Mechanism

To overcome the problem of “violating the first law of geography” caused by the
distortion of the spatial relationship at the corner of samples in some area, we first summary
the co-occurrence probability between different categories from the whole dataset and then
design a gated graph attention network which uses the co-occurrence probability to expand
the receptive field of the object from the specific sample to the whole research area. This
corrects some distortion problems of spatial relationship, thereby improving the accuracy
of remote sensing semantic segmentation. Furthermore, through the gating mechanism,
the neighbor nodes are filtered based on the prior knowledge; thereby, the mechanism can
avoid the problem of over-smoothing to a certain extent.

3.5.1. Category Co-Occurrence Knowledge in the Sample Set

Category co-occurrence means the probability of two categories appearing in a scene
at the same time. As shown in Figure 8 below, M is the category co-occurrence matrix,
which represents co-occurrence between each category. The size of M is C×C, where C is
the number of categories. Mij represents the proportion of samples Sij with both categories
i and j among all samples Si with category i, i.e., Mij = Sij/Si. The figure below shows the
category co-occurrence probability matrix, which means the probability of two categories
appearing in a scene at the same time.
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As discussed in Section 1, due to the limitation of the sample cutting in some areas,
the neighbors of some nodes in the sample may not be complete and accurate, which may
cause the distortion of the spatial relationship between the nodes and their neighbors.
The co-occurrence relationship is a more universal relationship obtained according to
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the co-occurrence probability in the dataset which describe the general geographic prior
knowledge of the research area. Therefore, the weight of the nodes can be strengthened
or weakened according to the co-occurrence probability. This can correct some distortion
problems of spatial relationship, and alleviate the problem of “violating the first law of
geography”, thus make the aggregation of neighbor nodes more accurate.

Based on the above-mentioned category co-occurrence knowledge, we then design
the following gated graph attention network and use the category co-occurrence GT to
train the control gate.

3.5.2. Gated Graph Attention Network Based on Category Co-Occurrence Prior
Knowledge

In this section, we introduce our novel gated graph attention network. In the network,
we divide all neighbor nodes into k groups according to their spatial correlation with the
central node. For each group, we design a gating mechanism. During the training phase,
the co-occurrence knowledge of two categories are used to control the aggregation of
neighbor nodes, thereby correcting the problems of “violating the first law of geography”.
Furthermore, through the gating mechanism, the neighbor nodes are filtered based on the
prior knowledge; thereby, the mechanism can avoid the problem of over-smoothing to a
certain extent.

(1) Structure
Our gated graph attention network combines the multi-source attention mechanism,

and is designed with a gating mechanism that integrates category co-occurrence knowledge
to control the aggregation of neighbor nodes more accurate. Figure 9 below shows the
structure of a head of the gated graph attention network.
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As the major part of the KSPGAT network, for a central node i, the gated graph
attention network takes its node feature hi, the node feature hj of its neighbor node j
(j 6= i), their distance vector Sp_Vecij and spatial pyramid distance Sp_Mapij as the input.
Then, the multi-source attention mechanism is combined and the gating mechanism is
designed to aggregate the features of neighbor nodes. During the training phase, the prior
knowledge of category co-occurrence is integrated into the gating mechanism by using
category co-occurrence ground truth (GT) to supervise and train the control gates.

To better represent the co-occurrence relationship between nodes, we design the co-
occurrence knowledge according to the probability Pij and Pji in the category co-occurrence
matrix; if max

{
Pij, Pji

}
≥ 0.5, it can then consider that category i and category j have a

co-occurrence relationship. At this time, the GT of the co-occurrence control gate is set to 1,
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which indicates that the gate is opened; otherwise, there is no co-occurrence relationship,
and the GT is marked as 0 to indicate that the gate is closed.

(2) Aggregation with multi-group
Based on K (K = 3) spatial distances which are adjacent, separated (near), and separated

(far), respectively, we divide all neighbor nodes into k groups. Therefore, K kinds of GAT
heads are designed to aggregate neighbor nodes of different spatial relationships. For the
GAT head of each spatial relationship, a gate which combines the category co-occurrence
knowledge is designed to control the process of neighbor nodes aggregation. The following,
Figure 10, shows the aggregation of the network.

Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 31 
 

 

(2) Aggregation with multi-group 
Based on K (K = 3) spatial distances which are adjacent, separated (near), and sepa-

rated (far), respectively, we divide all neighbor nodes into k groups. Therefore, K kinds 
of GAT heads are designed to aggregate neighbor nodes of different spatial relationships. 
For the GAT head of each spatial relationship, a gate which combines the category co-
occurrence knowledge is designed to control the process of neighbor nodes aggregation. 
The following, Figure 10, shows the aggregation of the network. 

 
Figure 10. The aggregation of our gated GAT. 

As shown in Figure 10, network divides all nodes into k groups according to their 
spatial correlation with the central node to form a new GAT head with a gating mecha-
nism, called gate_head. 

The following, Figure 11, shows the flow chart of aggregation. 

Figure 10. The aggregation of our gated GAT.

As shown in Figure 10, network divides all nodes into k groups according to their
spatial correlation with the central node to form a new GAT head with a gating mechanism,
called gate_head.

The following, Figure 11, shows the flow chart of aggregation.
As shown in Figure 11, during node aggregation, the node features h, the distance

vector Sp_Vec and the spatial pyramid distance Sp_Map are input into the gated graph
attention network to generate the new node features h′. N is the number of the nodes, and
K is 3, which represents three kind of spatial distances. Nk represents the number of the
neighbor nodes with a spatial distance k.

For each central node i and one of its neighbour nodes j (j 6= i), the spatial relationship
between them is k, the aggregation of node i is as follows:

(a) First, headk
ij which can aggregate the information of node j to the central node i is

calculated with hi, hj, sp_vecij, sp_mapij.
(b) Then, gatek

ij is calculated with hi, hj, sp_vecij, sp_mapij. If nodes i and j have a

co-occurrence relationship, the gatek
ij will be opened; otherwise, it will be closed.

(c) Finally, the new node features h′i of the central node i is calculated with headk
ij and

gatek
ij of all neighbor nodes.
In summary, the control gate is calculated from the node feature, the embedded

distance feature and the spatial pyramid distance. The specific formula is as follows:

headk
ij = αk

ij ∗W_Hk
h.hj, (10)

gatek
ij =

σ
(

a′
[
W_Gk

h.hi

∣∣∣∣∣∣W_Gk
h.hj

∣∣∣∣∣∣W_Gk
s .sp_vecij

])
, sp_mapij = k

0, else
, (11)

h′i = Wh.hi + ∑j∈Ni ,j 6=i ∑k∈K gatek
ij ∗ headk

ij, (12)
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where W_Gk
h and W_Gk

s are learnable weights in the gate that controls the kth GAT head,
Ni represents all neighbour nodes of node i, W_Hk

h is a learnable weight in the kth GAT
head, and αk

ij is the attention weight calculated by the multi-source attention mechanism in
the kth GAT head. K = 3 represents three spatial pyramid distances, and k = 1, 2, 3 indicates
the spatial pyramid distance of 1, 2, and 3, respectively.

