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Abstract: Many factors can influence the displacements of a dam, including water level variability
and environmental temperatures, in addition to the dam composition. In this work, optical-based
classification, thermal diachronic analysis, and a quasi-PS (Persistent Scatter) Interferometric SAR
technique have been applied to determine both forcing factors and resulting displacements of the crest
of the Castello dam (South Italy) over a one-year time period. The dataset includes Sentinel-1A images
acquired in Interferometric Wide swath mode using the Terrain Observation with Progressive Scans
SAR (TOPSAR); Landsat 8 Thermal Infrared Sensor (TIRS) thermal images, and Global Navigation
Satellite System (GNSS) for interpreting the motion of the top of the dam retrieved via interferometry.
Results suggest that it is possible to monitor both dam water level and temperature periodic forcing
factors and resulting displacements via a synergistic use of different satellite images.
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1. Introduction

The monitoring of dam displacements plays a crucial role in the detection of unsafe
conditions, requiring appropriate management actions and/or counteractive measures
from the early stages [1]. Indeed, the early detection of a dam instability should constitute
a key component of any dam maintenance plan and could lead to structural stabilisation to
prevent any initial warning from turning into a disaster [2].

Dam displacements can be due to several factors, including the consolidation of
the embankment materials, the dam composition itself (including mineralogy, grain size,
density of the compacted material, etc.), and forcing factors (including temperature, water
level fluctuations, etc.).

Usually, concrete dams exhibit a nonlinear trend of the displacement related to thermal
and hydrological loads [3], while irreversible displacements are assumed to behave linearly
over time [4]. In these structures, indeed, the linear component of displacements is assumed
to be the irreversible part of the displacements themselves, and the corresponding velocity
is strongly connected to the stability of the structure [5] and is interpreted as the aging term.
On the other hand, the oscillatory component of displacements is generally due to external
seasonally varying forcing, such as thermal dilation and hydrostatic pressure (ibid.).

In this study, an earth dam is monitored since the structures of this type are the most
frequent, although relatively small in size. Indeed, about 65% of the dams reported in the
International Commission on Large Dams (ICOLD) World Register of [6] are earth dam:s,
corresponding to the oldest type, followed by rock-filled dams (13%) and gravity dams
(13%) (the full list of the acronyms used in the manuscript is reported in Appendix A,
Table Al).
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Although at the national scale of Italy, the monitoring of large dams is managed by
Registro Italiano Dighe [7], a public body under the supervision of the Ministry of Infras-
tructure and Transport, at the regional scale (viz. Sicily), the monitoring of water reservoirs
is the responsibility of the Osservatorio delle Acque office [8]. For Sicilian reservoirs, water
storage data are available since 2010 with monthly frequency. However, for most of the
dams, no information is available about dam deformations or displacements.

Dam structure can be monitored via traditional contact sensors (extensometers, ac-
celerometers, tiltmeters); ground-based methods (ground-based SAR, ground-based pho-
togrammetry, terrestrial laser scanning, robotic total stations); and global navigation satel-
lite system (GINSS). Remotely based methods include airborne Laser Imaging Detection
and Ranging (LiDAR) and space-borne InSAR. The pros and cons of these methods are
summarised in [9].

More recently, Scaioni et al. [10] reviewed the available technologies for dam deforma-
tion monitoring, including geodetic and GNSS sensors for precise measurements at specific
locations, remote sensors for areal deformation measurements, and integrated monitoring
systems, data processing, and methods for deformation analyses.

The forcing factors include (i) reservoir water levels can be monitored in situ via
traditional instruments including staff (head) gauges, water pressure measurement devices,
stage encoders, ultrasonic devices, and electromagnetic gauges; (i) the dam-reservoir
system temperature can be monitored via thermo-hygrometers (air humidity and tempera-
ture) [11], noncontact infrared thermometers (target surface temperature), and fibre optic
distributed temperature sensing (temperature distributions within the dam) [12].

For in situ water level observations over small reservoirs, these are discontinuously
collected by several caretakers by means of staff gauges resulting in inhomogeneous
time series (i.e., not accurate and subjective measures). Additionally, lack of information
can occur for in situ temperature, as in situ monitoring stations require maintenance
which sometimes does not follow the requested time scheduling. Regarding the dam
displacements, these are rarely monitored in situ, as these activities are expensive and time
demanding. In this framework, the dam structural surveillance can benefit from remote
sensing techniques.

Over the last few years, it has been shown that optical satellite technologies are able to
determine the variation of water level by quantifying the extent of the water surface [13-15].
Using the methods implemented for optical images, SAR images can also be employed
to monitor the extent of the water surface [16]. Some authors [17] have quantified the
water extent from COSMO-SkyMed (CSK) SAR images using an automatic classification
procedure, including clumping and segmentation preprocessing. The authors highlighted
that surface backscatter is influenced by local wind conditions reduced the classification
performance. Indeed, the segmentation algorithm removed most of the pixels outside the
reservoir even though some misclassified pixels were kept, but the subsequent clumping
algorithm was not able to remove all pixels not classified as water within the water body.
They concluded that the reservoir surface can be monitored accurately by discarding
SAR images in which wind enhances surface roughness in relation to their intensity
and direction. Despite limits related to wind conditions and surrounding morphology,
SAR sensors allow also the detection of dam displacements by applying interferometric
procedures [18-22].

