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Abstract: The aim of this study was to evaluate the frequency and severity of drought over the arable
lands of Romania using the Normalized Difference Drought Index (NDDI). This index was obtained
from the Moderate Resolution Imaging Spectro-Radiometer (MODIS) sensor of the Terra satellite. The
interval between March and September was investigated to study the drought occurrence from the
early stage of crop growth to its harvest time. The study covered a long period (2001–2020), hence it is
able to provide a sound climatological image of crop vegetation conditions. Corine Land Cover 2018
(CLC) was used to extract the arable land surfaces. According to this index, the driest year was 2003
with 25.6% of arable land affected by drought. On the contrary, the wettest year was 2016, with only
10.8% of arable land affected by drought. Regarding the multiannual average of the period 2001–2020,
it can be seen that drought is not a phenomenon that occurs consistently each year, therefore only
11.7% of arable land was affected constantly by severe and extreme drought. The correlation between
NDDI and precipitation amount was also investigated. Although the correlations at weekly or
monthly levels are more complicated, the annual regional mean NDDI is overall negatively correlated
with annual rainfall. Thus, from a climatic perspective, we consider that NDDI is a reliable and
valuable tool for the assessment of droughts over the arable lands in Romania.

Keywords: drought monitoring; MODIS satellite images; arable lands; NDDI; Romania

1. Introduction

Drought is generally considered the most complex meteorological phenomenon [1],
given that many factors contribute to its onset, such as precipitation amount, soil charac-
teristics, terrestrial water accessible to plants, soil/air temperature and humidity or wind
speed. Other factors that define the characteristics of the active surface, or the physiological
peculiarities of the plants, in addition to the anthropogenic influence on the environment,
are highly significant in its occurrence [1,2]. Despite the policies and efforts to reduce
extreme weather effects, droughts will remain unavoidable.

As present, because regional development is considered to be one of the main factors
contributing to economic growth, the better prepared a region to cope with adverse weather
conditions, such as drought, the more the region can contribute to the development of the
whole country [3,4]. Therefore, strategies and actions to mitigate drought impacts in less
developed countries are essential, because these regions are among the most vulnerable,
with the lowest financial and technical capacity to adapt or to mitigate the effect of this
extreme phenomenon [5].

Scientific research has led to a wide variety of results and applications in the field of
monitoring and control of drought effects [2]. However, several scientific problems and
challenges remain, such as finding solutions to mitigate drought effects and improve living
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standards, which can be solved through a better understanding of meteorological extremes,
with the aim of preventing possible future impacts [1,2].

The relevance of this topic derives, in particular, from the fact that in the context
of climate change, the impact of this climatic phenomenon is expected to become more
pronounced because periods of drought are expected to become longer in numerous regions
of the world [5,6].

Classically, Wilhite and Glantz [7] defined four types of drought: meteorological (lack
of precipitation), hydrological (lack of water supply), agricultural (crop water deficit) and
socio-economic (combined effect of drought on human activities). Regardless of its type,
the drought phenomenon has been investigated using a variety of indices which have
been developed over time, such as the Palmer Drought Sensitivity Index (PDSI) [8], the
Standardized Precipitation Index (SPI) [9,10], or the Standardized Precipitation Evaporation
Index (SPEI) [11]. In addition, some indices based on the relationship between land surface
temperature (LST) and land cover have been developed, such as the Temperature Condition
Index (TCI) [12], Vegetation Temperature Condition Index (VTCI) [13] or Temperature
Vegetation Dryness Index (TVDI) [14,15].

Taken into account the complicated definition of drought [7,16], vegetation indices
appear to provide more appropriate estimations of drought occurrence and intensity and
the associated agriculture impacts. In this regard, remote sensing products such as the
Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index
(NDWI), Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation (FPAR)
have also been developed [17–22]. Furthermore, other indices have been investigated,
such as the Vegetation Condition Index (VCI) [12], Crop Water Stress Index (CWSI) [23],
Vegetation Health Index (VHI) [12], Global Vegetation Moisture Index (GVMI) [24], Soil
Water Index (SWI) [25] or Remote Sensing Drought Risk Index (RSDRI) [26,27]. Among
these, one of the most flexible and useful indices to be applied for drought investigation on
arable lands is the Normalized Difference Drought Index (NDDI) [20].