(3) Discussion
Different from the traditional attention aggregation mechanism, the KSPGAT network

adopts multi-group aggregation mechanism with spatial relation. The gate_head divides
all neighbor nodes into k groups according to their spatial correlation with the central node,
and uses gates that integrate category co-occurrence knowledge to control the aggregation
of neighbor nodes. Comparing with the traditional attention mechanism, the multi-group
aggregation mechanism has the following advantages:

(a) Each group only contains the neighbor nodes that have the same spatial correlation
with the central node. The neighbor nodes of each group have certain commonalities, and
the head does not have parameter redundancy, which can reduce the training pressure;

(b) The gate controlled the process of aggregation neighbor nodes by integrating prior
knowledge, and the controllability of the network and the interpretability of the results are
improved.

(c) Through the gating mechanism, the neighbor nodes are filtered based on the prior
knowledge; thereby, the mechanism can avoid the problem of over-smoothing to a certain
extent.

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 31 
 

 

 
Figure 11. The flow chart of aggregation. 

As shown in Figure 11, during node aggregation, the node features h, the distance 
vector Sp_Vec and the spatial pyramid distance Sp_Map are input into the gated graph 
attention network to generate the new node features ℎ . N is the number of the nodes, and 
K is 3, which represents three kind of spatial distances.  represents the number of the 
neighbor nodes with a spatial distance k. 

For each central node  and one of its neighbour nodes  ( ), the spatial relation-
ship between them is , the aggregation of node  is as follows: 

(a) First, ℎ  which can aggregate the information of node  to the central node 
 is calculated with ℎ , ℎ , _ , _ . 

(b) Then,  is calculated with ℎ , ℎ , _ , _ . If nodes	  and  
have a co-occurrence relationship, the  will be opened; otherwise, it will be closed. 

(c) Finally, the new node features ℎ  of the central node  is calculated with ℎ  
and  of all neighbor nodes. 

In summary, the control gate is calculated from the node feature, the embedded dis-
tance feature and the spatial pyramid distance. The specific formula is as follows: ℎ = ∗ _ . ℎ ,  (10) = _ . ℎ 	|| _ . ℎ 	|| _ . _ , _ =0, ,  (11) ℎ = . ℎ + ∑ ∑ ∗∈∈ , ℎ ,  (12) 
where _  and _  are learnable weights in the gate that controls the  GAT 
head,  represents all neighbour nodes of node , _ 	is a learnable weight in the  
GAT head, and  is the attention weight calculated by the multi-source attention mech-
anism in the  GAT head. K = 3 represents three spatial pyramid distances, and k = 1, 
2, 3 indicates the spatial pyramid distance of 1, 2, and 3, respectively. 

Figure 11. The flow chart of aggregation.



Remote Sens. 2021, 13, 1312 15 of 31

3.6. Network Depth (Number of Aggregation) and Loss Function

In this section, we focus on the analysis of network depth and loss function in the
KSPGAT network.

3.6.1. Depth of KSPGAT Network

Similar to the baseline GAT network, our KSPGAT network aggregates twice in total:
In the first aggregation we adopt the same multi-head structure as the baseline GAT
network. Specifically, use P (in our experiment P = 2) independent gate_head1

p with gating
mechanism to process the input node features h and then concatenate their output features
together as the input feature h1 of the second aggregation. In the second aggregation, only
an independent gate_head2 with gating mechanism is used to process the new input feature
h1 to obtain the output feature h2, and, finally, a softmax nonlinear function is used to
obtain the classification probability o. The formula is as follows:

h1 = gate_head1
P(h)

∣∣∣∣∣∣gatehead
1

P−1(h) ||. . .||gate_head1
1(h), (13)

h2 = gate_head2(h1), (14)

o = so f tmax(h2), (15)

where h is the original node feature, and P is the number of heads in the multihead
structure. h1 is the output feature of the first aggregation and also the input feature of the
second aggregation, h2 is the output of the second aggregation, and o is final classification
probability.

3.6.2. Co-Occurrence Knowledge Embedding Loss

To implicitly embed the co-occurrence knowledge into the control gate, we added a co-
occurrence knowledge embedding loss in our network in addition to the node classification
loss. The co-occurrence knowledge embedding loss adjusts the network parameters by
calculating the mean square error between the value of the co-occurrence knowledge gate
and co-occurrence knowledge GT between nodes. The specific calculation formula of the
co-occurrence knowledge embedding loss lossgate and the node classification Loss losscls is
as follows:

lossgate =
1
K
∗ 1

N × N ∑K
k=1 ∑N×N

n=1 (ŷk
n − yk

n)
2
, (16)

losscls = −
1
N ∑N

i yi log(ŷi). (17)

Furthermore, to balance the node classification loss and the co-occurrence knowledge
embedding loss, we introduce a balance factor λ. Generally, λ is the maximum ratio of
the two loss thresholds. In the experiment, we set λ = 10. Therefore, the total loss of the
network is calculated as follows:

loss = losscls + λ ∗ lossgate. (18)

4. Experiment

In this chapter, the introduction of research areas and samples is presented in Section 4.1
first. Then, we show the parameters of the networks which are involved in our experi-
ment in Section 4.2. The overall accuracy comparison is conducted in Section 4.3. Finally,
the training process and loss curve are shown in Section 4.4.
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4.1. Introduction of Research Areas and Samples

This study involves Wenchuan County, Sichuan Province, and the surrounding areas.
The latitude ranges from 30◦45′ to 31◦43′ and the longitude ranges from 102◦51′ to 103◦44′.
We selected a total of 1680 patches from the research area. To make the number of samples
in the validation set and training set sufficient and the results reasonable, we randomly
assigned 1280 samples as the training set and the other 400 samples as the validation set.
Each sample includes a 224 × 224 remote sensing image, a manually classified GT image
of the same size, and an object mask obtained using the open source algorithms [52–54].

4.2. Network Parameters

The networks that are involved in the experiment include a U-Net network, a baseline
GAT network, a multi-source GAT network and a KSPGAT network incorporating prior
knowledge and spatial pyramid distance.

According to the previous experiment, when we train the U-Net network, the feature
dimension in the bottom layer is set to 512, the batch_size is set to 32, the learning rate
is set to 3e−4, and the training epochs is 250; The hidden dimensions of the baseline
GAT network, multi-source GAT network and KSPGAT network are all 128, and are all
aggregated twice. The baseline-based GAT network and the multi-source GAT network use
4 GAT heads for the first aggregation, and a single GAT head for the second aggregation;
the KSPGAT network uses 2 gate_head with a gating mechanism in the first aggregation,
and a single gate_head in the second aggregation. The batch_size of the three graph neural
networks are all 1, the learning rates are all 1e−3, and the training epochs are all 600.

