
remote sensing  

Data Descriptor

A UAV Open Dataset of Rice Paddies for Deep Learning Practice

Ming-Der Yang 1,2 , Hsin-Hung Tseng 1,2,* , Yu-Chun Hsu 1,2, Chin-Ying Yang 3, Ming-Hsin Lai 4 and
Dong-Hong Wu 4

����������
�������

Citation: Yang, M.-D.; Tseng, H.-H.;

Hsu, Y.-C.; Yang, C.-Y.; Lai, M.-H.;

Wu, D.-H. A UAV Open Dataset of

Rice Paddies for Deep Learning

Practice. Remote Sens. 2021, 13, 1358.

https://doi.org/10.3390/rs13071358

Academic Editor: Francesco Nex

Received: 10 February 2021

Accepted: 30 March 2021

Published: 1 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Civil Engineering, and Innovation and Development Center of Sustainable Agriculture,
National Chung Hsing University, Taichung 402, Taiwan; mdyang@nchu.edu.tw (M.-D.Y.);
d107062002@mail.nchu.edu.tw (Y.-C.H.)

2 Pervasive AI Research (PAIR) Labs, Hsinchu 300, Taiwan
3 Department of Agronomy, National Chung Hsing University, Taichung 402, Taiwan; emiyang@nchu.edu.tw
4 Crop Science Division, Taiwan Agricultural Research Institute, Taichung 413, Taiwan;

mhlai@tari.gov.tw (M.-H.L.); dhwu@tari.gov.tw (D.-H.W.)
* Correspondence: d108062001@mail.nchu.edu.tw; Tel.: +886-4-22840440 (ext. 300)

Abstract: Recently, unmanned aerial vehicles (UAVs) have been broadly applied to the remote sensing
field. For a great number of UAV images, deep learning has been reinvigorated and performed many
results in agricultural applications. The popular image datasets for deep learning model training
are generated for general purpose use, in which the objects, views, and applications are for ordinary
scenarios. However, UAV images possess different patterns of images mostly from a look-down
perspective. This paper provides a verified annotated dataset of UAV images that are described in
data acquisition, data preprocessing, and a showcase of a CNN classification. The dataset collection
consists of one multi-rotor UAV platform by flying a planned scouting routine over rice paddies. This
paper introduces a semi-auto annotation method with an ExGR index to generate the training data of
rice seedlings. For demonstration, this study modified a classical CNN architecture, VGG-16, to run
a patch-based rice seedling detection. The k-fold cross-validation was employed to obtain an 80/20
dividing ratio of training/test data. The accuracy of the network increases with the increase of epoch,
and all the divisions of the cross-validation dataset achieve a 0.99 accuracy. The rice seedling dataset
provides the training-validation dataset, patch-based detection samples, and the ortho-mosaic image
of the field.

Keywords: open dataset; deep learning; CNN; training data; UAV images; rice seedling

1. Introduction

Underlying the global climate change and a two billion increase of world population in
next projected 30 years [1,2], sufficient yielding of grain crops has been considered in many
countries as one of the most important issues to maintain food security. Remote sensing for
land use [3–6] and agricultural monitoring [7–9] from satellites have been greatly adopted
since the space era [10]. Satellites carry multispectral sensors, hyperspectral sensors,
panchromatic sensors, and synthetic aperture radar that have been widely used for land use
classification, agricultural monitoring and management, and disaster assessment [11–14].
The often-used satellites, such as Landsat, SPOT, Sentinel, and RADARSAT, provide a
monthly- to weekly-level revisiting cycle and up to meter-level spatial resolution [15–18].
However, limited by the temporal and spatial resolution, satellite images usually cannot
provide real-time and highly detailed data for precision agriculture [19]. Thanks to the
development of mechanical and electronic techniques, unmanned aerial vehicles (UAVs)
have been broadly applied to the remote sensing field. Compared to satellite remote sensing,
UAVs process many advantages, such as ultra-high spatial resolution, flexible monitoring
ability, and reasonable cost. Thus, UAVs have performed various notable applications on
combining multispectral data, thermal data, and field information to classify crop species,
assess disasters, and monitor plant growth [20–23].
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With the development of computing power and a great number of UAV images, deep
learning techniques have been reinvigorated and performed many results in agricultural
applications. Egli and Höpke [24] developed a lightweight convolutional neural network
(CNN) for automated tree species classifying with high-resolution UAV images. Chen
et al. [25] applied an object detection network on counting strawberries with ultra-high-
resolution UAV images for yield prediction. Yang et al. [26] applied deep-learning to UAV
images to estimate rice lodging over a vast area. Li et al. [27] proposed an improved
object detection model for high-precision detection of hydroponic lettuce seedlings. Pearse
et al. [28] applied a CNN model for tree seedlings detection to map and monitor the
regeneration of forests in UAV images. Oh et al. [29] applied the object detection technique
to cotton seedling counting in UAV images to analyze the plant density for precision field
management.

