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Abstract: With the increase in the frequency of extreme weather events in recent years, apple growing
areas in the Loess Plateau frequently encounter frost during flowering. Accurately assessing the
frost loss in orchards during the flowering period is of great significance for optimizing disaster
prevention measures, market apple price regulation, agricultural insurance, and government subsidy
programs. The previous research on orchard frost disasters is mainly focused on early risk warning.
Therefore, to effectively quantify orchard frost loss, this paper proposes a frost loss assessment model
constructed using meteorological and remote sensing information and applies this model to the
regional-scale assessment of orchard fruit loss after frost. As an example, this article examines a frost
event that occurred during the apple flowering period in Luochuan County, Northwestern China, on
17 April 2020. A multivariable linear regression (MLR) model was constructed based on the orchard
planting years, the number of flowering days, and the chill accumulation before frost, as well as
the minimum temperature and daily temperature difference on the day of frost. Then, the model
simulation accuracy was verified using the leave-one-out cross-validation (LOOCV) method, and
the coefficient of determination (R2), the root mean square error (RMSE), and the normalized root
mean square error (NRMSE) were 0.69, 18.76%, and 18.76%, respectively. Additionally, the extended
Fourier amplitude sensitivity test (EFAST) method was used for the sensitivity analysis of the model
parameters. The results show that the simulated apple orchard fruit number reduction ratio is highly
sensitive to the minimum temperature on the day of frost, and the chill accumulation and planting
years before the frost, with sensitivity values of ≥0.74, ≥0.25, and ≥0.15, respectively. This research
can not only assist governments in optimizing traditional orchard frost prevention measures and
market price regulation but can also provide a reference for agricultural insurance companies to
formulate plans for compensation after frost.

Keywords: apple; frost; flowering; meteorological; remote sensing

1. Introduction

With the development of China’s apple industry, its apple planting area and output
have grown to account for 42.24% and 45.54% of the world’s total, respectively, and the
country has become the world’s largest apple producer in terms of planting area. However,
China’s apple industry faces the problem of low yield per unit area. China’s average
apple yield is 18.94 tons/ha, ranking only 31st in the world, behind countries with more
developed apple planting industries such as Switzerland (59.11 tons/ha), New Zealand
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(53.14 tons/ha), and Chile (50.17 tons/ha) [1]. Therefore, China’s apple industry needs
to optimize the regional planting structure and further increase the high-quality-fruit
output of orchards to improve the current situation of low yield per unit area. The apple
cultivation areas with the largest planting area in China are mainly distributed in Shaanxi
Province, Shandong Province, Gansu Province, Shanxi Province, Henan Province, and
other provinces, and the Fuji variety is the most widely planted [2]. Shaanxi Province,
which is located in the Loess Plateau, China’s main apple-producing area, has experienced
frequent frost disasters during the apple flowering period in recent years, which has caused
reduced production or a complete loss of production in a large number of apple orchards [3].
In this context, the accurate estimation of orchard yield loss due to frost at the regional
scale can enable government management departments to formulate appropriate orchard
management measures such as optimizing the regional planting structure and precise
irrigation, fertilization, and pesticide application in a timely manner to improve orchard
yield per unit area [4]. Furthermore, it is imperative to understand the mechanism of
frost damage during the flowering period of fruit trees to perform orchard loss assessment
under the background of frost damage.

The dormancy period of temperate plants consists of three stages, namely endodor-
mancy, ecodormancy, and paradormancy [5]. Frost damage events in apple orchards
generally occur in the ecodormancy stage of the dormancy period. The chill accumulation
required for plants to break their natural dormancy needs to be exceeded, and then, under
the influence of warm temperatures in spring, the plants begin to accumulate heat until
they meet the heat demand to resume growth (e.g., budding and flowering). However, in
recent years, the spring phenology of perennial vegetation in temperate regions has shown
an advancing trend [6–8], which has increased the risk of plants suffering damage from
frost weather [9,10]. Studies have shown that plants have cold adaptability, which enables
them to survive the low-temperature environment in winter [8]. The cold adaptability
of plants is gradually strengthened with the decrease of environmental temperature [8].
If plants are suddenly exposed to frost weather in the spring phenology stage, irreversible
damage will be caused to the new tissues of the plants [11]. Some studies have shown
that when flower buds bloom, the lethal temperature of the flower’s reproductive organs
will increase, which is equivalent to the loss of cold tolerance in this part of the plant
tissue [12,13].