4.3. Overall Accuracy Comparison

To compare with the results of U-Net network, we convert the results of the three
graph neural networks from objects to pixels. The classification results of the four networks
on the validation set are as follows: Tables 2–5 are pixel-based classification confusion
matrices of the U-Net network, baseline GAT network, multi-source GAT network, and
KSPGAT network, respectively.
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Table 2. The pixel-based classification confusion matrix of the U-Net Network.

Flat_Field Landslide Grass Water_Body Village Road Path Town Terrace Strip_Field City_Grass Forest City_Forest Total Accuracy

flat_field 1,522,988 1761 10,916 0 21,115 56 8087 12,167 46,621 2532 0 19,944 0 1,646,187 0.925
landslide 9 1,441,605 63,309 11,620 5523 9968 3634 3114 745 0 165 40,069 99 1,579,860 0.912

grass 44,886 111,517 1,773,678 35,181 67,345 9393 11,356 5950 45,618 9585 8035 207,006 1093 2,330,643 0.761
water_body 95 7086 6587 1,275,542 287 4245 0 10,837 1068 0 1698 3310 189 1,310,944 0.973

village 59,839 2092 57,893 1604 1,161,845 2680 9702 22,002 4922 2768 663 73,881 587 1,400,478 0.830
road 552 2807 5170 4909 1601 188,614 1596 26,785 0 1 1358 1811 1869 237,073 0.796
path 11,322 7683 23,383 475 17,715 6661 159,216 579 9580 1559 14 6077 1204 245,468 0.649
town 0 1324 3321 4454 31,313 20,874 0 1,245,303 0 0 6980 5228 28,086 1,346,883 0.925

terrace 8778 2907 47,851 96 7420 0 5965 0 1,289,477 4212 0 27,968 0 1,394,674 0.925
strip_field 623 17 31,937 0 9170 38 3230 0 22,178 1,269,693 0 32,061 0 1,368,947 0.927
city_grass 0 47 50,235 8668 3552 5134 0 36,330 0 0 50785 6649 15,850 177,250 0.287

forest 35,186 38,047 147,480 4885 112,987 2267 6824 2144 31,645 29,314 5671 2,622,081 43,532 3,082,063 0.851
city_forest 0 2 1687 521 282 1373 0 33,044 0 0 4891 19,977 124,953 186,730 0.669

Table 3. The pixel-based classification confusion matrix of the baseline GAT Network.

Flat_Field Landslide Grass Water_Body Village Road Path Town Terrace Strip_Field City_Grass Forest City_Forest Total Accuracy

flat_field 1,497,918 5368 37,417 0 12,107 0 1464 8576 60,709 0 0 22,628 0 1,646,187 0.910
landslide 0 1,493,644 42,332 2465 2364 2441 8373 0 0 0 0 28,241 0 1,579,860 0.945

grass 39,959 47,384 1,714,643 21,551 32,807 19,009 4677 11,330 61,819 49,820 2131 325,513 0 2,330,643 0.736
water_body 0 496 14,003 1,280,572 6246 1434 0 6808 1143 0 0 242 0 1,310,944 0.977

village 21,213 391 25,327 0 1,236,790 6110 3582 81,193 2081 0 0 23,791 0 1,400,478 0.883
road 0 3417 14,214 7371 1635 177,481 8300 23,935 0 0 0 0 720 237,073 0.7494
path 1934 6058 13,628 0 18,281 7886 192,288 0 2649 349 0 2395 0 245,468 0.783
town 0 5669 5939 4084 104,789 3982 0 1,217,621 0 0 0 4799 0 1,346,883 0.904

terrace 0 6172 74,527 0 13,514 0 1460 0 1,192,926 25,437 0 80,638 0 1,394,674 0.855
strip_field 0 0 36,866 0 7389 0 0 0 30,479 1,232,888 0 61,325 0 1,368,947 0.901
city_grass 0 0 67,416 7811 2894 5496 0 24,842 0 0 44,491 19,276 5024 177,250 0.251

forest 8882 10,758 66,926 893 35,673 189 0 1766 29,678 3823 111 2,844,492 78,872 3,082,063 0.923
city_forest 0 0 918 0 0 376 0 17,526 0 0 2103 52,228 113,579 186,730 0.608
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Table 4. The pixel-based classification confusion matrix of the multi-source GAT Network.

Flat_Field Landslide Grass Water_Body Village Road Path Town Terrace Strip_Field City_Grass Forest City_Forest Total Accuracy

flat_field 1,495,321 5352 37,568 0 20,719 0 776 7016 59,349 0 0 20,086 0 1,646,187 0.908
landslide 0 1,489,063 23,094 36,682 2053 8936 3014 0 0 0 0 17,018 0 1,579,860 0.943

grass 88,916 28,921 1,804,551 111,075 44,028 11,017 1918 6400 12,386 7627 25,182 188,622 0 2,330,643 0.774
water_body 0 11,756 1237 1,275,417 7651 10,003 0 3495 1143 0 0 242 0 1,310,944 0.973

village 7751 17,833 17,275 0 1,306,466 141 2577 28,931 763 0 0 18,741 0 1,400,478 0.933
road 0 6939 4834 10,380 1701 176,319 2504 33,676 0 0 720 0 0 237,073 0.744
path 2805 6256 20,833 2349 15,913 1610 191,704 2061 0 204 0 1733 0 245,468 0.781
town 0 0 5095 3700 5355 2426 0 1,325,508 0 0 0 0 4799 1,346,883 0.984

terrace 6476 0 113,601 0 39,116 0 1460 0 1,185,165 0 0 48,856 0 1,394,674 0.85
strip_field 6295 0 60,435 0 26,636 0 0 0 8035 1,226,985 0 40,561 0 1,368,947 0.896
city_grass 0 0 44,935 25,513 2753 1727 0 23,810 0 0 61,003 17,509 0 177,250 0.344

forest 35,937 13,158 149,580 5965 57,858 111 0 1163 12,448 44,238 2876 2,739,376 19,353 3,082,063 0.889
city_forest 0 0 556 2574 0 192 0 15,869 0 0 4053 26,114 137,372 186,730 0.736

Table 5. The pixel-based classification confusion matrix of the KSPGAT Network.