Although deep-learning applications on UAVs are numerous, the UAV datasets vary
with applications and are limited for free access. The commonly used image datasets are
CIFAR-10, ImageNet-1000, and COCO [30–32], which were released by Canadian Institute
For Advanced Research (CIFAR), ImageNet Large Scale Visual Recognition Challenge
(ILSVRC), and Microsoft, respectively. Images in the above-mentioned datasets are for
general purpose use, in which the objects, views, and applications are for ordinary scenarios.
The images acquired from the UAVs are mostly from a look-down perspective. The
significant difference of viewing angles on the same objects results in a different context that
degrades the applicability of the general-use dataset on UAVs deep-learning applications.

Rice is one of the major grain crops worldwide, over half of the world’s population
consumes rice as the staple food, and over 85% of consumption accounts for Asia [33,34].
To precisely estimate the grain yield and quality of rice, exploring the hill number of rice
seedlings is a key component for cultivation density and uniform maturity of precision
agriculture. This paper collected UAV images of rice seedlings in-field at the early stage of
growth with a UAVs’ look-down perspective. For demonstration, the rice seedling dataset
was adopted to identify the number and position of rice seedlings using a lightweight
CNN classification architecture. The proposed CNN model is trained with a 5-fold cross-
validation dataset, which reduces the effect of bias data on the model. In addition, the
performance is evaluated by classification accuracy.

The aim of this paper is to provide a platform of UAV image dataset of rice paddy
for data sharing by making labeled and unlabeled data findable and accessible through
domain-specific repositories. For this scope, this paper focuses on the description of the
dataset, including what methods used for collecting and producing the data, where the
dataset may be found, and how to use the data with useful information and a showcase.

2. Dataset Description

This section introduces the data descriptors of the rice seedling dataset available at
https://github.com/aipal-nchu/RiceSeedlingDataset (accessed on 10 February 2021).

2.1. Data Introduction

The datasets published at GitHub consists of orthomosaic image, training-validation
dataset, and the demo dataset. The orthomosaic image (see Figure 1) is the image stitched
from a series of nadir-like view UAV images. The dataset provides 13 images for consec-
utive growth stages, which were imaged in 2018, 2019, and 2020 as listed in Table 1. All
the images are georeferenced in TWD97/TM2 zone 121 (EPSG: 3826) projected coordi-
nate system. The training–validation dataset (green bounding area) was generated by the
method discussed in Section 2.4, and images were saved under a specific subfolder by
each class. The demonstration dataset (red bounding area) is used for the test of object
detection. This study clipped eight square images with an 8 m × 8 m area, which contains
approximately one thousand hills of rice seedlings in each image. The detail of the demo
dataset is discussed in Section 3.1.

https://github.com/aipal-nchu/RiceSeedlingDataset
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Figure 1. An overview of field No. 80 (cyan bounding area). Image acquired on 7th August 2018.
The green bounding area represents the area for training–validation dataset, and the red bounding
area represents the area for the object detection demonstration dataset.

Table 1. A description of image files published on GitHub.