In Europe, many studies have focused on drought and its characteristics using various
methods, indices and satellite products. For example, a study focusing on the north-east of
the Iberian Peninsula developed by Vicente-Serrano [28] used vegetation indices derived
from AVHRR (Advanced Very High Resolution Radiometer) images. In Spain and the
Mediterranean region, Vicente-Serrano et al. [29] used AVHRR images and the NDVI index
to study the drought impact over agricultural lands located in the Middle Ebro valley,
one of the most arid regions in Europe. In addition, Gouveia et al. [30] analyzed the
drought impacts on vegetation over the entire Mediterranean basin, using NDVI and SPEI
indices, with the purpose of determining the stage at which vegetation is more impacted
by drought. Drought was analyzed by Sepulcre-Canto et al. [31], who combined the SPI,
the anomalies of soil moisture and the anomalies of the FPAR. Furthermore, Dalezios
et al. [32] applied a number of drought indices based on NOAA (National Oceanic and
Atmospheric Administration)-AVHRR and the Reconnaissance Drought Index (RDI) in
Thessaly, central Greece, which is a drought-prone agricultural region characterized by
vulnerable agriculture. The driest years, such as 2000, 2003 or 2008, were analyzed in many
studies aiming to monitor the drought severity in Europe. For this, Sea-Viewing Wide
Field-of-view Sensor (SeaWiFS) and Medium Resolution Imaging Spectrometer (MERIS)
instruments [33] or MODIS vegetation indices (VIs), NDVI and enhanced vegetation index
(EVI) [34] have been used. It should be noted that the assessment of drought at the
continental scale identified the Carpathians region as subject to an increase in drought for
1950–2012 [35].

With the increase in the availability of remote sensing products and indices, their use
has also become more frequent in Romania. These have been used to analyze and detect
floods [36], land cover changes [37,38], landslide-prone hilly areas in Moldova and various
other areas [39] and Saharan dust intrusion [40,41], and it is clear that they can also help to
precisely monitor drought.
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A comprehensive analysis of the correlation between NDVI and SPEI, aiming to eval-
uate the response of vegetation’s photosynthetic activity to drought conditions from 1998
to 2014 over Romania and the Republic of Moldova, was undertaken by Páscoa et al. [11].
Changes in the forest ecosystems in south-western Romania, due to global climate change
and anthropogenic impacts during the past three decades, and correlated with the evo-
lution of aridization, were assessed by Prăvălie et al. [42] using the NDVI and the UNEP
(United Nations Environmental Programme) aridity index. In addition, remote sensing
data have been used in several studies to monitor the summer surface urban heat island of
the city of Bucharest [43], Cluj-Napoca [44], and Galat, i [45]. Due to climate change, some
studies have discussed the topic of desertification [46], which was studied in the south-east
of Romania using LANDSAT TM images and LST.

Recently, Angearu et al. [47] analyzed drought severity using the Drought Severity
Index (DSI) in Romania and its validation based on meteorological data, soil moisture
content and agricultural production. In addition, drought assessment based on a multi-
temporal analysis and trends of the DSI obtained from Terra MODIS satellite images
was undertaken.

In this context, the main objective of our study was to enhance the knowledge on
drought frequency and severity in Romania by providing a long-term (2001–2020) and
comprehensive view of its impact over arable lands as reflected by the NDDI. Our results
show that NDDI is a highly reliable and valuable tool for the assessment of droughts over
the arable lands in Romania.

2. Materials and Methods
2.1. Study Area and Its Geographical Features

With a territory of about 238,500 km2, Romania is the largest country in south-eastern
Europe (Figure 1). The distribution of major landforms, with 31% mountainous area, 33%
hills and sub-mountainous areas and 36% plains and meadows, provides its territory with
significant climatic diversity [48].

First, regarding latitude, the average annual temperature decreases by 3 ◦C between
the south and the north of Romania (from 11 to 8 ◦C), and regarding altitude it decreases
by about 14 ◦C from the lowlands to the highest mountain peaks (from 11 to −3 ◦C). The
amounts of precipitation are also strongly influenced by the topography. Compared to the
average values in the plain areas from the west (about 600 mm) and east (about 400 mm) of
the country, in the high mountain areas average precipitation rises on the slopes exposed
to the advection of humid air masses at more than 1400 mm [49].

Second, the western and central regions of Romania are particularly impacted by the
cyclones formed in the Atlantic and Mediterranean Seas (following a Pannonian track).
These cyclones produce significantly more precipitation compared to the cyclones of
Mediterranean origin, following a trans-Balkanian track, which produce more significant
precipitation in the southern and eastern regions of the country [41,49–53].

It should be noted that the multiannual amount of precipitation at the country scale
remained generally stable during the last interval [50], except for some areas in the north
and north-west of Romania, with a positive trend, and from the east, south and south-east
of the country, with a negative trend [54]. At the same time, there was an increase in
evapotranspiration in Romania which led to increased aridity [46,50], which led some
authors [46] to discuss a possible ongoing process of desertification, similarly to that in
other regions of southern Europe, such as Spain [55], Italy [56] and Greece [57].
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rank in cereal production at European level is highly variable depending on year-to-year 
weather conditions.  

Figure 1. Geographical position of Romania and the extension of arable lands (source: Corine Land
Cover (CLC) 2018).

The arable lands in Romania cover an area of about 11 million hectares, of which more
than 50% are located in the plain regions of the south, west and extreme north-east of the
country, where the arable lands represent the main type of land cover (Figure 1, Table 1).

Table 1. Territorial extension of arable lands according to CLC 2018 in the main regions of Romania (thousands of hectares).