The assessment of frost risk in orchards can not only assist fruit industry management
departments in planning suitable planting areas but can also help guide the design and
installation of frost damage prevention systems [12]. Additionally, the effective assessment
of frost risk is essential to quantify the loss of orchard yield [10]. Therefore, to ensure the
sustainable development of the fruit industry in China, it is urgent to accurately assess the
loss of apple orchard yield caused by frost disasters. In the past, the assessment of frost
damage to orchards mainly relied on limited manual sampling methods. However, such
methods are usually time-consuming and labor-intensive, and the results are easily subject
to subjective interpretation by researchers, making them unrepresentative [14]. Moreover,
traditional manual sampling methods cannot meet the needs of regional-scale orchard
frost damage surveys. The development of remote sensing equipment and information
technology has allowed many researchers to assess the frost hazard of various types
of vegetation. Previous studies used daily temperature data from the gridded surface
meteorological dataset (gridMET) [15] and site observations [12], combined with specific
lethal temperature thresholds corresponding to different phenological periods of perennial
orchards, to assess the probability of frost disasters at various production sites. Additionally,
based on the principle that early germination may increase the ability of trees to adapt to
cold environments and late germination may reduce the frost risk, Bennie et al. optimized
the parameters of the thermal time bud-burst model by using a birch germination dataset
based on field site surveys to evaluate the probability of frost damage to birch trees [16].
However, the lack of hourly temperature data and phenological data often limits the ability
to improve the evaluation accuracy of frost damage models. Furthermore, in remote
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sensing applications, the abnormal areas in time-series of satellite images can often reflect
unexpected changes in vegetation. Therefore, Bascietto et al. developed a machine learning-
based method for the automatic detection of beech frost loss based on time-series of EVI
satellite images [10]. Studies have also proposed a spring frost damage index (SFDI) based
on remote sensing data to quantify the yield loss in winter wheat after frost damage [17].
In apple trees, the distribution of leaves and flowers in the flowering period is relatively
sparse. Therefore, after a frost injury event, it is difficult to distinguish frost-damaged apple
flowers from normal apple flowers from remote sensing images. Therefore, the degree
of frost injury in apple trees at the flowering stage cannot be directly determined from
such images.

This study combines remote sensing and meteorological information to assess the
impact of frost damage during apple flowering. Since the cold adaptability of plants
under natural conditions tends to increase with continuous low-temperature weather,
when extreme low-temperature weather occurs suddenly (e.g., frost), the flowers and
young buds of plants will be irreversibly damaged. Therefore, in this work, the number of
flowering days and chill accumulation before the occurrence of frost injury to apples, as well
as the minimum temperature and daily temperature difference on the day of frost injury,
were used as meteorological predictors for the assessment of apple loss from frost injury.
Additionally, a field investigation was performed, which showed that after the occurrence
of a frost event, fruit trees with different planting years often exhibit different degrees of
frost damage during the flowering period; therefore, in this study, the apple planting years
were used as a predictor for the remote sensing-based evaluation of apple frost damage.
This study has combined the advantages of remote sensing and meteorological information
to assess the impact of frost damage during the flowering period of apples at the regional
scale. The results can provide a reference for insurance companies to formulate insurance
claim plans for frost damage during the flowering period.

2. Materials and Methods
2.1. Study Area

In recent years, the apple growing area in the Loess Plateau of Northwestern China
has suffered frequent frost damage during the apple flowering period. This study focused
on the investigation of frost damage in the main apple producing area in Luochuan County,
Shaanxi Province. Luochuan County, which is located in the Loess Plateau region in central
Shaanxi (Figure 1), lies in the northern temperate zone and has a continental humid and
arid monsoon climate. Additionally, the temperature and precipitation information of
Luochuan County was obtained according to the annual ground value data set (1981–2010)
of the China National Meteorological Science Data Center (http://data.cma.cn/site/index.
html, accessed on 6 August 2020). Among them, the annual average rainfall, annual
maximum rainfall, and annual minimum rainfall were 592.4 mm, 929.4 mm, and 341.9 mm,
respectively. The annual average temperature, annual maximum temperature, and annual
minimum temperature were 10 ◦C, 15.7 ◦C, and 5.1 ◦C, respectively. The study area has
sufficient sunshine for apple growth, and a large temperature difference between day
and night, which is very suitable for the growth of apple trees. In addition to the apple
trees planted in this area, other vegetation is present, including low shrubs and evergreen
coniferous forests.

2.2. Field Data

Due to an extreme low-temperature event that occurred in the study area on 17 April
2020—during the apple flowering period—a wide range of frosts occurred, which led
to a reduced output or a complete loss of output in the apple orchards in the south of
Luochuan County. We carried out data collection in 46 apple orchards in Luochuan
County in September 2020. The collected data include the number of fruits recorded by
apple orchard workers in 2019 (normal year) and 2020 (frost injury year) as well as the
corresponding orchard area, tree age, and tree location. Among them, the number of
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fruit in the apple orchard recorded in 2019 and 2020 was used to calculate reduction of
apple production in the orchards in 2020. The geographic coordinates of the research
sites were determined using a Qianxun Position SR2 satellite-based RTK receiver mobile
device with a centimeter-level positioning accuracy (Qianxun Spatial Intelligence, Inc.,
Huzhou, China). Additionally, in order to accurately extract the distribution area of the
apple orchard in the study area (the target area for studying frost loss), based on satellite
images with decimeter-level spatial resolution in the Google Earth software, we obtained
the region of interest (ROI) of training and verification samples for land cover classification
in the study area through visual interpretation. This study selected the land cover types in
relatively homogeneous areas, including apple orchards (30 samples), coniferous forests
(30 samples), grass and shrubs (50 samples), urban (30 samples), bare land (30 samples),
and water bodies (10 samples) (see Figure 1).
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Figure 1. The location of the study area and field samples.