Filename Description Disk Space

2018-08-07_ARI80_20m_Orthomosaic.tif orthomosaic image 465 MB
2018-08-14_ARI80_20m_Orthomosaic.tif orthomosaic image 610 MB
2018-08-23_ARI80_20m_Orthomosaic.tif orthomosaic image 556 MB
2019-03-26_ARI78_20m_Orthomosaic.tif orthomosaic image 485 MB
2019-04-02_ARI78_20m_Orthomosaic.tif orthomosaic image 418 MB
2019-08-12_ARI78_20m_Orthomosaic.tif orthomosaic image 503 MB
2019-08-20_ARI78_20m_Orthomosaic.tif orthomosaic image 605 MB
2020-03-12_ARI78_40m_Orthomosaic.tif orthomosaic image 278 MB
2020-03-17_ARI78_40m_Orthomosaic.tif orthomosaic image 317 MB
2020-03-26_ARI78_40m_Orthomosaic.tif orthomosaic image 385 MB
2020-08-12_ARI78_40m_Orthomosaic.tif orthomosaic image 330 MB
2020-08-18_ARI78_40m_Orthomosaic.tif orthomosaic image 382 MB
2020-08-25_ARI78_40m_Orthomosaic.tif orthomosaic image 402 MB

RiceSeedlingClassification.tgz training-validation dataset 426 MB
RiceSeedlingDetection.tgz detection training dataset 10.9 MB

RiceSeedlingDemo.tgz detection demonstration dataset 48.5 MB

2.2. Training-Validation Dataset

The training-validation dataset was collected by a multi-rotor UAV flying a planned
scouting routine over a paddy operated by Taiwan Agricultural Research Institute (TARI)
in Wufeng District, Taichung, Taiwan. The data were collected on 7, 14, and 23 August 2018,
between 07:03 am and 08:00 am local time. The UAV flew at a constant altitude and carried
an RGB sensor with an approximate nadir view for the duration of data collection using
a 4-rotor commercial range UAV, DJI Phantom 4 Pro (Da-Jiang Innovations, Shenzhen,
PRC) [35]. The equipped sensor is an RGB sensor with a 1-inch diagonal size and a focal
length of 8.8 mm. The sensor parameters are listed in Table 2.
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Table 2. Unmanned aerial vehicle (UAV) sensor parameters.

Sensor DJI Phantom 4 Pro [35] DJI Zenmuse X7 [36]

Resolution (H × V) 5472 × 3648 6016 × 4008
FOV (H◦ × V◦) 73.7◦ × 53.1◦ 52.2◦ × 36.2◦

Focal Length (mm) 8.8 24
Sensor Size (H × V mm) 13.2 × 8.8 23.5 × 15.7

Pixel Size (µm) 2.41 × 2.41 3.99 × 3.99
Image Format JPG JPG

Dynamic Range 8 bit 8 bit

The UAV flew nominally at a 20 m altitude above ground to generate a spatial resolu-
tion of 5.3 mm/pixel. The ground speed was between 1.8 and 2.2 m/s and was relatively
constant during data collection. Figure 2a depicts the data collecting area over a satellite
image, and Figure 2b depicts the flight routes (white dots) and orthomosaic image over-
lapped on the satellite image. The designed route overlap was 80% and side-overlap was
75%, resulting in a total number of 349, 299, and 443 images, respectively. The detail of the
training-validation data collection missions is listed in Table 3.
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Figure 2. (a) The data collecting area over a satellite image; (b) the flight routes (white dots) and orthomosaic image.

Table 3. Information of UAV training-validation data collection missions.