Regarding temperatures, there are several sensors providing thermal data at adequate
spatial resolutions, such as Landsat 8 (acquired at 100 m although resampled here to
30 m, [23]) and Sentinel 3 (SLSTR 0.75 km, suitable only for large reservoirs). For instance,
applying a single-channel algorithm to Landsat 4, 5, and 8 thermal images can extend
monitoring to the past (from 2018 back to 1984) to perform a lake surface temperature
analysis [24].

The Landsat 8 satellite, for example, orbits the earth over the sunlit side of the earth
in a sun-synchronous orbit, crossing every position on the earth’s land surface at least
once every 16 days. Thermal images allow the capture at the same local time of the
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instantaneous brightness temperature of the water surface in clear sky conditions, allowing
retrieval of any trend in surface water temperature. In the case of suddenly changing
cloudiness conditions, the temperature that would characterise the water surface in absence
of clouds might be estimated [25,26], thus enhancing the actual temporal resolution.

Nowadays, remote sensing SAR and thermal images are available over three decades
(e.g., the Landsat 4 images from 1982 and the European Remote Sensing (ERS) satellite
images from 1991), allowing the interpretation of the behaviour of any structure over long
time periods.

According to [27], measuring displacements with traditional instruments (such as
pendulums) are nominally more accurate than those estimated via GNSS techniques. How-
ever, the latter allows the identification of the displacements’ periodicity with denser
observations. Barzaghi et al. [27] fitted an analytical model designed for describing defor-
mations of buttress gravity dams [28] to time series of a pendulum and GNSS-estimated
displacements of a dam structure, obtaining submillimetre standard deviation of resid-
uals along the cross-crest direction (<0.88 mm for GNSS displacements, <0.37 mm for
pendulum displacements).

Di Martire et al. [29] compared the displacements estimated via a Differential SAR (DIn-
SAR) interferometry technique, the “coherent pixels” technique [30] with those recorded
by a network of conventional ground-based sensors to monitor an earth dam. The authors
pointed out the unique opportunity to perform extensive monitoring of the earth dam,
including the embankment and the slopes surrounding the reservoir, with higher density
and coverage than that provided by in situ sensors.

Recently, DINSAR and GNSS have been applied to monitor dam displacements. The
deformation time series measured using GNSS techniques can reveal an uneven settlement
of a dam (e.g., [31]), allowing also the analysis of the causes of deformations, including the
water level change and the water—-dam system temperature deemed as the main factors.

DInSAR techniques can be applied to detect subsurface anomalies including cavities
due to seepage [32].

The rate of continuous nonlinear deformations of a dam over time caused by variable
water levels and other forcing factors can be evaluated using a persistent scattering INSAR
(PS-InSAR) technique [33]. Recently, the INSAR technique has been used for the analysis
of the destabilisation process of the Mosul dam (Iraq) [34,35], using the Constellation of
Small Satellites for Mediterranean Basin Observation (COSMO-SkyMed) and Sentinel-1A
images. In this first study, the cumulative deformation of a dam using different SAR-
sensors was mapped and two different deformation rates linked with on-site dam works
were captured. In the following study, the authors took advantage of a deformation InNSAR
analysis together with numerical simulation modelling to shed new light on the ongoing
subsidence process.

The discrimination between deformations and seasonal movements over a dam (the
Plover Cove dam, Hong Kong, China) has been also discussed by [36] using PS-InSAR.
This technique was originally introduced in 2001 [37]. PS-InSAR makes use of natural
targets with high reflectivity over time to measure ground motions through a stack of SAR
images (a review of PS-InSAR techniques is given by [38]). Some authors have shown the
suitability of this method for dam monitoring [1,29,33,39]. Some limits of the PS-InSAR
technique for dam monitoring are summarised in [9].

About the deformation monitoring analysis, the Small Baseline Subset (SBAS) tech-
nique based on the use of a large number of SAR acquisitions distributed with small baseline
subsets can also be applied [40]. A multi-sensor full-resolution SBAS technique [41] can be
used by jointly processing data acquired by compatible SAR sensors to monitor earth dams
for long periods, thus showing displacements because of the consolidation process [42].

Finally, the integration of PSI and SBAS techniques allows monitoring of both linear
and nonlinear ground displacements in mining structures after a collapse event occurred
in the tailings of the Fundao dam in Brasil [43].
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Sources of inaccuracies are both the baseline of a given interferogram, compared to
the critical value [44,45], and the precision of the ephemeris (Copernicus Sentinels POD
Data Hub) [46]. The baseline, indeed, controls the coherence of the interferogram, while
the ephemeris accuracy, for instance, has an influence on the conversion of interferogram
phases to absolute height require a relative baseline accuracy of 5 cm or even better [47].

The Castello dam was recently studied through in situ measurements, numerical
models, and satellite techniques. A preliminary analysis [48] highlighted a significant corre-
lation between water levels derived by optical remote sensing and displacements measured
via the Global Navigation Satellite System (GNSS) over a short period (three months).

