& emote sensing

Article

A Performance Evaluation of Vis/NIR Hyperspectral Imaging to
Predict Curcumin Concentration in Fresh Turmeric Rhizomes

Michael B. Farrar 12*©, Helen M. Wallace 1-3, Peter Brooks 12, Catherine M. Yule 2, Iman Tahmasbian 4®,
Peter K. Dunn 2 and Shahla Hosseini Bai 13

check for

updates
Citation: Farrar, M.B.; Wallace, H.M.;
Brooks, P,; Yule, C.M.; Tahmasbian, I.;
Dunn, PK.; Hosseini Bai, S. A
Performance Evaluation of Vis/NIR
Hyperspectral Imaging to Predict
Curcumin Concentration in Fresh
Turmeric Rhizomes. Remote Sens.
2021, 13,1807. https://doi.org/
10.3390/1s13091807

Academic Editor: Chein-I Chang

Received: 10 March 2021
Accepted: 2 May 2021
Published: 6 May 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Genecology Research Centre, School of Science, Technology and Engineering, University of the Sunshine
Coast, ML 40, Locked Bag 4, Maroochydore DC, QLD 4558, Australia;

helen.wallace@griffith.edu.au (H.M.W.); pbrooks@usc.edu.au (P.B.); s.hosseini-bai@griffith.edu.au (S.H.B.)
School of Science, Technology and Engineering, University of the Sunshine Coast, ML 40, Locked Bag 4,
Maroochydore DC, QLD 4558, Australia; pdunn2@usc.edu.au (P.K.D.); cyule@usc.edu.au (C.M.Y.)

Centre for Planetary Health and Food Security, School of Environment and Sciences, Griffith University,
Nathan, Brisbane, QLD 4111, Australia

Department of Agriculture and Fisheries, Queensland Government, Toowoomba, QLD 4350, Australia;
iman.tahmasbian@daf.qld.gov.au

*  Correspondence: mfarrarl@usc.edu.au

Abstract: Hyperspectral image (HSI) analysis has the potential to estimate organic compounds in
plants and foods. Curcumin is an important compound used to treat a range of medical conditions.
Therefore, a method to rapidly determine rhizomes with high curcumin content on-farm would be of
significant advantage for farmers. Curcumin content of rhizomes varies within, and between varieties
but current chemical analysis methods are expensive and time consuming. This study compared
curcumin in three turmeric (Curcuma longa) varieties and examined the potential for laboratory-
based HSI to rapidly predict curcumin using the visible-near infrared (400-1000 nm) spectrum.
Hyperspectral images (n = 152) of the fresh rhizome outer-skin and flesh were captured, using
three local varieties (yellow, orange, and red). Distribution of curcuminoids and total curcumin was
analysed. Partial least squares regression (PLSR) models were developed to predict total curcumin
concentrations. Total curcumin and the proportion of three curcuminoids differed significantly
among all varieties. Red turmeric had the highest total curcumin concentration (0.83 £ 0.21%)
compared with orange (0.37 £ 0.12%) and yellow (0.02 £ 0.02%). PLSR models predicted curcumin
using raw spectra of rhizome flesh and pooled data for all three varieties (R% = 0.83, R2p =0.55,
ratio of prediction to deviation (RPD) = 1.51) and was slightly improved by using images of a single
variety (orange) only (R%. = 0.85, R2p = 0.62, RPD = 1.65). However, prediction of curcumin using
outer-skin of rhizomes was poor (RZc =0.64, RzP =0.37, RPD = 1.28). These models can discriminate
between ‘low” and ‘high” values and so may be adapted into a two-level grading system. HSI has the
potential to help identify turmeric rhizomes with high curcumin concentrations and allow for more
efficient refinement into curcumin for medicinal purposes.

Keywords: curcumin; curcuminoids; hyperspectral imaging; jack-knifing; partial least squares
regression (PLSR); turmeric (Curcuma longa); visible-near infrared (Vis/NIR)

1. Introduction

Hyperspectral imaging (HSI) is an emerging technology that has recently been used to
non-destructively evaluate a variety of chemical compounds and quality indicators in soils
and agricultural products (nuts, fruits, and vegetables) [1-4]. Traditional laboratory-based
methods to detect compounds in plants are destructive and require specialised instrumenta-
tion and lengthy sample preparation procedures [5,6]. Additionally, soil physico-chemical
properties, organic amendments, and crop growing conditions can lead to high variation in
the chemical composition of plant materials [7,8]. Therefore, rapid and non-destructive HSI
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methods are required to reduce cost and can improve efficiency in agricultural processes [9].
HSI can be adapted for different purposes including predicting nutrient concentrations in
materials and identifying contamination and adulteration in foods and products refined
from plants and animals [1,3,10].