Study Area No. 80 Field

Sensor DJI Phantom 4 Pro
Acquisition Date 7th August 2018 14th August 2018 23rd August 2018

Time 07:19–07:32 07:03–07:13 07:41–08:00
Weather Mostly clear Mostly clear Partly Cloudy

Avg. Temperature (◦C) 28.7 27.8 28.6
Avg. Press (hPa) 997.7 992.2 987.9
Flight Height (m) 21.4 20.8 22.9

Spatial Resolution (mm/pixel) 5.24 5.09 5.57
Forward Overlap (%) 80 80 80

Side Overlap (%) 75 75 80
Collected Images 349 299 443

Coverage Area (ha) 1.38 1.18 1.33

2.3. Expansion Dataset

To test the impact of environmental disturbances, additional UAV datasets acquired in
2019 and 2020 were also provided. The data were acquired in field No. 78, which is located
next to field No. 80. In 2020, image data were acquired from an RGB sensor, DJI Zenmuse
X7, which is an interchangeable lens camera and is equipped with a lens with 24 mm focal
length [36]. The detail of this sensor is listed in Table 2. The designed flight height was
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40 m subject to a narrow FOV and a high sensor resolution to acquire the approximately
same spatial resolution as the 2018 and 2019 UAV datasets.

The expansion data provide more UAV paddy images for challenging test. Amongst,
several images appear the influence of environmental disturbances, such as the variety of
illuminations, weather, soil moisture, and seedling sizes, and the presence of algae, that can
be treated as expansion image datasets. Some examples were shown in Figure 3. To adapt
to these disturbances, users could augment the data through photometric and geometric
transformations or add noise to the original training set to learn more robust features [37].
The detail of the expansion data acquisition missions is listed in Table 4.
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Figure 3. Examples of various environmental disturbances. (a) presence of algae and low contrast;
(b) presence of algae and high contrast; (c) low contrast and low illumination. (d) low contrast, high
illumination, and flooded paddy; (e) small seedling size and wet soil; (f) small seedling size and
dry soil.

2.4. Data Preprocessing

UAV images were orthorectified and stitched through a commercial software, Agisoft
Metashape (St. Petersburg, Russia) [38], to form a single orthomosaic image. To extract the
rice seedlings rapidly, this paper introduced a semi-auto annotation method through an
excess-green-minus-excess-red index (ExGR) to enhance the greenness of the images [39].
Yen’s thresholding method was applied to obtain a binary map [40]. Then, a morphological
process was employed to enhance the object features, and then the centric point of every
object was calculated using the contour extraction from the OpenCV library [41]. Finally,
rice seedling objects can be subset and saved as single images one by one, or generate the
annotations for object detection training set. The workflow of preprocessing is shown in
Figure 4.
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Table 4. Information of UAV expansion data collection missions.

Study Area No. 78 Field

Sensor DJI Phantom 4 Pro DJI Zenmuse X7
Acquisition Date 26th March 2019 2nd April 2019 12th August 2019 20th August 2019 12th March 2020 17th March 2020 26th March 2020 12th August 2020 18th August 2020 25th August 2020

Time 09:40–10:05 09:19–09:48 14:23–14:44 08:16–08:36 09:54–10:07 09:27–09:42 08:58–09:12 09:00–09:12 08:34–08:46 08:16–08:29

Weather Clear Cloudy Cloudy/
occasional l rain Partly cloudy Partly cloudy Clear Clear Clear Clear Clear

Avg. Tempera ture (◦C) 22.6 21.2 29.1 28.5 22.0 23.6 27.8 32.4 29.8 30.7
Avg. Press (hPa) 1011.7 1011.3 994.2 997.8 1009.8 1011.5 1006.9 1005.2 999.2 996.3
Flight Height (m) 20.2 21.3 18.6 19.1 42.2 41.9 42.0 41.8 40.2 40.2

Spatial Resolution (mm/pixel) 5.04 5.33 4.62 4.78 6.38 6.38 6.38 6.37 6.36 6.36
Forward Overlap (%) 80 80 80 80 80 80 80 80 80 80

Side Overlap (%) 80 80 80 80 80 80 80 80 80 80
Collected Images 583 631 615 596 250 250 250 250 250 251

Coverage Area (ha) 1.17 1.25 1.17 1.18 1.59 1.60 1.58 1.59 1.59 1.60



Remote Sens. 2021, 13, 1358 7 of 17

Remote Sens. 2021, 13, x FOR PEER REVIEW 6 of 17 
 

 