Territorial Extension of Arable Lands in Romania (Source: CLC 2018)

Carpathians Transylvanian
Plateau Subcarpathians Pannonian

Plain
Crisana and
Banat Hills

Moldavian
Plateau

Romanian
Plain

Getic
Plateau

Dobrogea Plateau
and Danube Delta

270 750 313 2600 363 1390 3.070 680 1680

Moreover, due to the large extent of arable lands, it should be noted that Romania
represents one of the main producers of maize and wheat in Europe [50], but given the
small ratio of irrigated land, representing less than 10% of all arable lands [58], the annual
rank in cereal production at European level is highly variable depending on year-to-year
weather conditions.
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2.2. Data Used
2.2.1. Moderate Resolution Imaging Spectroradiometer (MODIS) Data

The MODIS Vegetation Indices (MOD13Q1) Version 6, based on a 16-day composite
at 250 m spatial resolution [59–61], were used to calculate the NDDI. The MOD13Q1
product includes 12 layers, of which only three layers were used: band 1 (16 days Red
reflectance—620 to 670 nm), band 2 (16 days Near Infrared reflectance—841 to 876 nm)
and band 7 (16 days Middle Infrared reflectance—2105 to 2155 nm) (Tables 2 and 3). These
MODIS products were extracted from the Land Processes Distributed Active Archive Center
(LP DAAC), using Application for Extracting and Exploring Analysis Ready Samples
(AppEEARS), ver. 2.42.1 [62]. Thus, 721 Surface Reflectance Bands for 16-day composite
images (1, 2 and 7 bands) were used to calculate the NDDI.

Table 2. Composite periods of MOD13 used in the study [61].

Composite Day of Year (No.) Starting Day during
Non-Leap Years

Starting Day during
Leap Years * Season

1 65 6-Mar 05-Mar

Spring

2 81 22-Mar 21-Mar
3 97 7-Apr 06-Apr
4 113 23-Apr 22-Apr
5 129 9-May 08-May
6 145 25-May 24-May
7 161 10-Jun 09-Jun

8 177 26-Jun 25-Jun

Summer
9 193 12-Jul 11-Jul
10 209 28-Jul 27-Jul
11 225 13-Aug 12-Aug
12 241 29-Aug 28-Aug

* Due to numerous corrections made to the acquired data, both in leap years and in non-leap years, 16-day Moderate Resolution Imaging
Spectroradiometer (MODIS) composites have the same data range [61].

Table 3. Layers of MOD13Q1 product [59]; the bands used to calculate the Normalized Difference Drought Index (NDDI)
(1, 2 and 7) are given in bold.

Layer Name Description Units Data Type Fill Value No Data Value Valid Range Scale Factor

250 m 16 days NDVI 16 day NDVI NDVI 16-bit signed integer −3000 N/A −2000 to 10,000 0.0001

250 m 16 days EVI 16 day EVI EVI 16-bit signed integer −3000 N/A −2000 to 10,000 0.0001

250 m 16 days
VI Quality VI quality indicators Bit Field 16-bit

unsigned integer 65535 N/A 0 to 65534 N/A

250 m 16 days
red reflectance

Surface Reflectance
Band 1 N/A 16-bit signed integer −1000 N/A 0 to 10,000 0.0001

250 m 16 days Near
Infrared reflectance

Surface Reflectance
Band 2 N/A 16-bit signed integer −1000 N/A 0 to 10,000 0.0001

250 m 16 days
blue reflectance

Surface Reflectance
Band 3 N/A 16-bit signed integer −1000 N/A 0 to 10,000 0.0001

250 m 16 days Middle
Infrared reflectance

Surface Reflectance
Band 7 N/A 16-bit signed integer −1000 N/A 0 to 10,000 0.0001

250 m 16 days view
zenith angle

View zenith angle of
VI Pixel Degree 16-bit signed integer −10000 N/A 0 to 18,000 0.01

250 m 16 days sun
zenith angle

Sun zenith angle of
VI pixel Degree 16-bit signed integer −10000 N/A 0 to 18,000 0.01

250 m 16 days relative
azimuth angle

Relative azimuth
angle of VI pixel Degree 16-bit signed integer −4000 N/A −18,000 to 18,000 0.01

250 m 16 days
composite day

of the year
Day of year VI pixel Julian day 16-bit signed integer −1 N/A 1 to 366 N/A

250 m 16 days
pixel reliability

Quality reliability of
VI pixel Rank 8-bit signed integer −1 N/A 0 to 3 N/A
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The 16-day composite was chosen because it minimizes the errors induced by clouds.
However, these errors generated by the clouds were still present and were eliminated as
further explained in Section 2.3.1.

2.2.2. Corine Land Cover (CLC) Data for Arable Lands

The arable lands from Romania were extracted from CLC 2018. CLC 2018 is a dataset
produced within the framework of the Copernicus Land Monitoring Service that refers
to the land cover status of 2018 in Europe. The CLC service has a long heritage (formerly
known as the “CORINE Land Cover Program”), and is coordinated by the European
Environment Agency (EEA). It provides consistent and thematically detailed information
on land cover and land cover changes in Europe. This project has a regular update time
period of approximately six years [63]. In this classification, arable lands represent a distinct
land cover category.