Hyperspectral imaging utilises both spectral and spatial information collected by a
single instrument and in doing so, generates large datasets [11]. As such, various methods
exist to pre-process data and reduce dimensionality without losing important information.
For example, many spectral wavelengths provide additional unnecessary information
including light scatter and noise [1,12,13]. Transformations are applied to raw spectra
to remove additive and multiplicative scatter effects prior to model development [14].
Minimal spectral transformation is preferred, with the aim, to produce robust models
with high prediction accuracy. Transformations may be applied to data individually or
in combination and many have specific calibration options leading to a multitude of user
options that must be selected through trial and error [15]. For example, derivatives (par-
ticularly first and second) are useful for removing baseline shifts and selecting important
wavelengths, whereas multiplicative scatter correction (MSC) can correct for effects such
as light scattering due to variation in particle size [11]. Importantly, transformed spectra
may not always perform better than untransformed spectra and choices must be made
following analysis of any given data set [16]. Multivariate models are then developed with
raw or transformed spectra using appropriate chemometric algorithms, such as partial
least squares regression (PLSR) [11,16]. PLSR remains appropriate where collinearity exists
between predictor variables and has successfully been used to analyze plant-based sam-
ples [17]. Hyperspectral imaging can be adapted to detect important compounds used in
pharmaceutical products and in the plant materials they are derived from.

Curcumin is an important natural compound used for treatment of inflammatory
disorders, carcinogenesis, and oxidative stress-induced pathogenesis [18-20]. Curcumin is
refined from Curcuma spp. that contain varying levels of three polyphenolic curcuminoids:
(1) curcumin, (2) desmethoxycurcumin, and (3) bisdemethoxycurcumin [21,22]. However,
the genus Curcuma has 80 species and each species can have multiple varieties, for example,
C. longa has 70 varieties in India [23]. It is important to know the level of curcumin in
cultivated rhizomes and to identify high-yielding varieties. Traditional measurement of
curcumin is carried out destructively by extracting curcumin from fresh rhizomes or dried
powder and analysing it using high performance liquid chromatography (HPLC) or ultra-
violet and visible spectrophotometry [7,24,25]. Isolation of curcumin from plant material
is time consuming, laborious, and expensive, requiring specialised laboratory equipment
and trained personnel [6,21]. Therefore, a rapid and non-destructive method to quantify
curcumin in fresh rhizomes would represent a significant advantage for farmers and
processors. Hyper- and multi-spectral detection of curcumin in turmeric powders using
a variety of methods have been well investigated [26-28]. For example, HSI of midrange
NIR spectra has successfully predicted curcumin concentration in turmeric powder [29].
However, prediction of curcumin using HSI images of fresh turmeric rhizomes has not yet
been thoroughly explored.

Turmeric rhizomes contain an outer and inner zone with intermediate layers and
individual vascular bundles, and as such, present difficulty for development of non-
destructive technologies [22]. Therefore, studies describing the development of spectral
methods to predict curcumin using rhizome skin, to the best of our knowledge, do not exist.
Predicting chemical composition using plant material skin has always been challenging
because spectral radiation needs to penetrate into the plant material to allow for internal
measurement [30]. Additionally, many studies have explored hyperspectral methods using
refined turmeric powders whereas studies using fresh rhizomes are limited. Therefore
this study aimed to (1) compare total curcumin concentration and distribution of different
curcuminoids in three varieties of C. longa grown in eastern Australia; and (2) evaluate
the potential of PLSR models developed using visible-near infrared (Vis/NIR) spectra
(400-1000 nm) to predict total curcumin concentration in fresh turmeric rhizomes. In
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particular we explored the potential of hyperspectral imaging to predict curcumin non-
destructively in fresh rhizome outer-skin and destructively using a cross-section of cut
rhizome flesh. Three undescribed and commercially grown varieties of turmeric of different
colours (yellow, orange, and red) were examined [31].

2. Materials and Methods
2.1. Experimental Design Overview

In this study, we used fresh turmeric rhizome samples to describe total curcumin
concentration (%) and curcuminoid distribution in three undescribed local varieties and
explore the potential for HSI and PLSR model development to predict total curcumin (%)
using images of the fresh rhizome skin and flesh cross section (Figure 1).