Spatial Resolution 
(mm/pixel) 

5.04 5.33 4.62 4.78 6.38 6.38 6.38 6.37 6.36 6.36 

Forward Overlap (%) 80 80 80 80 80 80 80 80 80 80 
 Side Overlap (%) 80 80 80 80 80 80 80 80 80 80 
Collected Images 583 631 615 596 250 250 250 250 250 251 

Coverage Area (ha) 1.17 1.25 1.17 1.18 1.59 1.60 1.58 1.59 1.59 1.60 

2.4. Data Preprocessing 
UAV images were orthorectified and stitched through a commercial software, 

Agisoft Metashape (St. Petersburg, Russia) [38], to form a single orthomosaic image. To 
extract the rice seedlings rapidly, this paper introduced a semi-auto annotation method 
through an excess-green-minus-excess-red index (ExGR) to enhance the greenness of the 
images [39]. Yen’s thresholding method was applied to obtain a binary map [40]. Then, a 
morphological process was employed to enhance the object features, and then the centric 
point of every object was calculated using the contour extraction from the OpenCV library 
[41]. Finally, rice seedling objects can be subset and saved as single images one by one, or 
generate the annotations for object detection training set. The workflow of preprocessing 
is shown in Figure 4. 

 
Figure 4. The workflow of semi-auto annotation. 

2.5. UAV Dataset of Rice Seedling Classification 
One paddy image selected from the UAV dataset acquired on 7th August 2018 is 

adopted as training data for rice seedling classification. Training samples of UAV images 
extracted by binarization and morphological processing (discussed in Section 2.4) were 
manually verified by agricultural experts. The classes of the UAV images in this dataset 
are categorized into rice seedling and arable land, in which each class contains 28 K and 
26.5 K samples, respectively. The dataset comprises two annotated classes (Figure 5), 
54.6K samples in total, and 48 × 48 pixels in size of each image. 

Figure 4. The workflow of semi-auto annotation.

2.5. UAV Dataset of Rice Seedling Classification

One paddy image selected from the UAV dataset acquired on 7th August 2018 is
adopted as training data for rice seedling classification. Training samples of UAV images
extracted by binarization and morphological processing (discussed in Section 2.4) were
manually verified by agricultural experts. The classes of the UAV images in this dataset
are categorized into rice seedling and arable land, in which each class contains 28 K and
26.5 K samples, respectively. The dataset comprises two annotated classes (Figure 5), 54.6 K
samples in total, and 48 × 48 pixels in size of each image.
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Figure 5. Examples of classes of the rice seedling classification dataset.

Table 5 shows the number of samples for each class for training, validation, and testing
of classification. The dataset was split in an 80/20 ratio of training/test data, which is
the most commonly adopted in deep learning applications [42]. Besides, a 10% subset of
the test samples was used to validate the training result. A total of 43.7 K samples were
used for training. 1.1 K samples and 9.8 K samples were used for validation and testing,
respectively.

Table 5. The number of images used for training, validation, and testing in the rice seedling dataset.

Class Training Samples Validation Samples Testing Samples Total Samples

Rice Seedling 22,438 561 5048 28,047
Arable land 21,265 532 4784 26,581

Total 43,703 1093 9832 54,628
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2.6. UAV Dataset of Rice Seedling Detection

In this paper, annotations of object detection were provided with three serial missions,
7th, 14th, and 23rd August 2018. The training and validation images were cropped from
eight subsets into 600 training samples, in which each subset generates 25 training samples
with a size of 320 × 320 pixels and each sample contains approximately 50 seedlings. The
annotations were generated in PASCAL VOC [43] format by a graphical image annotation
tool, LabelImg [44]. An example of these XML files is given in Appendix A to show the
information about image size, classes, and coordinates of bounding boxes. Examples of
three growth stages of the rice seedling detection dataset were shown in Figure 6.

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 17 
 

 

 
Figure 6. Examples of three growth stages of the rice seedling detection dataset. 