2.2.3. Precipitation Data

The relationship between atmospheric precipitation amount and NDDI was also ana-
lyzed, in order to understand how the crop vegetation responds to this major atmospheric
driver of drought occurrence. The precipitation time series used in this study were taken
from the ENSEMBLE project gridded data set E-OBS [64]. These data were obtained using
a kriging interpolation procedure from the European Climate Assessment and Dataset
(ECA&D) time series at meteorological stations [65]. The E-OBS version used in this study
was version 21 (release date: May 2019) and covers Europe with a spatial resolution of 0.1◦

from 1950 to 2019 at a daily time step. The precipitation amount for the year 2020 was
added from the ERA-5 land reanalysis hourly dataset of the Copernicus Climate Change
Service C3S Climate Data Store (CDS) [66]. Reanalysis was conducted by combining the
model data with observations across the world into a complete and consistent dataset. The
spatial resolution of the ERA-5 land reanalysis is 0.1◦, thus no resampling was needed. The
precipitation amount was calculated for each 16-day composite (12 composites between
March and September) and for each year (20 years), similar to that of the NDDI.

2.3. Methodology
2.3.1. Gap-Filling of MODIS Images

The quality of remote sensing products is highly influenced by weather conditions.
Among these factors, cloud cover can frequently induce gaps in the time series of the
satellite optical imagery. To fill these gaps retrieved from MODIS over Romania, the Data
Interpolating Empirical Orthogonal Functions (DINEOF) procedure was applied [67–69].
Recently, this method has been used in various remote sensing products such as for
the reconstruction of total suspended matter [70] sea surface salinity [71], sea surface
temperature derived from MODIS [68,72], MODIS-Aqua chlorophyll products [73] or
LST over Bucharest [74]. More appropriate to our study, Filliponi et al. [75] applied the
DINEOF algorithm to the reconstruction of the MODIS Fraction of Green Vegetation around
the world.

The DINEOF procedure was run to gap-fill all MODIS NDDI composites and recon-
struct the missing pixels. A full completeness (100% availability) composite (August 2012)
was set as a profile mask, thus only pixels within the arable lands were filled. The DINEOF
gap-filling method was applied using the rtsa R package version 0.3 for Raster time series
Analysis (https://github.com/ffilipponi/rtsa/blob/master/DESCRIPTION (accessed on
15 February 2020) [75]. To evaluate the DINEOF method, artificial gaps were created for
a full completeness composite and compared with the original. The difference between
pixels of the original composite and DINEOF gap-filled pixels are shown in Table 4. For
more details regarding this procedure see Figures S1–S3 in the Supplementary Materials.

https://github.com/ffilipponi/rtsa/blob/master/DESCRIPTION
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Table 4. The statistical parameters of the original and gap-filled data pixels (//–not applicable).

Summary Statistical Original Data Gap-Filled Data Original vs.
Gap-Filled Data

Minimum 0.02 −0.08 //
1st Quartile 0.34 0.31 //

Median 0.46 0.44 //
Average 0.48 0.46 //

3rd Quartile 0.59 0.57 //
Maximum 1.75 1.72 //

Root-Mean-Square Error // // 0.03
Mean-Absolute-Error // // 0.09

R-squared // // 0.91

2.3.2. NDDI Calculation and Drought Assessment

Generally, no index can fully describe the complexity of drought at both temporal
and spatial levels. Hence, it is recommended to combine several parameters, indicators or
indices (including remote sensing data) in a single product for drought classification [20].

First, band 1 (B1), band 2 (B2) and band 7 (B7) from 16-day composite images at 250 m
resolution of the MOD13Q1 product were extracted. Using these bands, the NDVI was
calculated using B1 and B2 bands [20], by applying Equation (1), and NDWI was calculated
from B2 and B7 [20,76], by applying Equation (2).

The NDVI is a classical index which measures the development and the density of
vegetation and has values from −1.0 to 1.0. Negative values indicate clouds or water,
whereas positive values indicate soil without vegetation (values near to zero), and dense
green vegetation (values equal or higher than 0.6) [77,78]. The NDVI is widely used
to evaluate the main parameters of vegetation, induced mainly by climate conditions,
human activities and other anthropic or natural causes. NOAA/AVHRR, SPOT (French:
Satellite Pour l’Observation de la Terre), MODIS or LANDSAT [9,10] imagery can be used
to achieve these products. It should be noted that the NDVI is included in this product
and can be downloaded already calculated. The NDVI was calculated using the following
formula [20]:

NDVIModis =
B2 − B1
B2 + B1

, (1)

where B1 and B2 refer to MODIS band 1 and band 2, respectively.
Additionally, the NDWI is an index which measures the water content of leaves and

is used for detecting and monitoring vegetation humidity. The NDWI is influenced by
plant dehydration, and it is considered to be a better indicator for drought monitoring than
the NDVI [77]. The NDWI also has values from −1.0 to 1.0. The common range for green
vegetation is −0.1 to 0.4. This index increases with vegetation water content or from dry
soil to free water [78,79]. Both the NDVI and NDWI have been used in different studies to
observe their relationship with LAI for the study of the characteristics of vegetation that
covers different regions, including arable lands [80–82] or FPAR [19,83]. The NDWI was
calculated using the following formula [20]:

NDWIModis =
B2 − B7
B2 + B7

, (2)

where B2 and B7 refer to MODIS band 2 and band 7, respectively.
It has been found that the NDWI is more sensitive than the NDVI to drought con-

ditions, providing information about the amount of water that enters the plant [20]. In
addition, it has been found that the average in cases of drought is below 0.5/0.3 in the case
of the NDVI/NDWI, whereas in periods without drought, the NDWI/NDVI has values
above 0.4/0.6 [6].

Although meteorological drought has been and can be well studied further using
the NDVI and NDWI, a new index combines the information provided by the NDVI and
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NDWI. The NDDI was recently developed [20], and has been used to monitor the drought
parameters in different regions of the world [6,84–87], representing a sensitive drought
assessment tool for agriculture [88]. The first research to analyze the potential of this
drought monitoring index was conceived with good results for the Flint Hills region of
eastern Kansas and north-eastern Oklahoma [89].

Using the NDVI and NDWI results, the NDDI was calculated according to the equation
below [20]:

NDDI =
NDVI − NDWI
NDVI + NDWI

, (3)

The resulting values of the NDDI range generally from 0 (no drought) to >1.0
(extreme drought).

The NDDI has a stronger response to summer drought conditions than a simple
difference between the NDVI and NDWI, and is more sensitive indicator of drought in
grasslands and arable lands than the NDVI alone. Because NDWI values decrease more
than NDVI values during summers with severe drought, suggesting that the NDWI is more
sensitive than the NDVI to drought conditions, the calculation of the NDDI is considered
to be a more complex calculation compared to the NDWI and NDVI [20].

Finally, it was found that the NDDI combines well the information provided by
the NDVI and NDWI, that it has a wider range of values than a simple NDVI–NDWI
differentiation, and that it can be used, based on MODIS images at a good resolution,
for the analysis of drought at local scales [90]. Thus, it has been used increasingly often
in different regions to study the extent and severity of drought, especially during the
vegetation period [6,22,86,91]. Because the NDDI is more sensitive and more accurate,
drought-affected territories will be identified more often compared to using the NDVI or
NDWI, with differences of up to 5% [6,90]. In Romania, this index has also been used based
on MODIS images but to a small extent [83,84,92].

Using the final NDDI products for the 12 composites for each year between 2001 and
2020, a total of 240 16-day composites were derived. In these composite images, the absolute
and relative frequency of NDDI values indicating drought (>0.5) were computed for each
pixel. To assess the drought severity, the drought frequency for each pixel was considered,
taking into account the NDDI classes [84,89] higher than 0.5, which indicate moderate
drought (0.5–0.6), severe drought (0.6–1.0) and extreme drought (>1.0). Furthermore, these
results were aggregated at annual and multiannual levels.

All of the cartographic presentations of the drought spatial distribution in this paper
were constructed using ArcGIS software, version 10.3, produced by ESRI (Environmental
Systems Research Institute).

2.3.3. Spearman’s Correlation Analysis between NDDI and Precipitation Amount

To check the relationship between the NDDI and the precipitation amount—one of
the major drivers of drought conditions—Spearman’s correlation was applied. Using an
iteration for each pixel, Spearman’s correlation was first applied between each 16-day
composite precipitation amount and the corresponding NDDI values for the same period,
and then for the entire analyzed period (2001–2020). In this analysis a significance level of
p-value <0.10 was used.

However, the relationship between atmospheric precipitation and the NDDI is far
more complex. Therefore, in addition to a direct Spearman correlation between the two
parameters, we determined the inertial effect of atmospheric precipitation on the state
of crop vegetation. For this, a lagged correlation was applied between the composite n
of atmospheric precipitation and the composite n + 1 of the NDDI (1lagged composite
correlation). Similarly, we applied the correlation for 2composites lagged (n composite
of atmospheric precipitation with n + 2 composite of NDDI) to fully cover the inertial
response of the NDDI to precipitation input.
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3. Results and Discussions
3.1. Drought Extent and Severity According to NDDI

The results of our analysis indicate firstly that, as a multiannual mean, 17.2% of arable
land was affected by drought during the analyzed period (2001–2020), with a larger extent
during the very dry years (25.6% in 2003, 24.1% in 2012, 23.0% in 2002 and 21.9% in 2020).
By comparison, during very humid years, the arable lands were clearly less affected by
drought (10.8% in 2016, 11.0% in 2014, 11.1% in 2018 and 11.2% in 2010). Thus, as a
general feature, drought has constantly affected the territory of Romania, although only
some regions have been severely impacted (Table 5 and Figure 2). Taking into account
the fact that more than 70% of the arable lands in Romania are found in plain regions, we
observe that these are the regions constantly facing the risk of drought occurrence and the
associated impacts on agriculture production.

