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Abstract: Third-generation geostationary meteorological satellites (GEOs), such as Himawari-8/9
Advanced Himawari Imager (AHI), Geostationary Operational Environmental Satellites (GOES)-R
Series Advanced Baseline Imager (ABI), and Meteosat Third Generation (MTG) Flexible Combined
Imager (FCI), provide advanced imagery and atmospheric measurements of the Earth’s weather,
oceans, and terrestrial environments at high-frequency intervals. Third-generation GEOs also signifi-
cantly improve capabilities by increasing the number of observation bands suitable for environmental
change detection. This review focuses on the significantly enhanced contribution of third-generation
GEOs for disaster monitoring and risk mitigation, focusing on atmospheric and terrestrial environ-
ment monitoring. In addition, to demonstrate the collaboration between GEOs and Low Earth orbit
satellites (LEOs) as supporting information for fine-spatial-resolution observations required in the
event of a disaster, the landfall of Typhoon No. 19 Hagibis in 2019, which caused tremendous damage
to Japan, is used as a case study.

Keywords: third-generation geostationary meteorological satellites (GEOs); baseline dataset; disas-
ter management

1. Introduction

For weather analysis and forecasting, geostationary satellites (GEOs) have an advan-
tage over polar orbiters; images are captured frequently rather than once or twice per day.
Thus, the motion and rate of change in weather systems can be observed. Meteorological
agencies such as the US National Oceanic and Atmospheric Administration (NOAA),
Japan Meteorological Agency (JMA), China Meteorological Administration (CMA), and
European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) have
developed and launched geostationary meteorological satellites [1]. Typically, there are
five or six satellites that can cover the globe near the equator. The era of imaging the
Earth from a geostationary perspective began on 6 December 1966, with the launch of an
experimental sensor (Spin-Scan Cloudcover Camera) onboard Application Technology
Satellite-1 (ATS-1, [2,3]). The JMA launched its first geostationary meteorological satellite
(GMS) in 1977 [4,5].

First-generation GEOs (for example, GMS 1 to 3, and Geostationary Operational Envi-
ronmental Satellites’ (GOES) first-generation Visible and Infrared Spin Scan Radiometer
(VISSR) [6]) had only two channels that were visible, and the other was a thermal infrared
(TIR) channel of approximately 10 µm, which could capture images of the Earth once
every three hours. In second-generation GEOs (for example, GMS4/5 VISSR, GOES second
generations [6], Multi-functional Transport Satellite (MTSAT)-1R/-2 Japanese Advanced
Meteorological Imager (JAMI) [7]), enhancements were made, such as increasing the fre-
quency of observations (hourly full-disk (FD) scan), adding bands in the atmospheric
window region by utilizing the split-window technique [8], and adding water vapor chan-
nels [9,10] of approximately 7 µm. The METEOSAT Second Generation (MSG) Spinning
Enhanced Visible and InfraRed Imager (SEVIRI) [11] is considered to be a second-and-
a-half-generation GEO. With enhancements such as an increase in the number of bands
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(12 bands) and a significant increase in the frequency of global mode observations (once
every 15 min), it can be used for weather monitoring. Therefore, GEOs can now be used in
a broader range of environmental fields than before.

Since the launch and operation of Himawari-8 in 2015 [5], the GOES-R series [3] by
the United States, Fengyun (FY)-4A [12] by China, and GEO-KOMPSAT 2A (GK-2A) by
Korea have been launched. Meteosat Third Generation (MTG) [13] is scheduled to be
launched at the end of 2022. The current group of third-generation GEOs has achieved
dramatic functional enhancements compared to the second-generation GEOs, including a
significant increase in the number of observation bands (Table 1), spatial resolution, and
observation frequency. This review focuses on the significantly enhanced contribution of
third-generation GEOs for disaster monitoring and risk mitigation, focusing on atmospheric
and terrestrial environment monitoring in Section 2. Spatial resolutions of the 3rd GEOs
are 500 m to 1 km in VIS, some bands in NIR, and 2 km in TIR, thus captured disasters by
the 3rd GEO are generally continental to regional scales with good at the time-evaluating
events. In addition, to demonstrate the collaboration between GEOs and Low Earth orbit
satellites (LEOs) as supporting information for fine-spatial-resolution observations required
in the event of a disaster, the landfall of Typhoon No. 19 Hagibis in 2019, which caused
tremendous damage to Japan, is used as a case study in Section 3.