Flat_Field Landslide Grass Water_Body Village Road Path Town Terrace Strip_Field City_Grass Forest City_Forest Total Accuracy

flat_field 1,513,767 5368 32,466 0 13,237 0 835 0 26,629 0 0 53,885 0 1,646,187 0.920
landslide 0 1,521,801 32,219 2465 2053 5848 3014 0 0 0 0 12,460 0 1,579,860 0.963

grass 117,598 30,654 1,952,874 20,567 27,580 7058 1918 4559 9703 13,820 0 144,312 0 2,330,643 0.838
water_body 0 21,993 11,606 1,266,012 6773 0 0 3417 1143 0 0 0 0 1,310,944 0.966

village 10,230 17,833 33,818 0 1,304,349 141 2513 16,684 1376 0 0 13,534 0 1,400,478 0.931
road 0 4452 12,347 5339 1701 180,157 4704 26,947 0 0 706 0 720 237,073 0.760
path 3018 11,413 18,784 0 15,118 0 194,203 0 663 204 0 2065 0 245,468 0.791
town 0 0 961 588 1244 1957 0 1,337,157 0 0 0 0 4976 1,346,883 0.993

terrace 6476 0 100,720 0 39,459 0 1460 0 1,202,918 0 0 43,641 0 1,394,674 0.863
strip_field 0 0 55,674 0 13,425 0 0 0 18,693 1,246,394 0 34,761 0 1,368,947 0.910
city_grass 0 0 26,947 0 5647 7387 0 19,435 0 0 109,700 2754 5380 177,250 0.619

forest 12,194 10,738 115,220 1026 30,842 7301 4871 122 8783 10,476 1684 2,873,886 4920 3,082,063 0.932
city_forest 0 0 556 2212 0 192 0 18,220 0 0 362 5204 159,984 186,730 0.857
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Additionally, we further compare the four networks in other classification metrics,
and the results are as Table 6.

Table 6. The Accuracy, MIOU, Kappa, and F1-Score of four networks.

Accuracy mIOU Kappa F1-Score

U-Net 0.867 0.699 0.850 0.806
Baseline GAT 0.873 0.799 0.883 0.885
Multi-source

GAT 0.886 0.829 0.897 0.900

KSPGAT 0.911 0.846 0.916 0.914

It can be seen that the KSPGAT network also has a significant improvement in Accu-
racy, Mean Intersection over Union (MIOU), Kappa, and F1-Score compared to the other
three networks.

By comparing the pixel-based classification results of the four networks, it can be
seen that the classification results of the baseline GAT network and the U-Net network are
similar. The overall accuracy of the U-Net network is 86.7%, and the baseline GAT network
is 87.3%. Compared with the baseline GAT network, the multi-source GAT network
increases its overall accuracy by 1.3%, reaching 88.6%. The most significant improvement
has been made in the KSPGAT network, in which overall accuracy has been increased by
3.8% compared with the baseline GAT network, reaching 91.1%.

Further analysis shows that the classification accuracy of the baseline GAT network
in the categories of village, path and forest is significantly higher than that of the U-Net
network. However, these two networks have the following problems:

(1) The accuracy is low in the categories of city_forest and city_grass, which are prone
to be confused with forest and grass;

(2) The accuracies of categories with a small number of samples are relatively low;
The following, Table 7, shows the accuracy comparison of the four networks in some

categories.

Table 7. The accuracies of some categories in four networks.

City_Grass City_Forest Grass Forest Path

U-Net 28.7% 66.9% 76.1% 85.1% 64.9%
Baseline GAT 25.1% 60.8% 73.6% 92.3% 78.3%

Multi-source GAT 34.4% 73.6% 77.4% 88.9% 78.1%
KSPGAT 61.9% 85.7% 83.8% 93.2% 79.1%

From the above comparison, it can be seen that the classification accuracy of the U-Net
network and the baseline GAT network on the city_grass and the city_forest is relatively
low. Among them, the classification accuracies of the U-Net network in city_grass and
city_forest are 28.7% and 25.1%, respectively. The classification accuracies of the baseline
GAT network in city_grass and city_forest are 66.9% and 60.8%, respectively.

The multi-source GAT network has a slight improvement compared with the previous
two networks, but the classification accuracies of city-grass and city-forest are still low,
only 34.4% and 73.6%, respectively.

Compared with the baseline GAT network, the KSPGAT network, which integrates
spatial pyramid distance and co-occurrence prior knowledge, has improved the classi-
fication accuracy of city_grass from 25.1% to 61.9%, and the classification accuracy of
city_forest has increased from 60.8% to 85.7%.

After comparative analysis, it can be seen that the KSPGAT network with obvious
advantages can greatly improve the classification accuracy of city-grass and city-forest by
incorporating the spatial pyramid distance and co-occurrence prior knowledge.

To verify the stability of our KSPGAT network, we randomly allocate the total samples
to the training and validation sets in the same proportions as the previous experiments,
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and performed 10 independent Monte Carlo runs. We compared the Accuracy, mIOU,
Kappa, and F1-Score of the 10 experiments, where the trend is shown in Figure 12:
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In the 10 experiments, the mean values of the Accuracy, mIOU, Kappa, and F1-Score
were 0.9095, 0.8449, 0.9151, and 0.9138, respectively, and the standard deviations were
0.00259, 0.00287, 0.00290, and 0.00169, respectively, which proved the stability and reliability
of the experimental results.

Besides, to compare the performance and system resource requirements of the four
networks, we also conducted a benchmark test. With the hardware environment of RTX
3080 GPU, we used the same validation set to test Params, which means the model size;
Mem, which means the training GPU memory consumption; FLOPs, which means the
calculation amount; and Inf time, which means the inference speed of model. We conducted
the benchmark test in this environment for 10 times and took the average results as the
final test results. The benchmark test results are shown as Table 8.

Table 8. The performance and system resource requirements of four networks.

Model Params (M) Mem (GB) FLOPs (G) Inf Time (FPS)

U-Net 8.64 8.88 12.60 43.01
Baseline GAT 0.02 1.47 0.31 85.56

Multi-source GAT 0.02 1.48 0.31 84.31
KSPGAT 0.02 1.47 0.31 90.07

By comparing the benchmark test result of each model, we can see that our KSPGAT
model has obvious advantages in model size, resource occupation, calculation amount,
and inference speed.

Further, to check the value of our method, we used another remote sensing semantic
segmentation dataset, called Gaofen Image Dataset (GID) [55], for experimental comparison.
The dataset contains 10 pixel-level annotated GF-2 images, which has two more categories
than our previous dataset and is made up of 15 categories: paddy field, irrigated land,
dry cropland, garden land, arbor forest, shrub land, natural meadow, artificial meadow,
industrial land, urban residential, rural residential, traffic land, river, lake, and pond. Since
the 10 images in the GID dataset come from different regions and cover a geographic area
of 506 km2, to make a fair comparison with our previous experiment, we cut 1800 samples
with a size of 224 × 224 to compose the new dataset in which size is similar with our
previous dataset, and we allocated the training set and the validation set in a ratio of 7:3
according to the principle of random allocation, which is consistent with our previous
experiment. Therefore, we obtained 1260 samples as training data and the remaining 540
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samples as validation data. Then, we recalculated the category co-occurrence probability
in the new dataset. Finally, we trained the four models on the training set with the
same hyperparameters (batch size, learning rate, and training epochs) as the previous
experiments and verified on the validation set. The results are shown in the following,
Table 9.