Thereafter, the GNSS displacements were compared with existing models imple-
mented for concrete dams (including hydraulic models by De Sortis-Paoliani [28] and
geotechnical Finite Element Method (FEM) [49]). The comparison between the modelled
planimetric components of the displacements and GNSS data (over a time period of 2 years,
between 2011 and 2013) appears to be satisfactory, with millimetric residuals [50]; in the
same study, a comparison between the displacements measured by GNSS time series
and traditional geodetic instruments (total station and spirit levelling), revealed a good
agreement for both the vertical and the planimetric components. The advantage of using
as reference a GNSS permanent station positioned relatively far from the dam (= 30 km
away, at Agrigento) allowed the exclusion of any influence due to the site deformations.

More recently, the relationship between water levels and GNSS displacements mea-
sured in the midsection of the dam was analysed in [44] by processing a remote sensing
dataset (including both optical and SAR images). Water levels can be indirectly determined
by mapping the reservoir water surface extent using optical images [13,15,44]. Over the
study area, two other approaches based on similarity indexes have also been proposed
to retrieve the water levels using remote sensing datasets with different resolutions and
under different conditions [45].

The present work aims to demonstrate the possibility of monitoring both the forcing
factors and the resulting displacements of a dam via complementary remote sensing
approaches and shows that these estimates are reliable if compared with both forcing
factors and displacements measured by deploying onsite sensors.

In particular, the trustworthiness of the behaviour of the total displacements has
been assessed by comparison with GNSS positioning data acquired on the crest dam
during the same hydrological year. Remote sensing displacements were evaluated by
employing an interferometric approach based on a quasi-PS-InSAR technique. A full graph
Multi Baseline Connection (MBC) method and a nonlinear displacement trend model were
selected according to [46].

In Section 2, the study area is introduced along with a summary of the different in situ
and remote sensing datasets and the methods deployed for their analysis. In Section 3, the
results are shown along with a discussion of their significance, and in Section 4 concluding
remarks are made.

2. Materials and Methods
2.1. Materials
2.1.1. Study Area

The Magazzolo reservoir (37°34'51” N, 13°24/48"” E, World Geodetic System 1984,
WGSB84, European Petroleum Survey Group code: EPSG 4327) is located in Sicily (south Italy,
Figure 1a). The reservoir water is used for civil purposes by a consortium of municipalities
in the Province of Agrigento. Additionally, during summer, water is used for irrigation of
agricultural plots in the Verdura, Magazzolo, and Platani rivers basins.

The dam (named Castello after the ruin of the castle “Castello della Pietra d’Amico”
located near the left bank of the reservoir) has a semicircular shape (Figure 1b); it is built of
coarse-grained homogeneous alluvium from the valley, and limestone and is covered by a
sealed coat of bituminous conglomerate. The sealed coat stands on a reinforced concrete
structure with a thickness of 80 cm fitted below the bulkhead in reinforced concrete. The
dam, characterised by a concavity-facing valley, is 792 m long at the top, where a paved
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road connects the left and right sides of the dam. The two banks are characterised by
different materials and different slopes. Indeed, due to the unstableness of the left side,
a plate has been made with coarse-grained alluvial material, standing on a stone plinth.
Thus, the left bank is characterised by a constant slope of 0.09, while on the right side,
characterised by tinier material covered by spread vegetation, the values of slope span
between 0.16 and 0.18. A vertical cross section of the maximum height has a trapezoidal
shape, characterised by a 9 m width on the top and ~ 214 m at the base; the valley side,
covered with turf or vegetated soil, is constituted by a broken line interrupted by two quays
of 2.5 m width and an elevation between 284 and 272 m a.s.l. with different slopes from the
top to the bottom. Coarse-grained alluvial material is also used for the left side covering of
the dam on the upstream side (Figure 1b).
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Figure 1. The location of the study area (a) is Sicily island-Italy (dark and light grey, respectively), EPSG 4327; the upper

left box reports a zoom of the island with the Agrigento permanent station (black triangle) and the Magazzolo reservoir

(blue dot), EPSG 6708 and (b) hillshade of the dam-reservoir system derived from a digital surface model by setting azimuth

and elevation of the incident light at 315 and 45 degrees, respectively). Superimposed the positions of the GNSS stations

(red dots).

2.1.2. Time Series Acquired by Devices Installed In Situ

In situ water level and air temperature measurements were supplied by the dam
managing authority to support the analysis.

Water levels were measured with a staff head gauge level numbered every decimetre
placed on the right bank, while air temperatures were measured via a thermo-hygrometer
installed on a service area neighbouring the right bank.

A time series of GNSS displacements was measured using a permanent station (AGRI)
operating 24 h a day at Agrigento (coordinates 4,131,320.31 N, 376,057.91 E; RDN2008 UTM
Zone 33 N, EPSG code 6708). Although relatively far away (= 33 km), it was used as a
base station to allow a reduction in economic costs. Similar to the setup described in [44],
three receivers Geomax GPS Zenith 25 model (by GeoMax AG, Switzerland) were placed
on the crest of the dam (Figure 1, panel b, red dots). Receivers were positioned on stainless
steel pillars and fixed to the ground through steel plates (coordinates 4,160,249.76 N,
359,692.54 E; 4,160,208.79 N, 359,757.15 E and 4,160,159.71 N, 359,816.90 E). A power
supply unit and a smartphone with an internet connection were placed in sealed boxes
to transmit data in real time and continuously 24 h a day via File Transfer Protocol (FTP)
using the XPAD Survey software (by GeoMax AG, Switzerland). The data transfer protocol
allowed verification remotely on the correct functioning of the system. The monitoring
campaign was carried out for a whole year with a 30 s postprocessing time step and hourly
uploading frequency. According to the setup reported in [44], the Root-Mean-Square Errors
of processed baselines are smaller than ~1.2, 2.4, and 1.0 mm (X, Y, and Z components,
respectively), while the average percentage of resolved ambiguities is >90%.
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2.1.3. Remote Time Series Acquisition