Table 1. Band center wavelength specifications for major third-generation geostationary meteoro-
logical satellite optical imagers (in µm). AHI, Advanced Himawari Imager; GOES, Geostationary
Operational Environmental Satellites; ABI, Advanced Baseline Imager; MTG, Meteosat Third Genera-
tion; FCI, Flexible Combined Imager; FY-4A, Fengyun-4A; AGRI, Advanced Geostationary Radiation
Imager; GK-2A, GEO-KOMPSAT 2A; AMI, Advanced Meteorological Imager; VIS, visible; NIR, near
infrared; TIR, thermal infrared.

H8/9 AHI GOES ABI MTG FCI FY-4A AGRI GK-2A AMI

VIS
0.47 0.47 0.44 0.47 0.46
0.51 0.51 0.51
0.64 0.64 0.64 0.65 0.64

NIR

0.86 0.86 0.86 0.83 0.86
0.91

1.37 1.38 1.38 1.38
1.6 1.6 1.6 1.6 1.6
2.2 2.2 2.2 2.2

TIR

3.9 3.9 3.8 3.8 3.8
6.2 6.2 6.3 6.3 6.2
6.9 6.9 7.1 6.9
7.3 7.3 7.3 7.3
8.6 8.4 8.7 8.5 8.6
9.6 9.6 9.6 9.6
10.4 10.3 10.5 10.7 10.4
11.2 11.2 11.2
12.4 12.3 12.3 12.0 12.4
13.3 13.3 13.3 13.5 13.3

2. Toward Effective Utilization of Third-Generation GEO Data
2.1. Visualization
2.1.1. Red, Green, and Blue (RGB) Full-Color Composite

The amount of information obtained due to image discrimination by the human eye is
dramatically different between monochrome and color images. An increase in the number
of bands of imagers onboard satellites, represented by the change from NOAA/ Advanced
Very High Resolution Radiometer (AVHRR) to Terra/Aqua Moderate Resolution Imaging
Spectroradiometer (MODIS), has made global True Color RGB composition possible. The
large increase in the number of observation bands in third-generation GEOs (Table 1)
has had the same impact on high-frequency observations as the change from AVHRR to
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MODIS had. In other words, third-generation GEOs have resulted in a breakthrough from
“monochrome images” to “full-color movies”. To achieve a True Color RGB composite,
it is necessary to separate the visible wavelength into three bands (red, green, and blue
(RGB)); however, Table 1 shows that not all the third-generation GEO imagers have three
bands in the visible wavelength. In addition, even if they do achieve RGB separation, their
central wavelengths are often biased. Therefore, the development of technology for RGB
composites that match each imager’s characteristics is in progress [14–18].

Multi-band GEOs are used for RGB composite during the daytime, whereas pseudo-
RGB mainly uses thermal infrared bands from the viewpoint of monitoring atmospheric
phenomena. The EUMETSAT, JMA, and other agencies share the generation and interpre-
tation of multi-band RGB composite images by publishing the recipes of RGB composites
and their interpretations on the Internet [19–21].