2.3. Remote Sensing and Meteorological Data Acquisition and Preprocessing

This study used the Google Earth Engine (GEE) (https://code.earthengine.google.com,
accessed on 15 October 2020) to obtain Sentinel-2 and Landsat-TM/ETM+/OLI Normalized
Difference Vegetation Index (NDVI) images of the study area. Among them, the Sentinel-
2 data were NDVI time-series images of L2A-level surface reflectance products for the
12 months of 2019 (1 scene/month) without clouds or with low cloudiness. The L2A-level
data have undergone atmospheric correction, orthorectification, and geometric precision
correction for the bottom-of-atmosphere corrected reflectance. Landsat-TM/ETM+/OLI
data are an NDVI product synthesized from the 32-day maximum value for cloudless
conditions or for cloud cover of less than 5% for June–October from 1990 to 2019. This
product can reduce the impact of cloud cover during the study period. Additionally, to
compensate for the lack of Landsat images of the corresponding period from 2008 to 2018,
this study used Landsat-7 first-level terrain accuracy correction (L1TP) product images
for the corresponding period, which were downloaded from the United States Geological
Survey (USGS) website, as supplementary data. Considering that the Landsat-7 ETM+
spaceborne scan line corrector (SLC) failed in May 2003, which resulted in missing bands in
the obtained images, the “landsat_gapfill.sav” tool in the ENVI 5.3 software (Exelis Visual

https://code.earthengine.google.com
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Information Solutions, Inc., Boulder, CO, USA) was used to compensate for the missing
band data of the images [18].

Additionally, the meteorological data in this paper uses the High-Resolution China
Meteorological Administration Land Data Assimilation System (HR-CLDAS) gridded
product produced (temporal and spatial resolutions are 1 h and 1 km, respectively) by
the China Meteorological Administration, which includes six meteorological parameters:
temperature, humidity, rainfall, air pressure, wind speed, and solar short wave radiation.
The temperature, air pressure, humidity, and wind speed products are formed based on the
multi-grid three-dimensional variational technology and the fusion of ECMWF numerical
analysis/forecast products and the observation data of the ground weather automatic
station [19]. The actual observation data from more than 2380 national-level automatic
meteorological stations was used to evaluate the temperature, air pressure, humidity, and
wind speed, and the results showed a good agreement with the actual observations on the
ground [20]. According to the developmental stages of apple flowering phenology in the
study area, we obtained gridded temperature data from 1 October 2019 to 30 April 2020.

2.4. Method

The advantage of gridded meteorological data is that they can accurately record
temperature changes at the regional scale. The advantage of satellite remote sensing
images is that they can be used to continuously observe changes in land surface cover.
This study combines the advantages of meteorological and remote sensing information to
assess apple loss from freeze damage at the regional scale (Figure 2). The following three
subsections introduce the detailed implementation steps of this method.
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2.4.1. Extracting the Planting Years of Apple Orchards Based on Remote Sensing
Time-Series Data

In the field survey, it was found that apple trees with different planting years showed
some differences in frost damage during flowering. Therefore, the orchard planting years
information extracted from the remote sensing time-series data was determined as one of
the predictors of orchard freeze damage loss. During the first year of planting, the NDVI
values of apple orchards often have the characteristics of bare land. This study draws
on a previous method involving the use of remote sensing time-series data combined
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with vegetation cover change characteristics to determine the continuous growth years of
existing apple orchards [21]—that is, if the distribution area of the existing apple orchard is
determined, it is only necessary to determine the change in the distribution area of bare
land in this area over time to determine the planting years of the apple trees. The method
is mainly divided into three steps. First, determine the distribution area of the existing
orchard and use it as the ROI for extracting the apple planting years; then, according to
the ROI, mask the remote sensing images each year and use the change characteristics of
the NDVI time-series to distinguish the apple orchard distribution in different years; and
finally, use the inverse time-series pixel-by-pixel calculation method to obtain the orchard
planting years.

In order to effectively extract the distribution of apple orchards in the study area,
satellite images with decimeter-level spatial resolution in the Google Earth software were
used to obtain the ROI of six different land cover types in the study area, namely apple
orchards, coniferous forests, grass and shrubs, cities, bare land, and water bodies. The
excellent performance of the support vector machine (SVM) classifier has been shown by
many studies [22,23]. In this paper, SVM was used to supervise and classify the NDVI
time-series data for the 12 months of 2019. The kernel type, gamma parameter, and
penalty coefficient in the SVM classifier were set to the radial basis function, 0.083, and
100, respectively. Then, based on the independent verification samples obtained from the
field survey, the confusion matrix verification results were used to test the accuracy of
the classification. Finally, the distribution area of apple trees in Luochuan County in 2019
was obtained, and the current apple planting area was used as the ROI for extracting the
planting years, that is, the apple planting area was used as a mask file to mask the historical
image data. Additionally, based on the Sentinel-2 data, the NDVI time-series of the six
land cover types for the 12 months of 2019 were extracted. Given the consistency of the
growth relationship between vegetations in different years, the NDVI value representing
the growth state index of the vegetation should also be consistent. In this study, the NDVI
time-series for the 12 consecutive months in 2019 was used as the standard reference
value, and the difference in phenological characteristics between different vegetations was
analyzed. Then, the phenological observation period that can most effectively distinguish
apple orchard from bare land was selected. Furthermore, the NDVI time-series ratio of
apple orchards and bare land in the same month during the best observation period in 2019
was used as a template (Formula (1)). Finally, the average NDVI between the apple orchard
and bare land in the corresponding months of each year was used as the segmentation
threshold (Formula (2)) between the two in order to eliminate the interference of the bare
land area on the extraction of the orchard planting years and thus effectively extract the
apple orchard and vegetation distribution area from 1990 to 2018.