Remotely sensed datasets include Sentinel-1 SAR and surface temperature time series
were derived by processing Landsat 8 TIR images on the Google Earth Engine environment
(as discussed later on within the method section). Images acquired from the Sentinel-
1 two-satellite constellations were processed to monitor both displacements and water
levels; whereas Landsat 8 TIR images allowed the remote determination of the water
surface temperature.

The Sentinel-1 SAR constellation is composed of Sentinel-1A (S1-A) and Sentinel-1B
(S1-B) which share the same orbit plane with a 180° orbital phasing difference (near-polar
sun-synchronous orbit). The so-called Interferometric Wide (IW) swath mode allows
data acquisition with a 250 km swath with 5 m x 20 m ground resolution (single look)
over three sub-swaths (IW1, IW2, and IW3 for increasing off-nadir angles, respectively)
in the Terrain Observation with Progressive Scans SAR (TOPSAR) mode [47]. However,
although S5-1B was launched in April 2016, within this research, only S1-A images have
been processed; thus, the SAR dataset includes 20 Sentinel TOPSAR S-1A images in Vertical
transmit-Vertical receive (VV) polarisation acquired in Single Look Complex (SLC) mode in
ascending, right-looking overpasses (relative orbit number 117, sub-swath IW2) (Figure 2,
black box), and 17 in descending right-looking overpasses (relative orbit number 22, sub-
swath IW1) (Figure 2, white box). The acquisition incidence angles were ~ 39° and 34°
for the ascending and descending images, respectively. The dataset is freely provided by
the Copernicus Open Access Hub [51] (previously known as the Sentinel Scientific Data
Hub). Although the dataset size is limited, the interferometric outcomes remain reliable
according to Crosetto et al. [38]. Even if the use of X-band is more appropriate for datasets
with limited image numerousness [52].

Castello'dam

Figure 2. The Terrain Observation with Progressive Scans SAR (TOPSAR) S-1A track over Google
Earth: ascending orbit (relative orbit number 117, sub-swath IW2, thick black box) and descending
orbit (relative orbit number 22, sub-swath IW1, thick white box). Other sub-swaths are represented
with thin black and white lines (ascending and descending orbits, respectively). The position of the
Castello dam is indicated (red dot).

Images acquired in both ascending and descending relative orbits span over a year
(January 2015-January 2016) (Table 1). Most of the images were collected during the annual
emptying phase of the reservoir (period 3; 17 images); during the storing phase (period 2),
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10 images were available, whereas the smaller number of images were acquired during the
filling phases (periods 1 and 4; three and seven images, respectively). The image acquired
on 12 January 2016 was used only for the full-graph MBC method.

Table 1. TOPSAR S-1A images.

Period 1 Period 2 Period 3 Period 4
Filling Storing Emptying Filling
ascending descending ascending descending ascending descending ascending descending
05/01/15 12/03/15 23/05/15 20/10/15
11/01/15 18/03/15 04/06/15 07/12/15
28/02/15 24/03/15 10/06/15 19/11/15
05/04/15 22/06/15 13/12/15
11/04/15 04/07/15 19/12/15
17/04/15 10/07/15 25/12/15
23/04/15 16/07/15 12/01/16
29/04/15 22/07/15
11/05/15 28/07/15
29/05/15 09/08/15
21/08/15
27/08/15
02/09/15
08/09/15
14/09/15
26/09/15
08/10/15

The Land Surface Temperature (LST) time series was derived by averaging a number
of points randomly distributed within the Magazzolo reservoir by processing several Land-
sat 8 Thermal Infrared Sensor (TIRS) images. In particular, 23 and 14 images were processed
over the scene 189034 and 190034, respectively, spanning from 8 January 2015 to 26 De-
cember 2015. Just two images per month were available during the winter-spring periods
from February to May 2015; three clean acquisitions per month were available in the winter
period, specifically in January, November, and December; finally, four images per month
were available over the Summer-Autumn periods, from June to October.