Additionally, the trend analysis applied to all drought types (moderate, severe, ex-
treme) between 2001 and 2020 (Table 4) indicates a decreasing trend (R2 = 0.14, p-value < 0.10),
in contrast to other trends identified using other methods for drought assessment [46].
More details regarding the trend analysis are given in Figures S4 and S5 in the Supple-
mentary Materials. Moreover, it can be observed that the first part of the analyzed period
(2001–2010) recorded more years in terms of drought extent and severity than the sec-
ond interval (2011–2020). Therefore, we can assume that the discussed increase in the
frequency of drought events derived mainly from standardized precipitation index [93–95]
is not firmly supported from the perspective of crop vegetation conditions, assessed using
the NDDI.

Table 5. Relative frequency (%) of NDDI drought classes between 2001 and 2020 (ToD—Type of
drought, Nd—No drought, Md—Moderate drought, Sd—Severe drought, Ed—Extreme drought and
Ad—All types of drought) and the precipitation amount (mm) accumulated between 5 of March and
13 of September.

Normal Difference Drought Index (NDDI)

ToD Nd Md Sd Ed Ad Precipitation
Amount (mm)

Range <0.5 0.5–0.6 0.6–1 >1 >0.5

2001 80.2 6.4 10.5 2.9 19.8 370.9
2002 77.0 7.2 12.3 3.5 23.0 310.0
2003 74.4 7.4 13.6 4.7 25.6 207.2
2004 81.3 5.5 9.8 3.5 18.7 319.8
2005 81.5 5.4 10.1 3.0 18.5 458.7
2006 83.0 4.9 9.8 2.3 17.0 375.3
2007 78.8 7.9 10.9 2.3 21.2 295.1
2008 87.0 4.5 6.9 1.5 13.0 289.9
2009 85.5 5.6 7.7 1.2 14.5 276.1
2010 88.8 4.0 6.1 1.1 11.2 381.0
2011 84.6 5.1 8.4 1.9 15.4 270.3
2012 75.9 7.2 13.4 3.5 24.1 267.3
2013 85.4 4.9 8.2 1.5 14.6 339.3
2014 89.0 3.8 6.0 1.3 11.0 405.5
2015 82.4 5.8 9.6 2.2 17.6 262.3
2016 89.2 3.7 5.9 1.2 10.8 329.4
2017 84.2 5.2 8.5 2.1 15.8 316.6
2018 88.9 4.2 5.9 1.0 11.1 340.9
2019 80.5 5.5 10.6 3.4 19.5 286.3
2020 78.1 7.2 11.8 2.9 21.9 360.1

2001–2020 82.8 5.6 9.3 2.4 17.2 323.1
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Figure 2. Relative frequency (%) of NDDI main drought classes between 2001 and 2020.

In terms of spatial distribution of drought for the 12 annual composites (Figure 3), and
from year to year (Figure 4), we can see that the NDDI drought classes are present in all
of the arable regions of Romania. As a main feature, a general country scale asymmetry,
with the south-eastern regions more prone to drought than the western side of the country,
can be clearly seen. This asymmetry is explained partially by the asymmetry in the field of
atmospheric precipitation between these regions, but probably also by a plethora of other
factors. For instance, it is known that the NDDI can also be influenced by the prevailing
crop type (more wheat in the south-east of Romania), by some types of soils that easily lose
the water reserve in the upper layers (such as those in the south and south-east of Romania
developed on loess and sands), and by the level of underground water. For instance,
analyzing the results for each composite between March and September (Figure 3), it can
be seen that drought is less pronounced from April to June, an interval corresponding
both to the peak in annual precipitation amount in Romania and to the maximum crop
vegetation development. After the end of June, the drought increases in spatial frequency
as a combined effect of the decrease in precipitation amount and the depletion of the arable
lands by vegetation, due to the harvest of some important crops, such as wheat.

In general, the south-east of Romania was affected by drought even during the wettest
years, such as in 2010, 2014, 2016 or 2018 (Figure 4). Normally, if we discuss the manifesta-
tion of the desertification process in Romania [46], one should expect this phenomenon in
those regions that are affected by drought even during the wettest years. However, our
analysis does not support the so-called theory of desertification in Romania, at least from
the perspective of crop vegetation conditions.

To underline the variability of drought occurrence at the country scale, we identified,
for each pixel on the map of arable lands in Romania, the year recording the highest value
of the NDDI, indicating either severe or extreme drought conditions. The results were
simplified by grouping them into four classes that indicate the 5 year interval in which
these values were recorded (Figure 5).
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Although the southern and western parts of Romania recorded the highest values
of the NDDI, mainly between 2001 and 2005 (due to 2003 and 2002 drought events), and
secondly during 2006–2010 (as an effect of the 2007 drought episode), in the central and
north-western parts of Romania, over large parts of the arable lands, the interval 2011–2015
had the highest drought impact (particularly due to the 2012 drought event). For the
north-eastern part of Romania, even if 2001–2005 recorded most of the maximum values of
the NDDI, no interval appears to be dominant for the most severe drought conditions as a
whole: 2016–2020 prevailed over the southern part of the region together with the Bărăgan
region, 2006–2010 prevailed over the central part of the region, and 2011–2020 was more
present over the northern part, in particular (Figure 5).