2019_Bare_land NDVIi
2019_Apple_orchard NDVIi

= k_Bare_land NDVIi
k_Apple_orchard NDVIi

(1)

Segmentation threshold =
k_Bare_land NDVIi+k_Apple_orchard NDVIi

2 (2)

where i represents the month between June and October; k represents the year between
1990 and 2018; and 2019_Bare_land NDVIi and 2019_Apple_orchard NDVIi represent the
average NDVI value of the i-th month based, respectively, on the bare land and apple
orchard ROI regions extracted in 2019.

2.4.2. Extracting Information of Apple Orchards Based on Gridded Meteorological Data

When frost occurs during the flowering period of apples, the opened apple flowers
will be damaged [9]. The greater the number of flowering days before frost damage occurs,
the higher the flowering ratio of fruit trees and the larger the impact of frost damage on
apple production; conversely, the lower the number of flowering days before the occurrence
of frost damage, the lower the flowering ratio of fruit trees and the smaller the impact of
frost damage on apple production. This indicates that the proportion of fruit loss caused
by frost damage during apple flowering may have a strong relationship with the number
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of flowering days before this damage. Moreover, since the occurrence of frost weather
is generally sudden and the cold adaptability of plants under natural conditions tends
to increase with increased exposure to low-temperature weather [8], when plants are
exposed to frost weather, they tend to have insufficient cold resistance due to the lack of an
adaptation process, and the new tissues of the plants will be irreversibly damaged due to
the rapid cooling. This indicates that the minimum temperature and daily temperature
difference on the day of frost weather may also be related to apple loss. Additionally,
compared with other phenological models of the chill accumulation of fruit trees, research
shows that a dynamic model can better simulate the chill accumulation of fruit trees [24].
Dynamic models can adequately simulate the change in chill accumulation of fruit trees
under the influence of the external environment in the short term before the occurrence of
frost injury during flowering.

Based on the above analysis, this study used the number of flowering days and chill
accumulation before frost, as well as the minimum temperature and daily temperature
difference on the day of frost, as the meteorological predictors for the evaluation of apple
frost loss. First, based on the gridded hourly temperature data combined with a dynamic
model (Formula (3)) [25], the chill accumulation of apple trees before the frost (17 April 2020)
was obtained. The dynamic model calculates the chilling capacity based on the interaction
of temperature. Firstly, low temperature promotes the production of intermediate products
with chilling capacity, however, these intermediate products will be destroyed when
subjected to higher temperatures. Once a certain amount of intermediate product is formed,
it is stored as a stable chilling part (CP). Furthermore, the gridded hourly temperature data
were also used to obtain the minimum temperature and daily temperature difference on
the day of frost. Then, based on the frost occurrence date and the flowering forecast results
obtained in a previous study (Yaohui Zhu et al., unpublished manuscript), the number of
flowering days before the frost was obtained.

Chill accumulation =

{
∑

StartDOY

CP ≥ Cr

}
(3)

where Cr represents the chill requirement, CP represents the accumulated chill, and
StartDOY represents the start date of chill accumulation.

2.4.3. Construction of Frost Loss Assessment Model and Accuracy Verification

The number of apples in an orchard in the full-fruit period tends to have small inter-
annual differences. Therefore, this study calculated the percentage of fruit loss in the
orchards in 2020 based on the difference in the number of apples in the orchard in 2019
(normal year) and that in 2020 (frost injury year). Then, based on the fruit reduction
rate and the apple planting years at the field survey sampling points, combined with the
corresponding number of flowering days and chill accumulation before frost injury, as
well as the minimum temperature and daily temperature difference on the day of frost, a
multivariable linear regression (MLR) frost injury loss evaluation model was constructed
(Formula (4)).

y = C + β1 ∗ (planting years) + β2 ∗ (flowering days) + β3 ∗ (chill accumulation) + β4
∗(minimum temperature) + β5 ∗ (temperature difference)

(4)

where y represents the reduction rate of the number of apples; β1, β2, β3, β4, and β5
respectively represent the regression coefficient terms of the corresponding parameters;
and C represents a constant.

Based on the frost loss assessment model, the apple planting years, the number
of flowering days and chill accumulation before frost, and the minimum temperature
and daily temperature difference on the day of frost were input into the model. Finally,
the regional freeze damage loss was obtained. Additionally, the orchard frost loss data
collected in this study are only 33 samples. If the training set and validation set are divided
according to the usual proportions for training, then the data available for the training set
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are relatively small. However, the leave-one-out cross-validation (LOOCV) [26] is suitable
for evaluating the simulation accuracy of the model in scenarios with a small training
set, and can make full use of the data. Therefore, LOOCV method was used to verify
the validity of the MLR model. In this study, the indicators used to determine the model
simulation accuracy were the coefficient of determination (R2), root mean square error
(RMSE), and normalized root mean square error (NRMSE), which are used to evaluate the
error between the estimated value and the observed value. As the RMSE cannot effectively
measure the acceptable degree of error between the measured and observed values, the
NRMSE index was introduced to evaluate the accuracy of the model: NRMSE values
between 0 and 10% represent a good simulation accuracy; values between 10 and 20%
represent an acceptable simulation accuracy; and values higher than 20% represent an
unacceptable simulation accuracy [21].