2.2. Methods
2.2.1. PS-InSAR Displacements

The dataset has been analysed using the SARProZ© software [49,53]. In the classical
PS-InSAR technique, a target is required to be coherent in all interferograms generated
with a star graph MBC [54]. A dam, as for many human-made structures, offers many ar-
tificial reflectors. For both ascending and descending datasets, a master image has been
selected by minimizing the spatial and temporal decorrelations and is assumed as a refer-
ence for the estimation of a displacement time series of natural targets with ‘permanent’
radiometric characteristics over time. The full-graph MBC method introduces all possible
connections amongst image pairs, thus using all interferograms, including those with
longer temporal baseline than the ones eventually involved in the classical PS technique.
The interferograms have been filtered with a Goldstein filter [55] with a fixed window
size. As several interferograms were characterised by low coherence pixels, to maintain an
accurate estimation of the displacements, the connections have been weighted by spatial
coherence. According to [56] the temporal correlation over extra-urban areas should in-
crease. Generally, the use of the full graph is more time demanding because it requires the
analysis of n!/2(n — 2)! redundant connections (190 in this case). In addition, the size of
the study area influences the processing time. In this work, the processed image is quite
small (860 samples by 1120 lines), and thus, the computational time difference with the
star graph is not significant. The Atmospheric Phase Screen (APS) is estimated through the
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inverted residuals approach [56,57], using the reflectivity map as a parameter for the sparse
point selection. The method has been already applied to monitor dam via multi-temporal
InSAR [39]. A threshold on the reflectivity (>1.8) excludes PS candidates falling on the
reservoir surface. At the time of the data processing, external services, such as the Generic
Atmospheric Correction Online Service for INSAR-GACOS [58-62] was not available. In
this work, using the star graph MBC connections, the nonlinear displacements have been
retrieved using a nonlinear model implemented [54] in the software. In this case, given
the relatively few images comprising the time series (20 images for the ascending dataset
and 11 images for the descending dataset), the window of the temporal filter has been set
equal to three (images) [52]. In addition, weight in terms of spatial coherence (the mean
interferometric coherence calculated as the average of a set of interferograms) has been
applied during the processing involving the entire connections. The reference points in the
ascending and descending tracks have a position almost coincident, close to the left bank
of the dam in a stable area. The chosen area, indeed, does not show any kind of landslide
risk according to the thematic geomorphological data [63] on the unstable areas of the
Hydrogeological Plan (Piano per 1’Assetto Idrogeologicom (PAI)). Dam displacements
are evaluated by averaging the displacements of the selected PS points. As the direction
of the retrieved displacement is only along the Line of Sight (LOS) of the sensor of the
master image, the total horizontal displacement component orthogonal to the dam (Drtot)
needs to be calculated [53,64] (a full list of the symbols used in the manuscript is listed
in Appendix A, Table A2). Descending and ascending tracks overfly the study area on
different dates; thus, it is required to interpolate the time displacements obtained using
the descending tracks at the acquisition dates of the ascending tracks (as in the present
case, and vice versa). Interpolated displacements then have to be composed [65,66] with
those obtained by processing the other track (the descending track in this research) to
obtain Dyor.

2.2.2. GNSS Displacements

In a previous study [44], it was shown that the accuracy achievable with GNSS is suit-
able to monitor the displacements of a dam. The same methodological scheme implemented
in [44] was applied to obtain the GNSS solutions. Positions were referred to the European
Terrestrial Reference System 2000 (ETRF2000) at epoch 2008. The Network Deformation
Analysis (NDA) Professional software allowed applying the Saastamoinen tropospheric
correction [67,68], the Klobuchar ionospheric correction [69], and the Schwiderski ocean
loading correction [70]. A single baseline was used for connecting GNSS receivers with the
permanent station. Double-differenced observations coming from the L5 (wide lane) and
L3 (ionospheric-free) frequencies combination were used. To fix the phase ambiguity, the
Least-Squares Ambiguity De-correlation Adjustment (LAMBDA) method was used [71]. In
the final solution, the wide-lane observable was used to estimate the wide-lane ambiguity
and then, the ionospheric-free observables to estimate the remaining narrow-lane ambi-
guity. All computational strategies are extensively discussed in Pipitone et al. 2018 [72].
Dam crest displacements were converted into a local reference system spatially averaged
to focus the analysis to the whole dam displacements only (no to local deformations), and
then, to show the tendency of the long-term displacements, a moving average was applied
over a time window according to the findings of a previous study [17].

2.2.3. Water Levels

A preliminary multi-look processing [72] in the European Space Agency’s Sentinel
Application Platform (SNAP) software allowed images to be processed to a 14 m ground
resolution after calibrating the images by applying a terrain correction using the Shuttle
Radar Topography Mission (SRTM) digital elevation model at 1 arc-second (~ 30 m) spatial
resolution (HGT format). Then, TOPSAR images were resampled to 28 m ground resolu-
tion, using the Pixel Aggregation method and classified. Then, the water surface extent
was identified using a K-means unsupervised classification [73], using two classes and
a threshold of 1% and the average distance of shoreline nodes extracted from vectorised
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classification images with the contour levels calculated in a GIS environment (QGIS Ge-
ographic Information System) [74]. According to Pipitone et al. [54], the contour level
exhibiting the minimum distance from the classification boundary (best matching contour)
allows quantification of the water level at the acquisition time.