3. Data Application 
The rice seedling dataset was fed to a deep learning classifier for training. The train-

ing phase involves hyperparameter tuning, including learning rates, decay ratio of learn-
ing rates, batch sizes, and the number of epochs. This study modified a classical CNN 
architecture, VGG-16 [45], to demonstrate a simple classification.  

3.1. Demonstration of Rice Seedling Detection 
To demonstrate data application to patch-based object detection scenarios, this paper 

clipped 8 images from the orthomosaic image (Figure 7) with a region of 8 × 8 meters and 
a size of 1527 × 1527 pixels for each image. The object detection annotation of ground truth 
is also provided for the eight demo images in PASCAL VOC. 

 
Figure 7. Subset 7 was clipped from the orthomosaic image. (The spotlighted image is enhanced in contrast for a clearer 
view, not in true color.). 

3.2. Classification Model 
This paper performed the image classification with the dataset using a convolutional 

neural network (CNN) algorithm, which was modified from the classical algorithm, VGG-
16, due to its promising classification architecture. The model was redesigned with a rel-
atively simple network structure by keeping the iconic stack-convolution structure but 

Figure 6. Examples of three growth stages of the rice seedling detection dataset.

3. Data Application

The rice seedling dataset was fed to a deep learning classifier for training. The
training phase involves hyperparameter tuning, including learning rates, decay ratio of
learning rates, batch sizes, and the number of epochs. This study modified a classical CNN
architecture, VGG-16 [45], to demonstrate a simple classification.

3.1. Demonstration of Rice Seedling Detection

To demonstrate data application to patch-based object detection scenarios, this paper
clipped 8 images from the orthomosaic image (Figure 7) with a region of 8 × 8 m and a
size of 1527 × 1527 pixels for each image. The object detection annotation of ground truth
is also provided for the eight demo images in PASCAL VOC.

3.2. Classification Model

This paper performed the image classification with the dataset using a convolutional
neural network (CNN) algorithm, which was modified from the classical algorithm, VGG-
16, due to its promising classification architecture. The model was redesigned with a
relatively simple network structure by keeping the iconic stack-convolution structure but
reducing the number of convolution layers, filters, and fully-connected layers that decrease
the number of parameters in the training phase to mitigate an overfitting problem. The
visualized architecture of the network is shown in Figure 8. The input images are in
48 × 48 pixels and contain three visible bands (R, G, B). Table 6 shows the layer parameters
of the model.
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Table 6. Layer parameters for the proposed network.

Layer Parameter Activation Function

Input 48 × 48 × 3 —
Convolution 1_1 (conv1_1) 6 filters (3 × 3), stride 1, padding same ReLU
Convolution 1_2 (conv1_2) 6 filters (3 × 3), stride 1, padding same ReLU

Batch Normalization 1 (bn1) — —
Pooling 1 (pool1) Max pooling (3 × 3), stride 3 —

Convolution 2_1 (conv2_1) 16 filters (3 × 3), stride 1, padding same ReLU
Convolution 2_2 (conv2_2) 16 filters (3 × 3), stride 1, padding same ReLU

Batch Normalization 2 (bn2) — —
Pooling 2 (pool2) Max pooling (4 × 4), stride 4 —

Flatten — —
Full Connect 3 (fc3) 64 nodes ReLU

Dropout Dropout rate 0.1 —
Full Connect 4 (fc4) 2 nodes ReLU

Output — Softmax

The layers in CNN are defined as follows:
1. The first two convolution layers both comprise 6 filters and a kernel size of 3 × 3

pixels. Each convolution layer is followed by a rectified linear unit (ReLU) operation. This
conception is adopted from a VGG-16 network architecture, so-called stack convolution,
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which can achieve barely the same result with fewer parameters and computations than
a larger convolution kernel. Besides, the convolution operation uses the same-padding
option, which expands the boundary pixels before the convolution operation to remain the
same size as the input tensor.

2. The stacked convolution layers are followed by a batch-normalization operation,
which speedups the convergence and prevents the problem of gradient vanishing, and a
max-pooling layer with a kernel size of 3 × 3 pixels and a stride of 3.