R2 =
∑n

t=1(ŷt − y)2

∑n
t=1(yt − y)2 (5)

RMSE =

√
∑n

t=1(ŷt − yt)
2

n
(6)

NRMSE =
RMSE

ymax − ymin
(7)

where n represents the number of samples, ŷt represents the model estimated value, yt
represents the observed value, y represents the average observed value, ymax represents
the maximum observed value, and ymin represents the minimum observed value.

In this paper, in order to determine the direct and indirect influence of the change in
each parameter on the model result, the extended Fourier amplitude sensitivity test (EFAST)
was applied using the SimLab2.2 software (https://ec.europa.eu/jrc/en/samo/simlab,
accessed on 20 December 2020) to obtain the first-order or total-order sensitivity index of
each parameter to the model result. The EFAST method is based on the Fourier amplitude
sensitivity test (FAST) combined with the advantages of the Sobol method to obtain a
global sensitivity analysis method based on variance decomposition [27]. Among then,
the first-order sensitivity index reflects the direct contribution rate of parameter Xi to the
model results, and the total-order sensitivity index includes the sum of the contribution
rates of the interaction between the independent parameter Xi and the other parameters to
the model result. For the analysis results to be meaningful, the EFAST method requires
that the number of randomly and uniformly generated samples should not be less than 65
times the number of parameters.

3. Results
3.1. Extraction of Apple Orchard Planting Distribution

Different types of vegetation have different characteristics of temporal phenological
change. Therefore, this paper selected six vegetation types (apple, coniferous forest, grass
and shrubs, urban, bare land, water) according to the main land cover types in the study
area. Then, using the GEE platform, Sentinel-2 L2A-level NDVI time-series images for the
12 months of 2019 were obtained, and these were then smoothed and filtered using the
Savitzky-Golay (S-G) filter in the ENVI 5.3 software (Exelis Visual Information Solutions,
Inc., Boulder, CO, USA). The S-G filter can not only ensure that the shape and width of the
time-series data are consistent with the original data but also can effectively remove the
noise from the data [28].

In order to effectively extract the distribution area of apple orchards in the study
area, we analyzed the time-series NDVI change characteristics and differences of six land
cover types. The study found that the curves of different vegetation types are different,
including different growth periods, dormancy periods, and growth cycles. For example,
the NDVI value of coniferous forests is less affected by seasonal changes and maintains a

https://ec.europa.eu/jrc/en/samo/simlab
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high level throughout the year; grass and shrubs have the most similar NDVI phenological
characteristics to apples, although the NDVI of grass and shrubs is generally higher than
that of apples in spring. Additionally, as shown in Figure 3b, from June to October, the
NDVI time-series curve of apple orchards is stable, with values above 0.6. From August to
September, the NDVI curve of bare land has a rapid upward trend. This may be due to more
rainfall during this period, resulting in the growth of some herbaceous and mosses on the
surface of bare land, which makes the NDVI of bare land rise rapidly. In a previous study,
Zhu et al. (2020) used NDVI time-series data combined with phenological characteristic
parameters to classify research areas containing orchards with different species of tree and
obtained an improved mapping accuracy [21]. However, in the region that is investigated
in the present research (Luochuan County), only apple trees are used as a major economic
orchard tree species, while other types of fruit trees are not planted over a large scale;
therefore, the county’s planting structure is relatively simple. This study was only based on
the 2019 Sentinel-2 NDVI time-series data and the training samples (ROI) of the six types
of land cover, the apple planting distribution was obtained using the SVM supervised
classification method (see Figure 4).
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Then, the confusion matrix verification results based on independent verification sam-
ples were used to verify the accuracy of the supervised classification, which included apple
orchards (10 samples), bare land (10 samples), coniferous forest (10 samples), grassland
shrubs (15 samples), cities (10 samples), and water (10 samples). The confusion matrix veri-
fication results (Table 1) show a high overall classification accuracy and Kappa coefficient,
reaching 99.38% and 0.99, respectively, and a Producer’s Accuracy and User’s Accuracy of
more than 98.91%. The Producer’s Accuracy and User’s Accuracy of apple orchard were
98.97% and 98.91%, respectively. For coniferous forest and water, as the annual surface
cover change is relatively stable for these land cover types and their NDVI characteristics
are quite different from other land cover types (the NDVI of coniferous forest maintains a
relatively high value throughout the year, while water has the lowest value throughout the
year), the classification accuracy is 100% for both of these two types. The results show that,
in this study area with a simple planting structure, using NDVI time-series data throughout
the growth cycle can be used to effectively distinguish land cover types.

Table 1. Confusion matrix validation results.

Class Prod. Acc (%) User. Acc (%)

Apple Orchard 98.97 98.91
Bare land 100.00 99.66

Coniferous Forest 100.00 100.00
Grass and shrub 99.01 99.16

Urban 99.66 100.00
Water 100.00 100.00

Overall Accuracy 99.38% (5978/6015)
Kappa coefficient 0.99

Note: Prod. Acc.: Producer’s Accuracy; User. Acc.: User’s Accuracy.

3.2. Identification and Verification of Apple Orchard Planting Years

Figure 3 showed that the NDVI value of apple orchard remained stable from June to
October, and there was a significant difference between the NDVI value of bare land and
the NDVI value of apple orchard. Therefore, the period from June to October was used
as a study period to distinguish orchard from bare land, and the NDVI ratio between the
orchard and the bare land in different months in this period was calculated as a standard
template using Formula 1.