2.1.2. Visualization through the Web-Interface

From a weather disaster mitigation point of view, the quick dissemination of weather
information to all countries in a risk region is of great importance. GEOs play a vital role in
providing continuous atmospheric observations for weather forecasting and monitoring
a wide range of environmental phenomena. GEOs provide valuable weather informa-
tion, but providing extensive information on a website in real time is a challenge [22–27].
The Himawari-8 real-time website [25] is a highly sophisticated website for monitoring
Himawari-8 images in multiple languages, including English, Japanese, Korean, Chinese,
Indonesian, Burmese, Thai, Russian, French, and Tetum. An interactive, well-designed
website can help in visualizing weather events, so the Himawari-8 real-time website is a
good example viewer to capture target events by users. The Himawari-8 real-time website
takes international collaboration into account and shows that the latency of real-time image
acquisition can be improved by introducing proxy servers in the target countries [23].
However, the Japan Aerospace Exploration Agency (JAXA) Himawari monitor can super-
impose a group of products applied to Himawari, such as algorithms developed mainly for
the Second-generation Global Imager (SGLI) boarded on the Global Change Observation
Mission–Climate (GCOM-C) by JAXA [25].

2.2. Baseline Dataset and Dataset Infrastructure

Because the primary purpose of GEO data is weather monitoring, the quasi-real-time
use of captured images is fundamental. GEOs are operated by meteorological operational
agencies or meteorological satellite organizations, and GEO data are highly public; thus,
GEO data are provided free of charge [28–30]. In the Himawari series operated by JMA,
the data are provided for a fee to share the operational cost for stable data provision for
commercial use [31]. Third-generation GEOs release a large amount of data by enhancing
functions. In addition to data latency being essential for access, private clouds provide the
GOES-R series dataset [32,33].

As GEOs observe the entire globe from approximately 36,000 km above the Earth,
they have the advantage of capturing the Earth in a spherical shape. However, spherical
datasets are difficult to handle from a data analysis point of view. Therefore, it is desirable
to convert spherical datasets to a latitude–longitude coordinate system (so-called gridded
data) or to use a converted gridded dataset. Sample programs for geo-correction based
on satellites’ navigation information are provided by meteorological agencies or research
communities [34,35]. The navigation control of third-generation GEOs is now more precise
than ever before [36,37], and even gridded data obtained by applying the aforementioned
geo-correction program can maintain sufficient geometric correction accuracy if the primary
purpose is weather monitoring. Takenaka et al. [38] developed a fast and accurate geometric
correction technique using the phase-only correlation (POC) method [39] and applied it
to the Himawari-8 and GOES-R series [40,41]. Yamamoto et al. [42] validated the geo-
correction accuracy of the Himawari-8 gridded dataset and found that the geometric
correction was more accurate than that based on satellite navigation information. Such a
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highly accurate geometric correction dataset is valuable as a baseline dataset for terrestrial-
environment monitoring, especially for environmental monitoring during disaster events.

However, it is essential to develop long-term observational GEO datasets in cli-
mate data records (CDRs). A global 30-min high-frequency GEO synthetic infrared
(IR) dataset was generated as baseline data for multi-satellite data blended precipita-
tion products [43,44]. This globally merged IR dataset is useful for convection monitoring.
As part of the CDR program, a globally synthesized product (GridSat-B1, [45]) with basic
3-band (10 µm IR, 7 µm WV, and VIS) data onboard GEOs and the GOES dataset have
also been released [46], which are useful for long-term variability analysis. The Center for
Environmental Remote Sensing (CEReS), Chiba University, Japan, has also been archiv-
ing GEO data. The second-generation GEO generates and publishes gridded data of all
onboard band data based on satellite navigation information as one of the GEO’s active
archive centers.

2.3. Target Phenomena in the Atmosphere
2.3.1. Clouds and Precipitation

GEOs’ primary function is to monitor the weather by observing exact locations with a
high observation frequency. Thus, GEOs are suitable for monitoring cloud and precipitation
processes, such as the diurnal cycle of convective activity using first- and second-generation
GEO data [9,47–49], and life-stage identification for convective clouds with ground-based
or satellite-based radars [50–53]. By further increasing the observation frequencies (with a
rapid-scan observation experiment in MTSAT-1R and a rapid-scan mode in MSG), it has be-
come possible to capture more of the life stages for single convection [54,55], demonstrating
the usefulness of high-frequency observations by GEOs.