3. The second stacked convolution layer and batch-normalization layer use the same
manner as the first one, except that the convolution kernel is set to 16 filters. The batch-
normalization layer is followed by a max-pooling layer with a kernel size of 4 × 4 pixels
and a stride of 4.

4. The first full connection layer comprises 64 neurons, followed by a ReLU and a
dropout operation. The dropout operation is proposed to eliminate overfitting as it trains
only some randomly active neurons. The rate of the dropout was set to 0.1.

5. The second full connection layer has three neurons, which represent two classes
of images in the rice seedling dataset, followed by ReLU operation. The output layer is
a softmax activation function by forcing the sum of the output values equal to 1.0. This
activation function also limits each output value between 0–1, which means the probability
of each class.

3.3. Performance Evaluation

The evaluation metrics were adopted in this study to evaluate the classification model
as the following description in detail [46].

3.3.1. Precision

Precision is the ratio of the correct classification to the total number of classifications
in the specific class. A low precision indicates a large number of false positives. Precision
can be represented as:

Precisionc =
TPc

TPc + FPc
, (1)

where TPc depicts the positive class correctly classified by the model, and FPc depicts the
model misclassifies the samples as the positive class.

3.3.2. Recall

The recall is the ratio of the number of the correct classifications to the total number of
samples. A high recall indicates a small number of misclassified samples. Recall can be
represented as:

Recallc =
TPc

TPc + FNc
, (2)

where FNc depicts the model misclassified the samples as the negative class.

3.3.3. Accuracy

Accuracy is the fraction of the correctness of the model, and is calculated as the sum
of correct classification divided by all the classifications as:

Accuracy =
TP + TN

TP + TB + FP + FN
, (3)

where TNc depicts that the model correctly classifies the samples as the negative class.

3.3.4. F1-Score

F1-score quantifies the harmonic mean between precision and accuracy. This metric
usually presents the robustness of the classifying task, and can be calculated as:
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F1-scorec = 2 × Precisionc × Recallc
Precisionc + Recallc

. (4)

3.4. Model Training

This study adopted python programming language to implement the preprocessing
workflow and the classification. The deep learning architecture is TensorFlow version
2.2 [47], and the used libraries are skimage, matplotlib, and numpy.

In the beginning of training, a Gaussian distribution was applied to initialize the
weights of the layers randomly. To train the network, an adaptive moment estimation
(Adam) optimizer [48] was adopted with an initial learning rate of 5E-5, batch size of 128,
and the number of epochs of 20. To avoid the possible bias in the particular division of
the training dataset, k-fold cross-validation was introduced. k was set to 5 to obtain an
80/20 dividing ratio of training/test data. The accuracy of the network increases with
the number of epoch, and all the divisions of the cross-validation dataset achieve a 0.99
accuracy and close to 1.0 (Figure 9). All the divisions of cross-validation datasets show a
steady increase in validation accuracy and a steady descend in the loss. In Figure 9, the
model has good performance without overfitting. To choose the best model from the five
models, this paper compared the validation-accuracy of each model, which are all above
99.9%, and the one with the lowest validation-loss (the fifth model) was chosen for the
evaluation and demonstration of patch-based rice seedling detection.
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3.5. Model Evaluation and Detection Demonstration Results

Five divisions of the test dataset were tested with the evaluation metrics using the
second model, which was discussed in Sections 3.3 and 3.4, as shown in Table 7. The results
indicate the model possessing a superior classification ability on all five test datasets with
all F1-scores of every class reaching 99.9%.

Table 7. Model evaluation on five divisions of cross-validation datasets.