Subsequently, the distribution area of apple orchards in 2019 extracted in Section 3.1
was used as the area of interest to identify the apple orchard planting years, and the NDVI
images from 1990 to 2018 were masked separately. Using the apple orchard area with more
than 30 years of planting as the area of interest for extracting the average NDVI value,
the NDVI images of the corresponding months of each year were input into the apple
orchard and bare land ratio (Formula (1)) to obtain the average NDVI value of the bare
land. Next, the vegetation distribution area of Luochuan County from 1990 to 2018 was
obtained using the segmentation threshold method (Formula (2)). The 10-m resolution
apple orchard distribution results obtained after the SVM classification based on the 2019
Sentinel-2 NDVI image time-series were resampled to the resolution of the Landsat image,
namely 30 m. Then, based on the 30-m resolution images obtained between 1990 and 2019,
the pixel-by-pixel inverse time-series calculation method was used to obtain the apple
orchard planting years distribution (see Figure 5).

Field-observed apple orchard planting years data were used to verify the identification
results. The results show that the planting years identification results achieved a good
accuracy (see Figure 6). The R2, RMSE, and NRMSE were 0.82, 4.27 years, and 15.84%,
respectively. Additionally, the verification results show that when the planting years exceed
20 years, the planting years are underestimated. Compared to 2000–2019 (contains Landsat-
5/7/8 remote sensing images), this may be due to the fact that only Landsat-5 satellite
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remote sensing images were obtained from 1990 to 1999, and there are fewer high-quality
cloud-free images to choose from.
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3.3. Extraction of Meteorologically Derived Parameters Based on Gridded Meteorological Data

According to the flowering time of apple tree in Luochuan County in 2020 predicted
by in the previous study (Yaohui Zhu et al., unpublished manuscript), we calculated the
number of flowering days before the frost injury (17 April 2020), and the results are shown
in Figure 7a. The results showed that the number of flowering days before frost damage
gradually increased from the northeast to the southwest of the study area. Additionally, the
number of flowering days before frost damage and the altitude distribution of the study
area maintained similar gradient distribution characteristics. As the altitude increases, the
number of flowering days gradually decreases. This is due to the higher altitude in the
northeast region, which has lower spring temperatures than the southwest, so that the
flowering time is later. Areas with between 11 and 14 flowering days accounted for 28.43%
of the apple distribution area, while areas with more than 15 flowering days accounted
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for 34.75% of the apple distribution area; meanwhile, the area where apple trees did not
bloom before freezing only accounted for 1.78% of the apple distribution area, mostly
distributed in the north of the county. The largest number of flowering days before freezing
was observed in the south of the county (27 days), and the apple orchards with the latest
flowering did not bloom until the sixth day after the frost damage occurred. Field surveys
of apple trees have shown that the period from the opening of the first flower to the
withering of the last flower is generally about 15 to 20 days. Therefore, the earlier the
flowering period, the greater the proportion of flowering fruit trees before the occurrence
of frost damage; it follows that, when extreme low-temperature weather occurs, orchards
with higher blooming ratios may often suffer more severe frost damage.
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minimum temperature and daily temperature difference on the day of frost obtained based on gridded meteorological data.

Then, based on the gridded meteorological data and the occurrence time of frost dam-
age during apple flowering, a dynamic model was used to calculate the chill accumulation
between 1 and 17 April 2020 (Figure 7b). The results showed that the chill accumulation
before frost damage gradually decreases from the northeast to the southwest. Areas with
high altitudes have more chill accumulation; on the contrary, areas with low altitudes
have less chill accumulation. The area in the southwest of the study area with a chill
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accumulation below 6.15 CP accounts for 61.5% of the apple area. The chill accumulation
and the number of flowering days before frost injury in the study area showed consistent
spatial gradient change trend during this period. Additionally, some previous studies have
shown that the arrival of spring phenology (flowering or budding) in fruit trees requires
a combination of chill accumulation in winter and heat accumulation in spring to break
the dormancy of fruit trees [9,29]. The lower chill accumulation in the southwest of the
study area means that fruit trees can receive more heat accumulation and can thus reach
the flowering stage earlier. The chill accumulation between 1 and 17 April 2020 can be used
to infer the response characteristics of apple trees to environmental temperature changes in
the early period of frost damage, which can provide a reference for the estimation of frost
damage loss during flowering.

Based on gridded hourly temperature data with a resolution of 1 km for 17 April
2020, this study calculated the minimum temperature (Figure 7c) and daily temperature
difference (Figure 7d) for this day. The results show that the minimum temperature on
the day of frost gradually decreases from the south to the north of the study area, and the
spatial distribution of the minimum temperature gradually decreases with the increase
of latitude, but there is no obvious gradient distribution in the longitude (Figure 7c). The
spatial distribution of the daily temperature difference gradually increases with the increase
of latitude. However, the daily temperature difference in some areas (35◦35′ to 35◦45′ N,
109◦20′ to 109◦30′ E) of the study area has obvious characteristics of aggregation, and
the daily temperature difference here is about 2 ◦C higher than other areas of the same
latitude (Figure 7d). Previous studies have shown that the low-temperature adaptability of
plants gradually increases as they are exposed to low-temperature conditions in the natural
environment. However, when plants suddenly experience extreme cold weather (e.g., frost),
this may cause damage to plant tissues due to the lack of a low-temperature adaptation
process [8]. Therefore, the minimum temperature and daily temperature difference on the
day of frost damage can be used to determine the loss of orchard production caused by
frost damage during flowering.