One of the features of third-generation GEOs is that they are multichannel, similar
to MODIS. Such similarities mean that the optical characteristics of clouds (the optical
thickness of clouds, and the effective radiative radius of cloud particles) estimated by
optical sensors such as MODIS [56–59] can be applied to third-generation GEOs [60–63].
In addition, the synergistic observation of the same target by the multi-principle sensors
called A-Train [64,65] can deepen the understanding of the cloud growth process [66–68]
system by taking advantage of the characteristics of high-frequency observations. As a
good example, the comprehensive observation of cloud and precipitation systems [69] in
the Boso area, Chiba Prefecture, Japan, will be introduced. In the same area, X-band Phased
Array Weather Radar (PAWR) was installed and operated to monitor the three-dimensional
precipitation cell structure with a 30-s ultra-fine time resolution [70]. Figure 1 demonstrates
the time evolution of the optical properties of a cloud system estimated by the cloud micro-
physical properties algorithm (CAPCOM) [71] (Figure 1, top), and the same time changes
in the vertical profile of radar reflectivity captured by the PAWR (Figure 1, bottom), with
the time of the first-echo detection by PAWR set to zero. Himawari-8 captured an apparent
increase in cloud optical thickness (red line) starting 30 min before the first echo detection,
and followed by a peak in visible reflectance (black line). The dramatic enhancement of
the third-generation GEO provides a breakthrough in the better understanding cloud and
precipitation processes by identifying the detail of cloud systems lifetime. In addition,
attempts are made to refine the classification of cloud types proposed by the International
Satellite Cloud Climatology Project (ISCCP) [72], by using the split windows method with
multiband data and the brightness temperature difference parameter [73].
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cloud (COT) rate, unit min−1, light green line) analyzed by the cloud microphysical properties al-
gorithm (CAPCOM). Time–height section of Phased Array Weather Radar (PAWR) radar reflectiv-
ity (colored, in dBZ), area maximum rain rate (mm h−1, red line), and area aggregated rain rate 
(mm h−1, white line) observed by the eXtended RAdar Information Network (XRAIN) (bottom 
panel). Plotted variable times are synchronized, and the X-axis in the bottom panel is normalized 
at the first echo detection by PAWR (12:34:49 JST). 
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weather forecasting with computer resource advancement and data assimilation [74–76]. 
One of the original purposes of GEOs was to calculate atmospheric moving vector winds, 
and they have contributed to the accuracy of weather forecasting by improving the atmos-
pheric wind field. In addition, the Himawari-8 has a target area observation mode, espe-
cially for typhoons. It can make a high-frequency observation every 2.5 min [5]. Typhoons 
are a great source of material for machine learning because they cause significant damage 
by landing [77,78]. An excellent example of the combination of the development of ma-
chine learning and the enhancement of third-generation GEOs is the estimation of rain 
rate by the Himawari-8 using random-forest machine learning [79]. Hirose et al. [79] ap-
plied the methodology used initially for MSG to learn from ground-based radar data [80], 
and they succeeded in better reproducing precipitation with low storm height but heavy 

Figure 1. Time series of Himawari-8 captured cloud optical properties from 11:03 to 13:33 Japan Standard Time (JST),
4 August 2016, at 34.4◦ N and 140.00◦ E, Boso Area, Japan (top panel). Himawari-8 AHI band 3 (red) reflectivity (black
line), effective radii of clouds (eff, unit nm, blue line), liquid water path (LWP, unit g m−2, gray line), the optical depth of
cloud (tau, unit dimensionless, red line) and its time evaluation (cloud optical thickness, same as the optical depth of cloud
(COT) rate, unit min−1, light green line) analyzed by the cloud microphysical properties algorithm (CAPCOM). Time–height
section of Phased Array Weather Radar (PAWR) radar reflectivity (colored, in dBZ), area maximum rain rate (mm h−1, red
line), and area aggregated rain rate (mm h−1, white line) observed by the eXtended RAdar Information Network (XRAIN)
(bottom panel). Plotted variable times are synchronized, and the X-axis in the bottom panel is normalized at the first echo
detection by PAWR (12:34:49 JST).