Table 9. The Accuracy, MIOU, Kappa, and F1-Score of five networks in Gaofen Image Dataset (GID)
dataset.

Accuracy mIOU Kappa F1-Score

U-Net 0.898 0.706 0.882 0.873
Baseline GAT 0.906 0.761 0.886 0.889

Multi-source GAT 0.928 0.801 0.912 0.907
KSPGAT 0.941 0.839 0.927 0.919

It can be seen that our KSPGAT model improves the overall accuracy by 3.1% com-
pared with the baseline GAT network and 4.5% with the U-Net network. The results mean
that in different regions and different seasons, using different satellite data with larger
categories, the effects of our model are stable and reliable. And this illustrates the value of
our model.

4.4. Training Process and Loss Curve

All four networks use Adam optimizer for training, and their loss curves on the
validation set are as shown in Figure 13:
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As shown in Figure 13, the x-axis represents the number of network epochs, and the
y-axis represents the loss during network training. The loss curve shows the convergence
trend of the network. As the number of epochs increases, in the early training period, the
curve oscillates and decreases, and it stabilizes towards the later stage. We train the four
networks for 600 epochs, but the U-Net network is overfitting after 250 epochs. To ensure
complete network convergence without overfitting, we choose 250 as the training epoch for
the U-Net network, and 600 for the baseline GAT network, the multi-source GAT network,
and the KSPGAT network.

5. Results

According to the two problems discussed in Section 1, we analyze the recognition capa-
bilities of three object-based networks in the two problems separately, in which the analysis
of the problem “different objects with the same spectrum” is conducted in Section 5.3, the
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analysis of the problem “violating the first law of geography” is shown in Section 5.4.
Finally, the discussion of the three networks are represented in Section 5.5.

To show the advantages of the KSPGAT network, we analyze the classification effects
of the four networks in some typical samples, as shown in Figure 14:
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Figure 14. The classification result of four networks in some typical samples. I–VI represent
6 different samples. The red box represents some objects which are misclassified seriously.

Comparing the classification results of three object-based models, it can be found
that sample I and sample II can be classified completely correct in all three networks.
Sample III and sample IV cannot be correct classified in the baseline GAT network, but can
be classified completely correct in both the multi-source GAT network and the KSPGAT
network. Sample V and VI can only be classified completely correct in the KSPGAT
network.

Further comparing, the classification effect of the three object-based graph neural
networks is significantly better than that of the U-Net network. The U-Net network ac-
complishes segmentation pixel by pixel, which leads to the problem of salt-and-pepper
phenomena. While three graph neural networks accomplish segmentation based on super-
pixel blocks, and are free from salt-and-pepper effects.

To check the value of our method in other dataset, we show the classification results
of four models in GID [55]. The classification results are shown in Figure 15.
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As shown in Figure 15, our KSPGAT model also outperforms several other models in
the GID dataset, which proves the value of our method in other different areas.

To analyze the advantages of the KSPGAT network during node aggregation, accord-
ing to the two problems discussed in Section 1, we divide the several samples in Figure 13
to two groups, wherein one is disturbed by the problem of “different objects with the
same spectrum”, and the other is interfered by the problem of “violating the first law of
geography”.

5.1. The Problem of “Different Objects with the Same Spectrum” in Sample III, IV

The phenomenon of “different objects with the same spectrum” is a common problem.
To correctly identify the objects which are disturbed by this problem, it often requires
knowing the surrounding objects. The following, Figure 16, shows the samples with this
problem:
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environment; (c,d) is sample IV and its corresponding surrounding environment.

As seen in Figure 16, the spectrums of town object A and flat_field object B in (a)
are similar; the spectrums of flat_field object C and city_grass object D in (c) are similar.
Therefore, they all have the problem of “different objects with the same spectrum”. Without
the information of the surrounding environment, it is hard to identify their actual categories.

5.2. The Problem of “Violating the First Law of Geography” in Sample V and VI

Due to the limitation of the sample cutting in some areas, the neighbors of some nodes
in the sample may not be complete and accurate, which will cause the distortion of the
spatial relationships. The following, Figure 17, shows the samples with this problem.
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As seen, the forest object A in Figure 17a and the city_forest object B in Figure 17c are
cut at the corner of the sample. As their spatial relationships with neighbors are distorted,
they may be interfered by the problem of “violating the first law of geography”.

In these two group of samples, we choose the flat_field1 object in sample III, and the
forest1 object in sample V as the analysis targets. Among them:

(a) The flat_field1 object in sample III is misclassified as the town in the baseline
GAT due to the problem of “different objects with the same spectrum”. However, in the
multi-source GAT and the KSPGAT which both consider the spatial relationship, it can be
classified correctly.

(b) The forest1 object in sample V is misclassified as the city_forest in the baseline GAT
and the multi-source GAT due to the problem of “violating the first law of geography”. And
it can only be classified correctly in KSPGAT which incorporate the category co-occurrence
knowledge.

The following subsections are the specific analysis.

5.3. Analysis of the Problem “Different Objects with the Same Spectrum”

In this section, we will analyze the attention results of the node flat_field1 in sample
III to compare the recognition capabilities of the three object-based models on samples
which contains the objects disturbed by the problem of “different objects with the same
spectrum”. The following, Figure 18, shows the classification results and the object masks
in sample III.
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The attention results of the node flat_field1 in sample III are shown in Table 10.
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Table 10. The attention results of the flat_field1 in three networks.

Model Predict flat_field1 flat_field2 water_body3 city_forest4 road5 city_forest6 city_forest7 town8

Baseline GAT town 1 0.25 0.21 0.28 0.34 0.24 0.29 0.89
Multi-source

GAT flat_field 1 0.67 0.39 0.21 0.14 0.12 0.14 0.32

KSPGAT flat_field 1 0.65 0.03 0.03 0 0 0.01 0.02

5.3.1. Analysis of the Baseline GAT Network

Through the attention results of the baseline GAT in sample III, it can be seen that
for the misclassified flat_field1, besides itself, it mainly focuses on town8, and the atten-
tion weight is 0.89. The attention weights of the other nodes are relatively small, and
the attention weight of flat_field2 is especially small, at only 0.25. This shows that the
spectrum of flat_field1 is similar to that of town8. Therefore, when aggregating neighbor
nodes, the flat_field1 mainly considers the information of town8, and does not consider
the information of flat_field2 too much, which causes it to be misclassified as town in the
baseline GAT network.