2.2.4. Air and Water Surface Temperatures

On-site observations of the dam structure temperatures are not always available, and
structure temperatures are closely related to air temperature [11]. Indeed, any change in
the dam structure’s temperature is mainly affected by changes in external temperatures.
External temperatures include air and water body temperatures. However, the distribution
of the water temperature as a function of the depth is not constant; indeed, lakes are
characterised by thermal stratification, as can be described by the thermal convection—
diffusion equation [75]. Within this simplified approach, we monitor only the water surface
temperature of the reservoir. Water surface temperature, Ty (K), is here estimated by
radiometrically processing a Landsat 8 TIRS time series. In particular, a time series of Ty
for the central pixel of the reservoir was retrieved by applying the Statistical Mono-Window
(SMW) algorithm developed by the Climate Monitoring Satellite Application Facility
(CM-SAF) [76]; in particular, the Google Earth Engine Open Source Code developed by
Ermida et al. [77] was employed. Water surface temperature follows a sinusoidal behaviour,
Tw = T + AT x sin(wt + ¢), which is a function of the yearly average of Ty, T (K); the
yearly amplitude of T, AT(K); the phase difference >¢ (—); the time ¢, here assumed as the
DOY; and the yearly angular velocity of revolution of the earth (1.7214 x 10~° rad DOY™1).
Thus, remotely sensed values were interpolated to facilitate the interpretation. Analogously,
a sinusoidal curve was fitted to the measured air temperature T o (K) as well to make the
interpretation easier.

2.2.5. Qualitative-Quantitative Comparisons

All of the above-mentioned variables measured via sensors installed in situ and via
remote sensing were finally qualitatively and, where feasible, quantitatively compared.
Firstly, in situ and remotely sensed pairs of water levels and temperatures and displace-
ments are compared. Then, the temporal behaviour of the forcing factors and resulting
displacements are analysed for both in situ and remotely sensed triplets (i.e., two forcing
factors and one displacement). In particular, their behaviour is evaluated to quantify the
times at which peaks and/or plateaus occur, besides analysing their range of variability.

3. Results and Discussions

In this section, the outcome of the monitoring of water levels, temperatures, and
displacements through both in situ and remote sensing methods are shown; also results of
the qualitative-quantitative comparison are presented.

3.1. Water Levels

During the first period (Figure 3), the water level was slightly raised until the end of
January and then increased sharply to reach the maximum storage level in the last week
of February (filling period). This level was kept constant until the end of May (storage
period). During the third period, the reservoir was managed to satisfy the water demand,
leading to a progressive almost linear decrease in the water level reaching its minimum in
the middle of November (emptying period). During the fourth period, at the end of 2015,
the rainy season allowed the stored water to reach a higher level than that observed at the
beginning of the time series.

The water surface classification approach allowed the estimation of the water levels
from remote sensing images (Hrs) which show strong agreement with in situ (Hjs) measure-
ments (Figure 4). The accuracy of the procedure is confirmed by a very high coefficient of
determination (r* = 0.96, although imposing a null intercept) and a low Root-Mean-Square
Error (RMSE ~ 1.06 m). The standard deviation, oxy, between measured Hjs and estimated
Hgs, is 3.32 m.
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Figure 3. Daily water levels measured in situ, His (m a.s.l.), from 1 January to 31 December 2015. A linear interpolation
curve is superimposed-imposed (continuous line).
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Figure 4. Water levels measured in situ (Hjg) versus levels obtained by classification (Hrs) of TOPSAR
ascending images.

3.2. Temperatures
3.2.1. Water Surface Temperature

The time series of water surface temperature was obtained by averaging the tempera-
ture over six points randomly distributed over the reservoir. The standard deviation was
0.42 K, on average. Since water surface temperature follows a sinusoidal behaviour [78],
remotely sensed T (black dots in Figure 5) were interpolated via a sinusoidal function
(dashed line) to facilitate the interpretation of the phenomenon. A sinusoidal curve is well
matched to the sparse temperature measurements (the Pearson correlation was ~ 0.96, the
Root-Mean-Square Error between measured and sine model was ~ 1.70 K, which is coher-
ent with the error in inferring surface temperature applying mono-window algorithms,
£2-3 K, as reported by [77]). The standard deviation, oxy, of the differences between
measured and interpolated values was ~ 1.64 K. The resulting amplitude AT in 2015 was
9.80 K, the average temperature T was 293.16 K, and the peak (303 K) was modelled on
DOY 217.

3.2.2. Air Temperature

Air temperature, Tp (black dots in Figure 6), follows a similar sinusoidal behaviour.
These values were interpolated to facilitate the interpretation of the phenomenon as well.
The standard deviation, oxy, of the difference between measured and interpolated values
was =2 2.12 K. The amplitude and the average temperature were 9.48 and 291.99 K, respec-
tively. Finally, the peak (301 K) was modelled on DOY 215, which is almost exactly in phase
with the water surface temperature.
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Figure 5. The temporal behaviour of the water surface temperature, Ty (K), retrieved by Landsat 8 data, using both 189-034
and 190-034 scenes. A sinusoidal interpolation curve (continuous dashed line) and a confidence band of £2 x oxy between
measured and interpolated values (dark grey lines) are reported to facilitate the interpretation of the phenomenon.
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Figure 6. The temporal behaviour of air temperature, T (K), measured in situ. A sinusoidal interpolation curve (continuous
dashed line) and a confidence band of -2 X oxy between measured and interpolated values (dark grey lines) are reported
to facilitate the interpretation of the phenomenon.

The sample covariance evaluated between the measured T4 and remotely sensed Ty
was 47.84 K2, while the Pearson coefficient and the Root-Mean-Square Error were ~ 0.95
and ~ 2.28 K, respectively.