The enhanced functionality of third-generation GEOs has a substantial impact on
weather forecasting with computer resource advancement and data assimilation [74–76].
One of the original purposes of GEOs was to calculate atmospheric moving vector winds,
and they have contributed to the accuracy of weather forecasting by improving the at-
mospheric wind field. In addition, the Himawari-8 has a target area observation mode,
especially for typhoons. It can make a high-frequency observation every 2.5 min [5]. Ty-
phoons are a great source of material for machine learning because they cause significant
damage by landing [77,78]. An excellent example of the combination of the development
of machine learning and the enhancement of third-generation GEOs is the estimation of
rain rate by the Himawari-8 using random-forest machine learning [79]. Hirose et al. [79]
applied the methodology used initially for MSG to learn from ground-based radar data [80],
and they succeeded in better reproducing precipitation with low storm height but heavy
rain rate, which is often seen in wet areas [81], by utilizing the three-splitting bands in water
vapor (WV) absorption bands around 7 µm. In addition, the improvement of precipitation
estimation accuracy by nowcasting global precipitation products [82] using high-frequency
observations may improve disaster prediction accuracy, mainly for flood event detection.

2.3.2. Dust Events and Aerosols

Precise monitoring of large-scale dust events in the temporal direction provides
essential information for reducing the impact of dust on human activities [83]. Therefore,
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dust monitoring by satellite observations was conducted during the early satellite operation
era [84]. Ackerman [85] described the utilization of tree bands in TIR (8.5, 11 (or 10), and
12 µm) for the detection of volcanic and soil-derived aerosols. The satellites have been
used to generate RGB composite images (Dust RGB: ∆Tbb 12.4–10.4 µm in red, ∆Tbb
10.4–8.6 µm in green, and Tbb 10.4 µm in blue) by applying thermal infrared 3-band
information. Because MSG and third-generation GEOs have achieved multiple bands
in the thermal infrared region and increased observation frequencies, many studies on
dust monitoring now use the brightness temperature difference in the thermal infrared
region [86–92].

Aerosol optical parameters, such as aerosol optical thickness, can also be retrieved
from optical sensors onboard satellites, although only during the daytime and only in
areas without cloud cover [93–99]. The multi-band capability of third-generation GEOs has
improved aerosol optical parameter estimation accuracy, and its use is expanding [100–105].
The aging of optical sensors’ sensitivity, which is essential for aerosol estimation, has been
reported [106], and aerosol optical properties are steadily moving into the monitoring phase.
Although aerosol optical properties and vertical structure of cloud-covered areas cannot be
determined in principle, more detailed aerosol information in the spatio–temporal direction
has been successfully derived by using the data assimilation technique as described in
Section 2.3.1 [107–109]. It is noteworthy that the aerosol observation impact of third-
generation GEOs can be derived to a greater extent through more advanced coordination
with numerical forecast information.

2.3.3. Volcanic Plumes and Lightning Activity

It is essential to use satellite observations for disaster monitoring and immediate re-
sponse in monitoring volcanic plumes, which are extremely difficult to predict in advance.
Similar to the dust event monitoring described in Section 2.3.2, multi-band monitoring
is effective by taking advantage of the aerosol ejection fraction (mostly SO2) emitted in
an eruption, depending on the thermal infrared wavelength region [85,110]. It is helpful
to summarize what approaches, including satellite observations, are effective for erup-
tion monitoring, using the example of Eyjaföll volcano in Iceland, which erupted from
23 March to 14 April 2010 [111]. There are examples of utilizing the multi-band TIR chan-
nels in second-generation GEOs [112,113]. Monitoring examples by third-generation GEOs
with increased observation frequency and number of bands, include the eruption of Aso
Caldera in Japan on 8 October 2016, by Himawari-8 [114], and the eruption of Raung, In-
donesia [115], focusing on the behavior of shorter wavelengths (1.6, 2.3, and 3.9 µm) [116].