5.3.2. Analysis of the Multi-Source GAT Network

Compared to the baseline GAT network, the multi-source GAT network shows its
advantages. After considering the spatial correlation, the attention weights of flat_field2
and water_body3, in which spatial pyramid distance from flat_field1 is 1, are increased.
flat_field2 rose from 0.25 to 0.67, and its relative ranking also increased from the sixth
to second, while the attention weights of other nodes were reduced to varying degrees.
Among them, the weight of town8, in which spatial pyramid distance from city_grass1 is 3,
is reduced from 0.89 to 0.32, and the relative ranking also decreases from second to fourth.
Therefore, flat_field1 mainly focuses on the category of flat_field besides itself, and it can
finally be classified correctly in the multi-source GAT network.

5.3.3. Analysis of the KSPGAT Network

In this section, we first analyze the control gates of flat_field1 and then investigate the
final aggregation weight in the KSPGAT network. The control gate and aggregation weight
of flat_field1 are shown in Table 11.

Table 11. The control gate and aggregation weight of flat_field1 in KSPGAT.

flat_field1 flat_field2 water_body3 city_forest4 road5 city_forest6 city_forest7 town8

Distance 0 1 1 2 3 3 3 3
Co-occurrence probability 1 1 0.02 0.05 0.06 0.05 0.05 0.09

Multi-source attention 1 0.68 0.36 0.23 0.12 0.13 0.13 0.30
Gate 1 0.95 0.09 0.14 0.03 0.01 0.10 0.08

Aggregation weight in
KSPGAT 1 0.65 0.03 0.03 0 0 0.01 0.02

Through the analysis of three control gates’ value of flat_field1, it can be seen that
among the neighbour nodes:

(a) The nodes with a spatial pyramid distance of 1 from flat_field1 are flat_field2
and water_body3. According to the category co-occurrence knowledge, co-occurrence
probability between flat_field2 and flat_field1 is 1, so the two nodes have a category co-
occurrence relationship. Observing the value of the control gate at the same time, it can
be found that the value of flat_field2 is 0.95, which means that the control gate is open.
While the co-occurrence probability between water_body3 and flat_field1 is smaller than
0.1, thereby, the value of the control gate is only 0.09, which means that the control gate is
closed.

(b) The node with a spatial pyramid distance of 2 from flat_field1 is only city_forest4.
According to the category co-occurrence knowledge, the co-occurrence probability between
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city_forest4 and flat_field1 is smaller than 0.1, and the two nodes do not have a category
co-occurrence relationship, so the value of city_forest4 is 0.14, which also means that the
control gate is closed.

(c) The nodes with a spatial pyramid distance of 3 from flat_field1 include road5,
city_forest6, city_forest7 and town8, but, since there is no category co-occurrence relation-
ship between them and flat_field1, their control gates are closed.

Next, we analyze the aggregation weight of flat_field1 in the KSPGAT network that
combines multi-source attention and gating mechanism. It can be seen that the aggregations
of water_body3 and town8 are directly closed through the gating mechanism, while the
aggregation of flat_field2 is opened. And the attention weight of flat_field2 is 0.65; other
neighbor nodes are all smaller than 0.1. Therefore, the relative order of flat_field2’s attention
weight is changed through the gating mechanism. At this time, except for flat_field1 itself,
only flat_field2 has a larger attention weight. The aggregation of other nodes that do not
have a category co-occurrence relationship with flat_field1 is completely suppressed, so
flat_field1 can be classified correctly.

5.4. Analysis of the Problem “Violating the First Law of Geography”

In this section, we will analyze the attention results of the node forest1 in sample V to
compare the recognition capabilities of the three object-based models on samples which
are interfered by the problem of “violating the first law of geography”. The following,
Figure 19, shows the classification results and the object masks in sample V.
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Figure 19. The classification results and the object masks in sample V. The yellow box presents the
forest1 object that will be analyzed in this section, and the red box presents the misclassified result.

The attention results of the node forest1 in sample V are shown in Table 12.

Table 12. The attention results of the forest1 in three networks.

Model Predict forest1 flat_field2 road3 water_body4 city_forest5 town6 city_forest7 road8 town9 town10 city_forest11 road12 town13 city_forest14

Baseline
GAT city_forest 1 0.22 0.13 0.11 0.43 0.09 0.39 0.06 0.15 0.04 0.41 0.02 0.05 0.39

Multi-
source
GAT

city_forest 1 0.49 0.20 0.14 0.36 0.07 0.32 0.04 0.02 0.02 0.22 0.02 0.01 0.28

KSPGAT forest 1 0.49 0.01 0.02 0.01 0 0.03 0 0 0 0.02 0 0 0.02

5.4.1. Analysis of the Baseline GAT Network

Through the attention results of the baseline GAT in sample V, it can be seen that
for the misclassified forest1, besides itself, it mainly focuses on city_forest5, city_forest11,
city_forest7, and city_forest14, with attention weights of 0.43, 0.41, 0.39, and 0.39, respec-
tively. The attention weights of the other nodes are relatively small, and the attention
weight of the flat_field2 is only 0.22.

Further considering the accumulation weights of the same category objects, the results
are shown in Table 13.
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Table 13. The category accumulation weights of the baseline GAT in sample V.

Order 1 2 3 4 5 6

Objects in Sample V forest1 city_forest flat_field road water_body town
Accumulation weight 1 1.62 0.22 0.21 0.11 0.39

For sample V, due to the problem of “violating the first law of geography”, its final
accumulation weight of city_forests is 1.62 (0.43 + 0.41 + 0.39 + 0.39), which accounts for
the majority compared to the other categories, thereby causing the node of forest1 to be
misclassified.

5.4.2. Analysis of the Multi-Source GAT Network

Through the attention results of the multi-source GAT in sample V, it can be seen that
after considering the spatial correlation, the attention weights of flat_field2, road3, and
water_body4, in which spatial pyramid distance from forest1 is 1, are raised. The attention
weight of flat_field2 is raised from 0.22 to 0.49, and its relative ranking also increases from
the sixth to second, while the attention weights of the other nodes are reduced to varying
degrees. Among them, the attention weights of four city-grass that are far from forest1,
have decreased greatly.

However, due to the problem of violating the first law of geography, if there are a
large number of same category objects in the far distance, they may accumulate to cause
much effect on the central node. Table 14 shows the accumulation weights of the same
category objects in V.

Table 14. The category accumulation weights of the multi-source GAT in sample V.

Order 1 2 3 4 5 6

Objects of Sample V forest1 city_forest flat_field road water_body town
Accumulation weight 1 1.06 0.49 0.26 0.14 0.12

For sample V, four city_forests are far away from forest1, and the weight of individual
object is reduced. However, due to the large number, its final accumulation weight of
city_forests is 1.06 (0.36 + 0.28 + 0.22 + 0.20), which still accounts for the majority compared
to the other categories, thereby causing the node of forest1 to still be misclassified.