3.3. Displacements
3.3.1. PS-InSAR Displacements

Interferograms, filtered with a Goldstein filter with a fixed window size (15 x 15), were
connected using the full-graph MBC method; thus, all possible connections between image
pairs were considered (Figure 7). The full-graph MBC method produced both low and
moderate-high coherence levels. Regarding the latter, six connections were characterised
by coherences higher than 0.45, while 16 connections were characterised by coherences
higher than 0.35. In order to obtain the maximum possible precision in interferometric
processing, orbit parameterisation was based exclusively on the Precise Orbit Ephemerides
(AUX_POEORB) provided by the Copernicus Sentinels POD Data Hub [46].

Among connections with high coherence ~0.45, the pair 7-19 December 2015 shows
the smallest normal baseline (~10 m), while the pair 22 June-16 July 2015 shows the
highest normal baseline (~135 m), much smaller than the relevant critical baseline value,
~1300-1600 m, depending on descending or ascending acquisitions, respectively. However,
according to Osmanoglu et al. [79], baseline parameters were set smaller than 25% of the
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critical baselines. Since the acquisition of the 1 December 2016 is out of the study period,
derived displacements were not compared to GNSS ones.
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Figure 7. Full-graph Multi-Baseline Construction (MBC) method: ascending dataset. Temporal-normal baselines are
coloured using a rainbow scale according to the INSAR pair coherence.

The interferograms of the two InSAR pairs having coherence higher than ~0.45 after
applying the full-graph MBC method are shown (Figure 8, panel a). The water body pixels are
characterised by low coherence, resulting in random phase differences. The x-axis represents
the azimuth direction (in pixels), and the y-axis shows the range direction (in pixels).

Figure 8. Panel (a): interferogram generated (in slant geometry) using the full-graph MBC method:
pair 22 June-16 July 2015, normal baseline ~135 m. The phase difference is represented between —t
and +7 using a rainbow colour ramp. Panel (b): High—quality Persistant Scatter (PS) obtained by
processing the ascending dataset over-imposed an airborne orthophoto [80] (EPSG 6708) (red dots, se-
lected PS on the dam to interpret the forcing-displacements phenomenon; white dots, remaining PS).
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Many PS points are distributed over the dam and on the left bank with a high backscat-
ter signal and a coherence higher than 0.7 (Figure 8, panel b). The full-graph MBC allowed
them to be detected =~ 540 PSs (displayed in red).

The objective of this research is to determine the dam displacements, not deformation,
of the whole structure. PSs located over the DAM crest were then used for comparison
with other data to interpret the forcing-displacements phenomenon. To this aim, displace-
ments of selected PS over the dam have been spatially averaged to estimate a reference
displacement of the dam. A one-month moving average was applied to highlight the trend
of the displacement time series. The orthogonal displacements related to the water levels
confirm a hysteresis-like loop during the emptying and filling periods of the dam (ibid.).

The use of the standard PS-InSAR technique (full-graph MBC method) leads to the
LOS dam displacements (diog) reported in Figure 9. Due to the differences between the
direction of the ascending and descending tracks with the direction orthogonal to the dam
(43° and 23°, respectively), the relative contribution of the orbits to Drot is greater for the
ascending track than for the descending one.

S N ke N ®
|

D1or (mm)

el avas Ly aras

Figure 9. The temporal behaviour (DOY in x-axis) of the horizontal total displacements orthogonal to the dam (Dtot, mm)

is estimated via PS-InSAR (red dots). A sinusoidal interpolation curve (continuous dashed line) and a confidence band

of £2 X oxy between measured and interpolated values (dark grey lines) are reported to facilitate the interpretation of

the phenomenon.

The temporal variability of Drgr in 2015 using a full graph MBC method (Figure 9,
red dots) shows displacements increasing in the springer period to reach a platoon between
DOYs 221 and 269. The standard deviation of the differences between measured and
interpolated values was oxy ~ 1.18 mm. The maximum value (~ 4.5 mm) indicated by the
sinusoidal fitting is on DOY 241.

3.3.2. GNSS Displacements

Daily displacements orthogonal to the dam crest were averaged by applying a one-
month-long moving window, thus showing its tendency in the long term (Figure 10). After
applying a temporal low pass filter, the monitored temporal range is shortened. The zero of
the displacements is assumed as the first day of the time series (DOY 120). Displacements
increased in the springtime period to reach a platoon between DOYs 197 and 247 (about
2.6 mm). The maximum indicated by the sinusoidal fitting is on DOY 219, which is almost
in phase with air and water surface temperatures. The peak is shifted compared to that
obtained via PS-InSAR (22 days), although both GNSS and PS-InSAR displacements
behaviours are characterised by two plateaus that partially overlap (= DOYs 220-230).
The standard deviation of the differences between measured and interpolated values was
oxy ~ 0.33 mm.
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Figure 10. The temporal behaviour (DOY in x-axis) of the horizontal total displacements orthogonal to the dam (Dtor, mm)

is estimated via Global Navigation Satellite System (GNSS) (grey dots). A sinusoidal interpolation curve and confidence

band of £2 X oxy between measured and interpolated values (dark grey lines) are reported to facilitate the interpretation

of the phenomenon (continuous line). The interpolation curves at the 10th and 90th percentiles of the raw data are reported

(pale blue band) as a measure of its variability.

4. Conclusions

Previous work (e.g., [2,36,41]) highlighted the capability of satellite techniques for
dam monitoring. This research aims to emphasise that comprehensive monitoring is
achievable using satellite techniques. In particular, reliable displacements of their temporal
behaviour were retrieved, in addition to the filling—emptying cycles of the water level and
reservoir-dam system temperature.