3.4. Assessment of Fruit Amount Reduction Ratio Due to Frost during Apple Flowering

Then, an MLR model was constructed based on the apple planting years, the number
of flowering days and chill accumulation before frost, the minimum temperature and
daily temperature difference on the day of frost, and the fruit amount reduction rate
at the positions of the 33 field survey sample points. Finally, based on the obtained
regional dataset of the apple orchard planting years, the number of flowering days and
chill accumulation before frost, and the minimum temperature and the daily temperature
difference on the day of frost, combined with the MLR prediction model for the fruit amount
reduction ratio, a distribution map of the regional fruit reduction rate was obtained, as
shown in Figure 8. Some values greater than 100% are included in the distribution map,
which represent areas where the frost disaster occurred during the flowering period and
the fruit amount in the orchard was completely reduced; these values were all set to 100%.
Additionally, the map also contains values less than 0%, which means that the amount of
fruit in the orchard was not lower in 2020 compared to 2019; similarly, these values were
all set to 0%.

From Figure 8, it can be seen that the frost damage was more severe in the west of the
county than in the east and the proportion of fruit loss gradually increases from east to west.
The area north of 35◦50’ N latitude was unaffected or only slightly affected by frost damage,
whereas most areas south of 35◦50′ N latitude were more seriously affected. Especially
in parts of the southwest (35◦35′ to 35◦45′ N, 109◦20′ to 109◦30′ E), the loss of frost in
orchards was more serious, and the fruit reduction rate reached more than 90%, which
has an obvious aggregation effect in spatial distribution. Considering that the number of
flowering days before the frost in this area with severe frost loss reached 11 to 17 days, the
flowering state of most orchards was already in full bloom. In addition, compared with
other regions, the minimum temperature on the day of the frost in this severe frost loss area
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was only 1.99 to 3.91 ◦C, but the daily temperature difference reached 18.42 to 20.18 ◦C.
Therefore, such a low temperature and large daily temperature difference lead to more
serious fruit frost loss in the orchard in full bloom period. Areas with a reduction ratio of
>90.0% accounted for 18.6% of the total apple planting area of the study region, and only
9.2% of the apple planting area had no frost damage or slight frost damage (reduction ratio
of ≤10.0%).
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Furthermore, the results of the LOOCV analysis showed a good modeling and verifica-
tion accuracy (see Figure 9): the MLR modeling achieved R2, RMSE, and NRMSE values of
0.77, 16.06%, and 16.06%, respectively, while the LOOCV obtained R2, RMSE, and NRMSE
values of 0.69, 18.76%, and 18.76%, respectively.
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4. Discussion
4.1. Evaluation of the Influence of Meteorological and Remote Sensing Factors in the MLR Model

To test the importance of the five parameters of planting years, the number of flow-
ering days and chill accumulation before frost, and the daily minimum temperature and
temperature difference on the day of frost, this paper used the SimLab2.2 tool for parameter
sensitivity analysis. The range of sensitivity values of each parameter was determined
according to the maximum and minimum values of the corresponding sampling points.
The 400 datasets generated for the five prediction parameters were input into the fruit
reduction rate evaluation model, and 400 simulated reduction rates were thereby obtained.
Then, the simulated parameter dataset and fruit number reduction rates were input into
SimLab2.2, and the sensitivity results corresponding to the five parameters were thus
obtained (see Table 2).

Table 2. The results of the parameter sensitivity analysis of the MLR model obtained using the
SimLab2.2 software.

Parameters Range
(400 Samples)

First-Order
Sensitivity Index

Total-Order
Sensitivity Index

Planting years 2–25 0.15 (10.86%) 0.17 (11.62%)
Flowering days 1–18 0.12 (8.78%) 0.14 (9.45%)

Chill accumulation 3.8–8.2 0.25 (18.45%) 0.27 (18.50%)
Minimum temperature 0.2–3.8 0.74 (54.19%) 0.75 (52.15%)

Daily temperature difference 17.2–18.6 0.10 (7.72%) 0.12 (8.28%)
Note: The first-order sensitivity index reflects the direct contribution rate of parameter Xi to the model results,
and the total-order sensitivity index includes the sum of the contribution rate of the interaction between the
independent parameter Xi and other parameters to the model result. The percentages in parentheses represent
the parameter’s contribution to the sensitivity index.

The results in Table 2 show that, regardless of whether the influence of the parameters
on the prediction results was considered independently (first-order sensitivity index) or
comprehensively (total-order sensitivity index), a consistent parameter sensitivity order
was obtained: minimum temperature > chill accumulation > planting year > flowering
days > daily temperature difference. That is, the fruit amount reduction rate is most
sensitive to the minimum temperature on the day of frost, with sensitivity indices ≥0.74.
The parameter with the second-highest sensitivity index is the chill accumulation before
frost, with sensitivity indices ≥0.25. The sum of the contribution rates of the minimum
temperature, chill accumulation, and planting year accounts for more than 82% of the
result, which indicates that these three parameters should be taken as the main model
parameters in future assessments of orchard frost loss. It is worth noting that the simulated
fruit reduction rate is more sensitive to the planting years (first-order and total sensitivity
indices of 0.15 and 0.17, respectively) than the number of flowering days and the daily
temperature difference. This shows that planting year information (obtained based on
remote-sensing data) is effective for the assessment of frost disasters in apple orchards and
has potential for use in future applications.