5.4.3. Analysis of the KSPGAT Network

Compared to the multi-source GAT network, the KSPGAT network shows its advan-
tages in sample V. Similarly, we first analyze the control gates of forest1 and then investigate
the final attention weight in the KSPGAT network. The control gate and aggregation weight
of forest1 are shown in Table 15.

Table 15. The control gate and aggregation weight of forest1 in KSPGAT.

forest1 flat_field2 road3 water_body4 city_forest5 town6 city_forest7 road8 town9 town10 city_forest11 road12 town13 city_forest14

Distance 0 1 1 1 2 3 3 3 3 3 3 3 3 3
Co-occurrence

probability
1 0.69 0.31 0.37 0.04 0.10 0.04 0.31 0.10 0.10 0.04 0.31 0.10 0.04

Multi-source attention 1 0.50 0.18 0.15 0.35 0.08 0.34 0.05 0.01 0.02 0.23 0.01 0.01 0.25
Gate 1 0.98 0.08 0.12 0.02 0.04 0.08 0.05 0.04 0.02 0.09 0.02 0.05 0.08

Aggregation weight in
KSPGAT

1 0.49 0.01 0.02 0.01 0 0.03 0 0 0 0.02 0 0 0.02

Through analyzing the values of the three control gates of forest1, it can be seen that
among the neighbour nodes:

(a) The nodes with a spatial pyramid distance of 1 from forest1 include flat_field2,
road3 and water_body4. According to the category co-occurrence knowledge, the co-
occurrence probability between flat_field2 and forest1 is 0.69, so the two nodes have a
category co-occurrence relationship. Observing the value of the control gate at the same
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time, it can be found that the value of flat_field2 is 0.98, which indicates that the control
gate is open. The other two nodes do not have a category co-occurrence relationship with
forest1, so the control gates are closed.

(b) The node with a spatial pyramid distance of 2 from forest1 is only city_forest5.
According to the category co-occurrence knowledge, the co-occurrence probability be-
tween them is smaller than 0.1, which means they do not have a category co-occurrence
relationship, so the control gate is also closed.

(c) The remaining nodes are all at a spatial pyramid distance of 3 from forest1, but,
since there is no category co-occurrence relationship between them and forest1, their control
gates are all closed.

Next, we analyze the aggregation weight of forest1 in the KSPGAT network. It can be
seen that only the aggregation of flat_field2 is open, since it has a category co-occurrence
relationship with forest1, while the aggregations of the other nodes are closed. And the
attention weight of flat_field2 is 0.49, while the other neighbor nodes are all smaller than
0.1. Therefore, the relative order of forest1’s attention weight is changed by the gating
mechanism.

Considering the accumulation weights of the same category objects in V, the results
are shown in Table 16.

Table 16. The category accumulation weights of the KSPGAT in sample V.

Order 1 2 3 4 5 6

Objects of Sample V forest1 flat_field city_forest water_body road town
Accumulation weight 1 0.49 0.08 0.02 0.01 0

At this time, except for the central node itself, only flat_field2 has a larger attention
weight, so forest1 can be classified correctly.

5.5. Discussion

Through the analysis in Sections 5.3 and 5.4, the following conclusions can be drawn:
(1) The baseline GAT network relies more on the feature similarity, and it is easy to

disturbed by the problem of “different objects with the same spectrum”, while the multi-
source GAT network that also considers spatial correlation can strengthen or weaken the
attention weights of neighbor nodes according to the distance between the central node
and them, thereby solving the problem of “different objects with the same spectrum” to a
certain extent.

(2) However, due to the distortion of the spatial relationships in some objects that are
cut at the corners of the sample, the multi-source GAT network that just considers spectral
similarity and spatial correlation may be affected by problem of “violating the first law of
geography”, thereby causing the central node to still be misclassified.

(3) The KSPGAT, which takes the category co-occurrence priori knowledge obtained
from the whole research area into account, can expand the receptive field of the objects
from the specific sample to the whole research area through the gating mechanism, so the
KSPGAT network can correct the problem of “violating the first law of geography” to a
certain extent. Therefore, the central node can be classified correctly.

(4) The KSPGAT network can control the aggregation of neighbor nodes through the
gating mechanism based on the geographic prior knowledge (co-occurrence probability),
thereby avoiding the problem of over-smoothing to a certain extent.

6. Conclusions

In this paper, a novel remote sensing semantic segmentation model is proposed to
better recognize the objects disturbed by the problem of “different objects with the same
spectrum” and effectively alleviate the problem of “violating the first law of geography”.
The model integrates the similarity of geographic objects, the spatial pyramid distance,
and global geographic prior knowledge; and it uses a gating mechanism to control the
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process of node aggregation through prior knowledge, thereby embedding the higher-
level semantic knowledge of geographic objects into the remote sensing image semantic
segmentation network. Furthermore, it can avoid the problem of over-smoothing to a
certain extent. The experimental results show that our model improves the overall accuracy
by 3.8% compared with the baseline GAT network.

Our future work will focus on the following directions:
(1) The selection of segmentation scale
Different types of geographic objects have different segmentation scales in remote

sensing images, and how to balance them is still worth exploring.
(2) The suitable way to judge whether the two categories have co-occurrence relation-

ship
In our method, if max

{
Pij, Pji

}
≥ 0.5, it can consider that category i and category j

have co-occurrence relationship. How to choose the threshold in a suitable way requires
more attempts.

(3) Automatic acquisition of prior knowledge
In this paper, the prior knowledge is based on manual statistics and analysis. This

method is affected by subjective factors, and it is not efficient. To improve the method
of obtaining prior knowledge, an automatic learning way will be planned in our further
researches.

(4) Apply the method to other research
To verify the universality of the method, we will make further improvements to it

and try to apply it to other research such as land use change [56] and analysis of water
resources [57].

Author Contributions: W.C. (Wei Cui) contributed toward creating the original ideas of the paper.
W.C. (Wei Cui) conceived and designed the experiments. X.H. prepared the original data, performed
the experiments and analyzed the experimental data with the help of Z.W., Y.H., J.L. (Jie Li), W.W.,
H.Z., C.X., J.L. (Jin Li) and W.C. (Wei Cui) wrote and edited the manuscript. X.H., Z.W., and W.C.
(Wenqi Cui) carefully revised the manuscript. W.C. (Wenqi Cui) and M.Y. contributed constructive
suggestions on modifying the manuscript. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by National Key R & D Program of China (Grant No. 2018YFC
0810600, 2018YFC0810605).

Data Availability Statement: GID dataset are available from the website (https://x-ytong.github.
io/project/GID.html, accessed on 29 March 2021).