Fold
Rice Seedling Arable Land

Accuracy
Precision (%) Recall (%) F1-Score (%) Precision (%) Recall (%) F1-Score (%)

1 99.98 100.00 99.99 100.00 99.98 99.99 99.99
2 99.98 99.98 99.98 99.98 99.98 99.98 99.98
3 99.98 99.98 99.98 99.98 99.98 99.98 99.98
4 99.98 99.95 99.96 99.94 99.98 99.94 99.96
5 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Figure 10 shows the post-process of the patch-based rice seedling detection in the
Subset 7 demo image shown in Figure 7. The rice seedling detection consists of an over-
lapped patch-based image detection and a post-process of heatmaps. Images for detection
are subset into many patches with an overlap (also called sliding window) to form a long
sequence of image sets with a size of 48 × 48 pixels that are applied to the proposed
classification model to output the probability of each pixel in each class.
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Figure 10. The post-process of patch-based rice seedling detection in Subset 7. (a) heatmap of
classification results; (b) result image obtained from a binarization process with a 0.99 threshold; (c)
result image obtained from a diamond-shaped erosion process; (d) RGB image with drawn bounding
boxes of detected objects for visualization.
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The classification results were reordered to form a heatmap (Figure 10a) in which the
size is identical to the original image. Then a threshold of 0.99 as the confidence of the
classification (Figure 10b). An erosion operation with a diamond-shaped filter was applied
to simply disconnect the slightly adjacent objects (Figure 10c). Finally, the findContours()
function from OpenCV was applied to extract objects, and called the boundingRect()
function to get the top-left position of objects and the width and height of the bounding
boxes. To visualize the bounding boxes, the boxes were drawn with yellow and the width
of 2 pixels on the raw image (Figure 10d).

The comparison of the prediction image and ground truth image of Subset 1 is pre-
sented in Figure 11, in which the detected seedlings were drawn with the yellow bounding
boxes. Due to the limited layout, the remaining images can be accessed from the web.
Table 8. Comparison of the hill number of rice seedlings from patch-based detection and
the ground truth. Amongst, Subset 1 and Subset 4 got an above 10% error rate in the
number of the detected rice seedlings. To explore this issue, this paper focused on the
highly undetected areas in these two images. The comparison between prediction images
and ground truth images is shown in Figure 12. The undetected rice seedlings are visually
smaller than the detected rice seedlings. This paper also provides images for two consecu-
tive growing stages after 7th August. The comparison between success and failure shows
that the undetected rice seedlings are generally smaller than the detected rice seedlings.
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demonstration.

Table 8. Comparison of the hill number of rice seedlings from patch-based detection and the ground
truth.

Subset No. 1 2 3 4 5 6 7 8

Prediction 735 1006 1037 809 1004 1050 1017 1032
Ground truth 898 1000 1019 964 971 1002 1033 1005

Error (%) 18.15 0.60 1.77 16.08 3.40 4.79 1.55 2.69
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Figure 12. A focused comparison of the detection results between prediction and ground truth
images for four subareas in Subset 1 and Subset 4. The images of three sucessive growth stages
explain the difference of growing condition. The green areas depict the successful detection, and the
red areas depict the worse detection.

4. Conclusions

This paper provides a verified semi-auto annotated UAV dataset for rice seedlings
identification. The dataset is described in the information of acquisition, preprocessing, and
usage in a CNN classification model. A classification model as an example was provided for
demonstration of model training and prediction using the dataset. Also, this paper demon-
strated the patch-based rice seedlings detection to show the ability for object detection
and plant counting. The results and performance evaluation confirm the applicability of
this dataset on rice seedling counting. For data sharing, all datasets including the training-
validation dataset, patch-based detection samples, and the orthomosaic image of the
field are available on the open link. https://github.com/aipal-nchu/RiceSeedlingDataset
(accessed on 10 February 2021).
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Appendix A

Table A1. An example of XML file of detection annotation.

<annotation>
<folder>raw</folder>

<filename>1.tif</filename>
<path>data/demo/raw/1.tif</path>
<source>

<database>RiceSeedlingDetection</database>
</source>
<size>

<width>320</width>
<height>320</height>
<depth>3</depth>

</size>
<segmented>0</segmented>
<object>

<name>RiceSeedling</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>

<xmin>159</xmin>
<ymin>283</ymin>
<xmax>181</xmax>
<ymax>305</ymax>

</bndbox>
</object>
<object>
. . .

</annotation>
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