4.2. Frost Loss Assessment of Apple Orchard under the Background of Frost Injury

The accurate estimation of frost losses in orchards is essential for optimizing orchard
management strategies, disaster assessment, procurement planning, and logistics and
transportation. Research on frost risk assessment in orchards has been widely reported and
has included studies of the impact of frost on the future distribution of grape planting in Eu-
rope [30], as well as the spring frost risk assessment of fruit trees in southern Patagonia [12],
orchards in California [15], and high-altitude areas in Switzerland [13]. Researchers have
also used remote sensing technology to estimate the damage to winter wheat caused by
spring frost based on the difference in the vegetation index of winter wheat before and
after the spring frost to assess the degree of damage [17]. However, the leaves and flowers
of apple trees are relatively sparse in the flowering period. After frost, it is difficult to
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effectively identify frost damage to apple flowers based on satellite remote sensing images.
In recent years, with the development of the agricultural insurance industry, the demand
for agricultural frost damage assessment has become more and more urgent. However,
the goal of most studies tends to be frost damage risk assessment, whereas there are few
reports on the assessment of frost loss in orchards.

In field investigations, researchers have found that the degree of frost loss of apples
is related to the orchard planting years, the number of flowering days before frost, and
the minimum temperature and daily temperature difference on the day of frost. In the
present study, to consider the influence of external environmental factors on fruit trees, the
element of the chill accumulation of fruit trees in the early stage of flowering was added
to the model. Therefore, to solve the limitations of the estimation of frost loss in orchards
at a regional scale, this article combines remote sensing and meteorologically derived
information based on previous research [21] (Yaohui Zhu et al., unpublished manuscript).
This paper proposes a method based on the remote sensing-based extraction of orchard
planting years, and the meteorological data-based extraction of the number of fruit tree
flowering days and chill accumulation before frost and the minimum temperature and
daily temperature difference on the day of frost damage, which, combined with field survey
data of orchard yield loss, is used to construct a frost damage loss assessment model.

4.3. Application Prospects for the Assessment of Fruit Amount Loss Based on Frost Injury Analysis

Traditional assessments of orchard frost loss are often obtained by comparing the
number of fruits in the current year and previous years by means of field surveys. However,
manual survey methods are time-consuming and laborious and are difficult to generalize
to regional scales [31]. Therefore, this research proposes a method combining remote
sensing and meteorologically derived information to quickly assess fruit loss in orchards
due to frost damage. Accurately assessing the proportion of orchard production reduc-
tion due to frost damage at a regional scale is of great significance for optimizing water
and fertilizer management, planting planning, product processing, and sales programs
of orchards [12,13,15,32]. This can effectively promote the reform of the traditional devel-
opment layout of the fruit industry and further guide management departments of the
government fruit industry to formulate market supply plans [14] and price control [33]
as well as improve the stability of market operations and consumer satisfaction. There-
fore, timely access to regional orchard frost loss information has wide-ranging impacts on
governments, enterprises, farmers, and consumers.

Additionally, during the flowering period of apples, the flowers and buds of the fruit
trees are extremely vulnerable to frost, which often results in a significant reduction in the
amount of fruit in the orchard or may even cause no fruit to be harvested. The associated
economic losses can be devastating to farmers. In the process of agricultural development,
the agricultural insurance system is playing an increasingly important role in disaster risk
management [34]. After an orchard suffers frost damage during the flowering period,
accurate and efficient orchard loss estimation is conducive to the rapid implementation
of insurance claims by insurance companies, which not only speeds up the payment
of farmers’ economic losses but also reduces the insurance company’s manpower input
and expenses.

5. Conclusions

This research proposes an orchard frost loss assessment method using meteorologically
derived information (the number of flowering days and chill accumulation before frost
and the minimum temperature and daily temperature difference on the day of frost) and
remote sensing-derived information (apple orchard planting year), combined with data
from field investigations of the orchard fruit number reduction ratio. The verification
results show that the simulation accuracy of fruit reduction rate in the orchard is good, and
its R2, RMSE and NRMSE reach 0.69, 18.76% and 18.76% respectively. Additionally, the
SimLab2.2 tool was used to evaluate the sensitivity of the simulation results to the model
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parameters. The results showed that, for both the first-order and total-order sensitivity
index, the sum of the contribution rates of the minimum temperature, chill accumulation,
and planting year accounts for more than 82% of the result. Therefore, it is recommended
that these three parameters should be considered as the main model parameters when
assessing the frost loss of apple orchards in the future. In the future, after frost disaster
occurs during the flowering period in Luochuan County, this research can not only guide
the government to formulate market supply and price control plans but can also provide
references for insurance companies to formulate insurance claims plans. Additionally, the
frost loss evaluation model that is planned to be established in a follow-up study will
further consider the differences in apple varieties in the study area, which will potentially
allow the frost loss evaluation method to be extended to other regions.
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