Acknowledgments: The authors are grateful to the State Key Laboratory LIESMARS of Wuhan
University in China for providing the GID dataset.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cui, W.; Wang, F.; He, X.; Zhang, D.; Xu, X.; Yao, M.; Wang, Z.; Huang, J. Multi-Scale Semantic Segmentation and Spatial

Relationship Recognition of Remote Sensing Images Based on an Attention Model. Remote Sens. 2019, 11, 1044. [CrossRef]
2. Yi, Y.; Zhang, Z.; Zhang, W.; Zhang, C.; Li, W.; Zhao, T. Semantic Segmentation of Urban Buildings from VHR Remote Sensing

Imagery Using a Deep Convolutional Neural Network. Remote Sens. 2019, 11, 1774. [CrossRef]
3. Shao, Z.; Tang, P.; Wang, Z.; Saleem, N.; Yam, S.; Sommai, C. BRRNet: A Fully Convolutional Neural Network for Automatic

Building Extraction From High-Resolution Remote Sensing Images. Remote Sens. 2020, 12, 1050. [CrossRef]
4. He, C.; Li, S.; Xiong, D.; Fang, P.; Liao, M. Remote Sensing Image Semantic Segmentation Based on Edge Information Guidance.

Remote Sens. 2020, 12, 1501. [CrossRef]
5. Xu, Z.; Zhang, W.; Zhang, T.; Li, J. HRCNet: High-Resolution Context Extraction Network for Semantic Segmentation of Remote

Sensing Images. Remote Sens. 2020, 13, 71. [CrossRef]
6. Liu, W.; Rabinovich, A.; Berg, A.C. ParseNet: Looking Wider to See Better. arXiv 2015, arXiv:1506.04579.
7. Luo, W.; Li, Y.; Urtasun, R.; Zemel, R. Understanding the Effective Receptive Field in Deep Convolutional Neural Networks.

arXiv 2017, arXiv:1701.04128.
8. Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-Local Neural Networks. arXiv 2018, arXiv:1711.07971.
9. Yu, F.; Koltun, V. Multi-Scale Context Aggregation by Dilated Convolutions. arXiv 2016, arXiv:1511.07122.

https://x-ytong.github.io/project/GID.html
https://x-ytong.github.io/project/GID.html
http://doi.org/10.3390/rs11091044
http://doi.org/10.3390/rs11151774
http://doi.org/10.3390/rs12061050
http://doi.org/10.3390/rs12091501
http://doi.org/10.3390/rs13010071


Remote Sens. 2021, 13, 1312 30 of 31

10. Li, D.; Shen, X.; Yu, Y.; Guan, H.; Li, J.; Zhang, G.; Li, D. Building Extraction from Airborne Multi-Spectral LiDAR Point Clouds
Based on Graph Geometric Moments Convolutional Neural Networks. Remote Sens. 2020, 12, 3186. [CrossRef]

11. Ma, F.; Gao, F.; Sun, J.; Zhou, H.; Hussain, A. Attention Graph Convolution Network for Image Segmentation in Big SAR Imagery
Data. Remote Sens. 2019, 11, 2586. [CrossRef]

12. Zhao, W.; Emery, W.; Bo, Y.; Chen, J. Land Cover Mapping with Higher Order Graph-Based Co-Occurrence Model. Remote Sens.
2018, 10, 1713. [CrossRef]

13. Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234. [CrossRef]
14. Hay, G.J.; Marceau, D.J.; Dubé, P.; Bouchard, A. A Multiscale Framework for Landscape Analysis: Object-Specific Analysis and

Upscaling. Landsc. Ecol. 2001, 16, 471–490. [CrossRef]
15. Huang, H.; Chen, J.; Li, Z.; Gong, F.; Chen, N. Ontology-Guided Image Interpretation for GEOBIA of High Spatial Resolution

Remote Sense Imagery: A Coastal Area Case Study. IJGI 2017, 6, 105. [CrossRef]
16. Merciol, F.; Faucqueur, L.; Damodaran, B.; Rémy, P.-Y.; Desclée, B.; Dazin, F.; Lefèvre, S.; Masse, A.; Sannier, C. GEOBIA at the

Terapixel Scale: Toward Efficient Mapping of Small Woody Features from Heterogeneous VHR Scenes. IJGI 2019, 8, 46. [CrossRef]
17. Zhou, Z.; Ma, L.; Fu, T.; Zhang, G.; Yao, M.; Li, M. Change Detection in Coral Reef Environment Using High-Resolution Images:

Comparison of Object-Based and Pixel-Based Paradigms. IJGI 2018, 7, 441. [CrossRef]
18. Knevels, R.; Petschko, H.; Leopold, P.; Brenning, A. Geographic Object-Based Image Analysis for Automated Landslide Detection

Using Open Source GIS Software. IJGI 2019, 8, 551. [CrossRef]
19. Mishra, N.; Mainali, K.; Shrestha, B.; Radenz, J.; Karki, D. Species-Level Vegetation Mapping in a Himalayan Treeline Ecotone

Using Unmanned Aerial System (UAS) Imagery. IJGI 2018, 7, 445. [CrossRef]
20. Lefèvre, S.; Sheeren, D.; Tasar, O. A Generic Framework for Combining Multiple Segmentations in Geographic Object-Based

Image Analysis. IJGI 2019, 8, 70. [CrossRef]
21. Alganci, U. Dynamic Land Cover Mapping of Urbanized Cities with Landsat 8 Multi-Temporal Images: Comparative Evaluation

of Classification Algorithms and Dimension Reduction Methods. IJGI 2019, 8, 139. [CrossRef]
22. Cui, W. Geographical Ontology Modeling Based on Object-Oriented Remote Sensing Technology; The Science Publishing Compan:

Beijing, China, 2016; ISBN 978-7-03-050323-7.
23. Cui, W.; Zheng, Z.; Zhou, Q.; Huang, J.; Yuan, Y. Application of a Parallel Spectral–Spatial Convolution Neural Network in

Object-Oriented Remote Sensing Land Use Classification. Remote Sens. Lett. 2018, 9, 334–342. [CrossRef]
24. Hamedianfar, A.; Gibril, M.B.A.; Hosseinpoor, M.; Pellikka, P.K.E. Synergistic Use of Particle Swarm Optimization, Artificial

Neural Network, and Extreme Gradient Boosting Algorithms for Urban LULC Mapping from WorldView-3 Images. Geocarto Int.
2020, 1–19. [CrossRef]

25. Bronstein, M.M.; Bruna, J.; LeCun, Y.; Szlam, A.; Vandergheynst, P. Geometric Deep Learning: Going beyond Euclidean Data.
IEEE Signal. Process. Mag. 2017, 34, 18–42. [CrossRef]

26. Zhou, J.; Cui, G.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph Neural Networks: A Review of Methods and
Applications. arXiv 2019, arXiv:1812.08434.

27. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2017, arXiv:1609.02907.
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