Consequently, the most important region subject to drought in Romania (Figure 6), as
derived from the NDDI values, extends over the southern part of the Moldavian Plateau
and the eastern part of the Romanian Plain (the so-called Bărăgan Plain, one of the most
important agricultural regions in Romania). However, within this region, drought was
not pronounced along the valley of the rivers (Siret, Buzău, Ialomit,a). In addition, we
can distinguish a compact strip of arable land oriented from north to south, located east
of the Romanian Plain and west of the Dobrogea Plateau, along the Danube, between
the cities of Galat,i and Călăras, i, which is not severely affected by drought. This region
is represented by lands between the Danube branches, recording a high degree of soil
humidity and benefiting from well-developed irrigation systems [47]. A second important
region impacted by drought is located in the north-eastern part of Romania, within the
Moldavian Plain. In addition to these two important regions, drought is also common in
the Dobrogea region, in the southern part of the Romanian plain and in the western part of
the country, in a region that is relatively distant from the extremity of the Pannonian Plain.
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It is important to underline that all of these regions that are affected by drought have at
least three elements in common: the low amount of precipitation with a multiannual mean
less than 300 mm between March and September [49], a very high level of groundwater
vulnerability [96,97] and the prevalence of wheat crops in the arable lands.

For a more comprehensive view on drought, in addition to the frequency of drought
classes for the entire period from 2001 to 2020, we selected the upper/lower third (that is,
7 years) of the driest/wettest years from 2001 to 2020, according to the results shown in
Table 2. We thus present more synthetically the distribution of the frequency of drought
classes of the NDDI, selecting the most relevant years for drought/humid conditions
(Figures 7 and 8).
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The driest 7 years between 2001 and 2020, as shown by the NDDI values (Table 5),
were by 2003, 2012, 2002, 2020, 2007, 2001 and 2019. Clearly 2003, with 7.4% of the arable
land affected by moderate drought and 19.0% affected by severe and extreme drought,
represents a record year from this point of view. The second driest year was 2012 with
7.2% of arable land affected by moderate drought, and 16.9% affected by severe and
extreme drought.

The spatial extent of drought as shown by the NDDI values for these years presents a
similar pattern as for multiannual mean, but extreme drought conditions are extended over
the Dobrogea Plateau, the north-eastern part of the Moldavian Plateau and the southern
central part of the Romanian Plain (Figure 7). For the western part of Romania during these
years, the differences from the multiannual mean are not high, indicating a less pronounced
impact of drought in this region.
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In contrast, the wettest 7 years between 2001 and 2020, as shown by the NDDI values,
were 2016, 2014, 2018, 2010, 2008, 2009 and 2013. The wettest years were 2016 and 2014 with
only 10.8% and 11%, respectively, of arable land affected by drought (Figure 8, Table 5).
Regarding the territorial extension of the drought during these intervals, the most affected
areas remained the eastern and southern parts of Romania. Certainly, during these years
the drought manifested with a lower degree of severity. However, even in these general
humid conditions the drought remained a threat in some regions pf eastern Romania,
particularly in the northeast and southeast of the Moldavian Plateau, in the eastern part of
the Romanian Plain and the Dobrogea Plateau. Because these are the regions in Romania
that are constantly affected by drought, drought in these regions should not be considered
an extreme meteorological event, but a common climate feature. That is, in these regions
agriculture is not possible without intensive irrigation.

3.2. The Relationship between Atmospheric Precipitation and NDDI

The relationship between the atmospheric precipitation amount and the NDDI is
governed by a logical inverse correlation (−0.37 Pearson coefficient, statistically significant
for p < 0.10). In addition, the difference (70.4 mm) between the means of the precipitation
amount for the five most dry/humid years, defined using the NDDI (Table 5), is statistically
significant at p < 0.10.

Generally, we can observe that the 1-composite lagged correlation is prevalent for the
entire interval with a spatial frequency of pixels with significant correlation reaching the
maximum (ca. 30% of all the arable lands) from May to July (Figure 9). Moreover, for March
and April (with a minimum between 23 April and 8 May) the direct correlation is very
weak, as also observed by Potopová et al. [98] in the Republic of Moldova for the correlation
between the NDVI and SPEI. The thermal increase in this period most likely causes a rapid
increase in vegetal activity and so, although the precipitation amounts are not high, the
plants develop rapidly (Figure 9a). In fact, the correlation is weak for this period, and also
for the 1- and 2- composite lagged correlations, supporting the same explanation of the
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rapid increase in vegetal mass triggered by the temperature increase. Moreover, this is the
period when the maize crop, which covers 25% of the arable lands in Romania [99] and is
a highly demanding crop in terms of water supply, reaches its maximum vegetal activity.
After this period, starting with the second 10-day period of May, the 1-composite lagged
correlation increases in significance (more than 30% of the arable lands) with its peak at
the beginning of June. This can represent the fact that the precipitation amount reaches its
annual maximum during this period. The 2-composite lagged correlation was the most
important towards the end of the study period, with its peak between 29 August and 13 of
September. In brief, we can observe that the response of crop vegetation to atmospheric
precipitation amount is fasterduring the maximum development phase of crops and early
summer and slower at the end of crop development.
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Overall, at the annual level the 1-composite lagged correlation reached the highest
score of frequency of statistical significance on the arable lands, and was close to the direct
correlation (Figure 9b). We note that for the annual level the correlation was aggregated for
the p-value <0.05.