From a natural disaster monitoring point of view, such as the effects of lightning
strikes on electronic equipment and the causes of spontaneous ignition, lightning activity
monitoring using satellites is also effective [117]. Because it can also be used as an indicator
of atmospheric upwelling motion [118], a lightning imaging sensor (LIS) was installed on
the Tropical Rainfall Measuring Mission (TRMM) [119,120]. The geostationary lightning
mapper (GLM) was installed in the GOES-R series [121]. Preliminary observations of
lightning captured by GLM have been obtained [122], and there are reports on lightning-
related Fuego eruptions [123].

2.4. Target Phenomena for the Terrestrial Environment
2.4.1. Vegetation Activity and Forest Fires

The Landsat series was the first satellite to monitor terrestrial environments. The
NOAA/AVHRR series of meteorological satellites separated the visible and near-infrared
bands in the AVHRR/2 series. Thus, the normalized difference vegetation index (NDVI),
which is a widely utilized vegetation index, can be applied. The NOAA/AVHRR could moni-
tor vegetation dynamics globally in the early era of environmental remote sensing [124,125].
The generation of global datasets derived from the NOAA/AVHRR has begun to yield
important insights into the response of vegetation to climate change [126,127], the applica-
tion of satellite data for phenological timings [128], and fundamental studies of vegetation
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response to temperature and precipitation [129]. Our understanding of global environ-
mental research has been enhanced by using highly accurate products produced by a
well-organized MODIS science team for analysis [130]. However, the interpretation of
tropical rainforests with frequent cloud cover is, for example, in contrast to the vegetation
response of the Amazon rainforest to the 2005 drought [131,132], and increasing the fre-
quency of cloud-free observations is considered to be the key to further understanding of
vegetation response, especially in the tropics.

With an increase in the number of observation bands in MSG (Table 1) and an increase
in the observation frequency (once every 15 min), the possibility of vegetation monitoring
by GEO has greatly expanded. A series of investigations by Fensholt et al. [133–135] and
others [136] have shown its usefulness. As evidence, the EUMETSAT provides vegetation
indices such as leaf area index (LAI) from MSG [137], and expectations for vegetation
monitoring by GEO with enhanced functions are high.

In the mid-latitudes, Miura et al. [138] monitored deciduous broadleaf trees in Japan
by Himawari-8, and Wheeler and Dietze [139] by the GEOS-R series; this points to a dra-
matic increase in third-generation GEOs’ frequency of observations compared to LEOs
(approximately 50 times more). Hashimoto et al. [140] conducted an analysis using GOES-
16 on the Amazon rainforest. They demonstrated seasonal changes in NDVI in the Amazon
rainforest, which could not be confirmed by conventional LEO, such as MODIS, due to
the dramatic increase in the frequency of observations by GOES-R. Key to this result is
the geometric correction [38,40,42] and atmospheric correction accuracies including in
aerosols. For the latter, the standard atmospheric correction developed in MODIS (multian-
gle implementation of atmospheric correction (MAIAC) [141]) was adapted to GOES-R,
and its usefulness was demonstrated by comparison with the local observation network
“AERONET”. In terms of aerosol correction, there is room for further improvement in
accuracy by utilizing the results obtained in atmospheric research [99,109], but the high
computational cost is prohibitive in terms of providing data in quasi-real-time. To over-
come this problem, further advances using AI, such as neural networks, are required.
In addition, there is a more integrated relationship between GEOs and LEOs, and it is
necessary for future applications to make a more sophisticated link between the high
temporal frequency and low spatial resolution vegetation information obtained by GEOs,
with research that looks at vegetation in a more detailed spatial direction (using LEO satel-
lites such as Landsat, Satellite Pour l’Observation de la Terre (SPOT), and Sentinel [142]).
For example, improving the spatial resolution of GEO by coupling the use of LEO optics
is the one of potential utilization. Otherwise, based on LEO optics, phenological cycles
interpolation with the assist of GEO data is another way.