The water surface extent was estimated by employing the same satellite dataset (SAR im-
ages) used for the interferometric processing. Results were estimated with very high accuracy
(”? =0.97).

Water temperature time series was automatically retrieved by means of the Google
Earth Engine platform processing all the clear sky Landsat 8 TIRS images available. Com-
paring time series of air temperature measured in situ and water temperatures estimated
from thermal infrared remote sensing a strong agreement was shown both in terms of the
range of variability (= 280-305 K) and phase shift (2 days).

A quasi PS-InSAR algorithm, using a full-graph MBC method and a nonlinear dis-
placement trend model was applied to both ascending and descending SAR images. The
composition of the slant displacements allowed the retrieval of the temporal evolution
of total displacement orthogonal to the dam crest. The comparison with displacements
measured via GNSS showed a relatively good agreement; indeed, both exhibit the same
temporal behaviour, with plateaus at maximum partially overlapping (10 days).

The interpolation with a sinusoidal function for both GNSS and PS-InSAR measures
allows a better description of the positive and negative displacements occurring during the
filling, storage, and emptying phases.

GNSS and quasi-PS-InSAR time series exhibited comparable time behaviours. Al-
though there was a time shift, both time series were characterised by a plateau. The
plateaus were partially overlapping (=~ 10 days). Different MBC methods and interferomet-
ric models are planned to be tested to improve the matching between remote and in situ
displacements.

However, these first outcomes suggest that a comprehensive remote sensing approach
could represent a good complementary or alternative solution to monitor medium-small
reservoirs, which often lack any adequate monitoring systems.

In order to confirm these preliminary results, it is necessary to plan a new in situ
campaign spanning a longer time period in order to increase the number of observations
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while ensuring contemporaneity between the GNSS and PS-InNSAR measurements. It is also
necessary to evaluate the relationship of the displacements with thermal and hydrological
forcing factors over a more consistent temporal time span, distinguishing between the
emptying, storage, and filling periods over different years.

It is planned to complete the analysis using images acquired by the COSMO-SkyMed
constellation, which have a higher spatial resolution (up to 1 m) and lower revisit time
(e.g., up to 24 h using the full four satellite constellation), thus allowing more PS points to
be obtained over the dam and covering the period over which GNSS measurements are
currently available.

Additionally, the use of the Capella’s [81] high revisit SAR X-band 18 satellites con-
stellation (36, once fully operational) will allow the production of interferometric images at
the resolution down to 0.5 m and hourly revisit time, which looks promising.

Additionally, a higher revisit time for thermal images is expected by September 2021
with the launch of the Landsat 9 satellite-carrying onboard the Thermal Infrared Sensor 2
(TIRS-2), characterised by the same technology that was used for TIRS on Landsat 8.
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Appendix A

The following acronyms (Table A1) are used in this manuscript:

Table A1. Acronyms list.

Acronym Meaning

APS Atmospheric Phase Screen

CM-SAF Climate Monitoring Satellite Application Facility
CORS Continuously Operating Reference Station

COSMO-SkyMed Constellation of Small Satellites for Mediterranean basin Observation
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Table A1. Cont.

DEM Digital Elevation Model

DInSAR Differential INSAR

DOY Day of Year

EPSG European Petroleum Survey Group

ESA European Space Agency

ETRF European Terrestrial Reference System

FEM Finite Element Method

FTP File Transfer Protocol

GACOS Generic Atmospheric Correction Online Service
GNSS Global Navigation Satellite System

ICOLD International Commission on Large Dams
IGS International GNSS Service

InSAR Interferometric SAR

w Interferometric Wide

IW1, IW2 and IW3 1st, 2nd, 3rd IW sub-swath

LIDAR Laser Imaging Detection and Ranging

LOS Line of Sight

LST Land Surface Temperature

MBC Multi-Baseline Construction

NDA Network Deformation Analysis

PS Persistent Scatter

PS-InSAR Persistent Scatter for INSAR

QGIS (until 2013 known as) Quantum GIS
RDN2008 National Dynamic Network, realisation epoch 2008
S-1A,5-1B Sentinel-1A and Sentinel-1B

SAR Synthetic Aperture Radar

SARProZ The SAR PROcessing tool by periZ

SBAS Small BAseline Subset

SLC Single Look Complex

SMW Statistical Mono-Window

SNAP Sentinel Application Platform software

TIRS Thermal Infrared Sensor

TOPSAR Terrain Observation with Progressive Scans SAR
\A% Vertical transmit-Vertical receive polarisation
WGS84 World Geodetic System 1984

The following symbols (Table A2) are used in this manuscript:

Table A2. Symbols list.

Symbol Meaning Unit
o° backscattering coefficient (dB)
dros LOS dam displacements (mm)
D horizontal displacements orthogonal to the dam measured by GNSS (mm)
Dror total horizontal displacements orthogonal to the dam (mm)
H dam water level (ma.s.l)
Hgs H estimated from remote sensing (m as.l)
His H measured in situ (mas.l)
2 determination coefficient -)
RMSE Root Mean Square Error (as the input unit)
Ta air temperature (K)
Tw water surface temperature (K)
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