Therefore, we showed the 1-composite lagged correlation for each composite sepa-
rately (Figure 10) and for annual conditions (Figure 11). For each composite separately, one
can first observe that the significant correlations are mainly negative, reflecting the logical
and expected relationship between low/high precipitation amount and drought/excessive
humid conditions.

However, some pixels, particularly those located in the south-eastern part of Romania,
present a positive significant correlation. This is mainly a result of the vegetation develop-
ment despite the weak amount of atmospheric precipitation, especially when the plants
benefit from a consistent reserve of soil humidity. In addition, the correlation is thoroughly
influenced by the crop phenology and the year-to-year crop rotation.
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The annual conditions (Figure 11) resume the overall negative correlation between
precipitation amount and NDDI values. Interestingly, this negative correlation is stronger
over the arable lands in regions with higher precipitation, such as the regions in the
northern half of the country. This is induced mainly by the prevalence in these regions of
crops with a summer maximum in their development that corresponds with the annual
peak in atmospheric precipitation, such as maize.

By comparison, the lack of statistical significance is specific for some spots in the
south-eastern part of Romania, but also along the Danube and sparsely in the remainder of
the country, and correspond mainly with areas with extensive irrigation.

4. Conclusions

Spatial and temporal characteristics of the NDDI were described in an attempt to ana-
lyze and monitor the frequency and severity of drought on the arable land in Romania for
a relatively long period (2001–2020). The drought assessment was based on the calculation
of the relative frequency of NDDI values indicating drought conditions (NDDI >0.5). The
analysis focused on the March–September period to cover the crop development from the
greening period of vegetation in early spring, to the stage of maximum vegetation and
harvest in late summer and early autumn. In addition, the NDDI values were correlated
with atmospheric precipitation, with the aim to determine the role of this important driver
on drought frequency and severity.

The main conclusion of our study is that the NDDI represents a valuable tool to
assess drought from both temporal and spatial perspectives. However, drought assessment
using the NDDI should be interpreted with caution because the NDDI is a result of both
meteorological and non-meteorological conditions, which are constantly changing over
time. This aspect is underlined, in particular, by the weak significant correlation that we
obtained between the NDDI and precipitation amount at the country scale. Moreover,
when used on longer time period, as in our study, the NDDI offers a comprehensive view
of the degree of aridity for the analyzed region.

Regarding the spatial distribution of drought using NDDI drought classes, it was
observed that the most affected regions are the eastern and southern parts of the Romanian
Plain, the entire Dobrogea region, and the north-eastern part of the Moldavian Plateau. In
addition, most of the plain in the west, and the central and western parts of the Romanian
Plain, are affected by moderate drought. Overall, we highlight that these are the arable
regions in Romania for which drought should not be considered an extreme event, but a
main climate feature, that can be handled by permanent irrigation.

Our results also do not indicate a clear trend regarding the multiannual frequency
of drought, as expressed by NDDI values, during the analyzed period between 2001 and
2020. Therefore, based on our results, the discussion regarding a possible desertification
manifesting in some parts of Romania is doubtful, at least from the point of view of
vegetation conditions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13081478/s1, Figure S1: The maps of the original (top-left), artificially gaps (top-right)
and dineof filling gaps (bellow left) of 241 -2012 composite, Figure S2: The density distribution of
the original (orange) and gap-filled(gray) pixels, Figure S3: The boxjitterplot of the original (left)
and gap-filled (right) pixels, Figure S4: Sen’slope trend for precipitation amount (6 of March–13 of
September) between 2001 and 2020 (no significant values at p < 0.10), Figure S5: Figure S5 Sen’slope
trend for drought frequency (6 of March–13 of September) derived from NDDI between 2001 and
2020 (sparse significant values, especially in the south-east of Romania).
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39. Mărgărint, M.C.; Niculiţă, M. Landslide type and pattern in Moldavian Plateau, NE Romania. In Landform Dynamics and Evolution
in Romania; Springer: Cham, The Netherlands, 2017; pp. 271–304. [CrossRef]

40. Mărmureanu, L.; Marin, C.A.; Andrei, S.; Antonescu, B.; Ene, D.; Boldeanu, M.; Vasilescu, J.; Viţelaru, C.; Cadar, O.; Levei, E.
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