One of the most effective applications that benefits from GEOs’ high temporal resolu-
tion and excellent latency to provide data, is forest fire monitoring [117]. There is a long
history of forest fire monitoring by satellites [143,144], and the detection algorithms devel-
oped in MODIS [145,146] can be easily applied, as well as the algorithms developed in the
second-generation GEOs [147]. It has been visualized in the JAXA Himawari Monitor [25]
and the GOES-R standard product.

2.4.2. Land Surface Temperature (LST), Heat Islands, and Heatwaves

Estimating land surface temperature (LST) using the split windows method with
multi-band NOAA/AVHRR thermal infrared has taken place since the early days when
satellite observations began [148–151]. LST estimation using second-generation GEOs has
also been conducted [152,153], and with third-generation GEOs, LST estimation methods
that take advantage of the further multi-banding of TIR have been proposed [154–157]. As
the frequency of observations increases dramatically, the removal of cloud pixels [158,159]
becomes key to accurate LST estimation. Because GEOs can observe the diurnal cycle of
LST at a higher frequency, it effectively analyzes the phenomena that cause daily changes,
especially the factors that cause heat islands [160–162]. In addition, there is a possibility
that third-generation GEOs can provide more detailed information in the time direction
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of the heatwave [163], which has been occurring increasingly in recent years. With LEOs,
only a snapshot can be obtained, but with GEOs, for example, in principle it is possible to
predict high LST duration times that can be harmful to the human body.

2.4.3. Landslides and Flooded Area Monitoring

The most acceptable resolution for third-generation GEOs is 500 m at the Nadir, which
is equivalent to MODIS. By taking advantage of high-frequency observation characteristics,
it is possible to monitor the general state of a large-scale disaster more quickly than any
other satellite observation when the weather is clear. Miura and Nagai [164] demonstrated
that landslides occurring after record-breaking heavy rainfall in Japan could be predicted
by focusing on a rapid decrease in NDVI. The prediction of landslides based on changes in
NDVI requires the original NDVI values to be high, and it is difficult to apply this method
during the low NDVI periods of spring and fall in deciduous broadleaf forests, but it
remains a highly effective approach.

As all third-generation GEOs are equipped with a 1.6 µm band, water-related moni-
toring, for example, flood area monitoring by calculating the normalized difference water
index (NDWI) [165], is also possible in principle. Even without inter-band computation, it
is possible to visualize a wide area of the flooded area using a natural color RGB composite
by assigning a 1.6 µm band. In MSG, the resolution at 1.6 µm was 4 km, which was rough,
but in third-generation GEOs, the resolution is 2 km, even in the 1.6 µm band, so more
detailed information can be obtained.

3. Possible Further Collaboration between GEOs and LEOs—Case Study

Using the example of Typhoon Hagibis in 2019, which caused extensive flooding
in Japan, we posed the question, “If we had been able to issue a high-resolution LEO
observation request based on GEO information, how quickly would we have been able to
acquire high-resolution observation images over the damaged area?” A simple simulation
was conducted to answer this question. Please note that this is only a hypothetical check,
and the assumptions presented here have not been explored in detail.

Typhoon Hagibis made landfall in Japan on 12 October 2019, reaching a minimum
pressure of 915 hPa and causing extensive damage mainly in eastern Japan. This typhoon
brought the heaviest daily precipitation recorded since 1982 at 613 comparable JMA obser-
vation sites, with a 24-h accumulated precipitation amount reaching 942.5 mm at Hakone.
The death toll was 105, and according to the Ministry of Land, Infrastructure, Transport,
and Tourism (MLIT), the area inundated by Hagibis reached approximately 25,000 ha in
extent, exceeding the 18,500 ha by the extreme heavy rainfall event of July 2018 [166].

We first tried to extract the inundated area under a typhoon situation such as that
of the case study, by hypothetically using Himawari-8 data. We used the Himawari-8
gridded FD data [41] provided by CEReS, Chiba University, Japan. Cloud removal used in
the LST estimation algorithm [154] was performed, and the NDWI [165] was computed.
To determine the threshold value of the flooded area, we used the map information of
the flooded area visually identified by high-resolution optical sensors, and tentatively
identified the pixels below −0.2 in the NDWI as the flooded area. Figure 2 shows the
geographical map of the flooded area with an NDWI below −0.2 on the day after the
Hagibis passage (09:00 Japan Standard Time (JST), 13 October 2019) captured in Himawari-
8 true-color composite image from the Himawari real-time website at the same time. It can
be seen that there were many misidentifications of inundated areas in the metropolitan
urban areas, but the suburban areas appropriately reflected the inundated areas of rivers.
The NDWI calculations were available from 06:00 JST on the same day, but due to the low
solar elevation, the NDWI did not correctly represent the flooded area (figures are not
shown), and although qualitatively, it showed an overestimation from 07:30 JST (figures
are not shown).
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Based on the observation information from Himawari-8, we hypothetically assumed
the observation requirements for a commercial-based high-resolution optical satellite and a
synthetic-aperture radar (SAR) satellite. On the one hand, for optical satellites, requests
are accepted up to 03:00 JST on the same day, so in this case, it was difficult to determine
the possible flooded area and issue an observation request on the same day (12 October).
On the other hand, SAR requests can be accepted up to one hour before the command
uplink, so it was possible to request observations by making a quick decision based on the
NDWI flooded area information on the morning after typhoon Hagibis hit. This showed
that disaster monitoring could be organically linked to LEO observations by using GEO
observation information more appropriately than has been done to date.

4. Closing Remarks and Future Perspectives

A review was conducted focusing on third-generation GEOs, with visualization (RGB
full-color composite, visualization via the web interface), baseline dataset, and phenomena
to be covered limited to the atmospheric and terrestrial environments. For both atmospheric
and terrestrial environments, enhanced capabilities of third-generation GEO were found
to provide critical information for disaster management and risk mitigation. In particular,
it is essential to reiterate that GEO data make a better contribution to bridging the gap
between observation data and virtual data such as numerical forecasts, through the latest
technologies such as data assimilation and Artificial Intelligence (AI). The improvement
of near-future forecast with the assist of GEO data implicitly contributes to disaster risk
mitigations. Numerical simulations of hydrological processes using global precipitation
datasets as inputs [167,168], which also utilize GEO data such as GSMaP, are also highly
effective for risk mitigation of flood damage, and further integration of satellite observation
and numerical prediction, not limited to GEO, is an excellent way to mitigate damage
caused by disasters.

According to the Vision for the World Meteorological Organization (WMO) Inte-
grated Global Observing System in 2040 [169], there are four types of sensors that should
be onboard geostationary meteorological satellites by the year 2040: (1) high-frequency,
multi-wavelength imagers or radiometers; (2) hyperspectral infrared sounders; (3) light-
ning imagers; and (4) ultraviolet, visible, and near-infrared sounders. By achieving this,
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hyperspectral infrared sounder observations will, for example, be able to provide more
frequent and accurate information on the vertical profiles of temperature and water vapor
in clear-sky pixels. Using this information, the accuracy of the atmospheric correction of
optical sensors can be drastically improved.

The enhancement of functions by third-generation GEOs has resulted in a dramatic
expansion in data volume, and some GEOs have started to provide data through cloud
services, but even in the context of citizen science, the general use of third-generation GEOs
is still low compared to the high level of interest shown in it. Putting aside the issue of who
is responsible for associated costs, it is essential to establish a system where the data can be
used in a broader range, considering the amount of publicity it has achieved and the need
for its immediate use.
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