4 h Model Rejected
Fresh Turmeric Samples
v v / o
PikaXC2 Curcumin / { \\"a. .
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Figure 1. Flowchart illustrating the experimental design features and processes used to develop hyperspectral models for

detection of curcumin if fresh turmeric rhizomes.

2.2. Sample Collection and Preparation

Three varieties (yellow, orange, and red) of turmeric (C. longa) were obtained from
five sites at different organic commercial and hobby farms throughout South East Queens-
land and northern New South Wales (Figure 2). The sampling sites included two loca-
tions at a non-certified organic farm at Mount Mellum, (1) road paddock (26°47'38.77"'S,
152°56/20.13"E) and (2) bottom paddock (26°47'37.17""S, 152°56/25.14"'E), a certified organic
farm at (3) Kandanga (26°22/35.86"'S, 152°41'5.60"E) and (4) Terania Creek (28°59'25.70"'S,
153°30'13.01”E) and a hobby farm at (5) Lake Macdonald (26°22/6.39"S, 152°55'55.09"E)
(Table 1). Sampling locations were geographically disparate to capture variability in cur-
cumin concentrations within the different varieties that may arise from soil, climate, and
farm management practices. The orange variety is preferred for commercial cultivation
due to rhizome size and ease of post-harvest processing [31].
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Figure 2. Rhizomes and foliage of the three turmeric (Curcuma longa) varieties orange (a), yellow (b), and red (c), examined
in the study. Ruler shows scale in 1 mm increments and guide indicates turmeric anatomical features including: leaf, flower,
mother rhizome, finger rhizomes, and roots.

Table 1. Distribution of sample variety and location of collection for all samples and in the calibration and external test sets.

All Samples Calibration Set Test Set
Variety Variety Variety
- All Varieties All Varieties All Varieties

Location Yellow Orange Red Yellow Orange Red Yellow Orange Red
Mt. Mellum 1 6 55 7 68 6 44 5 55 0 11 2 13
Mt. Mellum 2 9 17 8 34 8 13 7 28 1 4 1 6
Lake MacDonald 0 10 0 10 0 7 0 7 0 3 0 3
Kandanga 0 24 0 24 0 21 0 21 0 3 0 3
Josh Rust 4 12 0 16 2 8 0 10 2 4 0 6
Total 19 118 15 152 16 93 12 121 3 25 3 31

A total of 190 samples were collected from five study sites over a 12-month period
between November 2018 and November 2019 to capture variation over the growth cycle.
At the time of sampling, mother and connected finger rhizomes were lifted from the soil
and one primary finger was cut from the mother rhizome, washed and airdried. Finger
rhizomes were approximately 5-10 cm long. Samples from Terania Creek were express
mailed to the laboratory to be delivered overnight. Samples were stored in a ziplock bags
at room temperature for subsequent analysis within two days using the hyperspectral
imaging system and HPLC.

2.3. Hyperspectral Imaging and Image Acquisition

Images were acquired using a laboratory-based visible-near infrared (Vis/NIR) hyper-
spectral imaging system (Figure 3a). The hyperspectral imaging system used incorporates a
12-bit push-broom line scanning camera with an operational spectral range of 400-1000 nm,
a spectral sampling interval of ~1.3 nm and spectral resolution of 2.3 nm (Resonon Pika
XC2, Montana, USA) (Figure 3a). In the laboratory and immediately before hyperspectral
imaging, a complete disc of each finger rhizome was cut laterally and approximately one-
third from the base of the rhizome with a clean knife. The rhizome disc (cross-section) and
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remaining rhizome was placed on a black mat 320 mm below the camera lens and scanned
using the hyperspectral system (Figure 3).

Figure 3. Scanning turmeric rhizome using hyperspectral imaging system Pika XC2 camera mounted 320 mm above the

push-broom linear transition stage mat (a), selection of the rhizome flesh (cross-section) (b), and skin (c) region of interests

(ROISs) used to extract mean spectral reflectance for each sample.

Finger rhizome samples were illuminated on a linear translation stage driven by
electronic stepper motor for <1 min using four wide-spectrum (400-2500 nm), current
controlled (12V DC) quartz halogen lights. Stage progression, data acquisition and image
calibration were coordinated via SpectrononPro computer software v2.124 (Resonon Inc.,
Bozeman, MT, USA). Image calibration was undertaken prior to image acquisition in a
darkened room and following calibration by removing dark current noise (dark calibration)
and response correction (white calibration) by SpectrononPro software. Dark correction (D)
was obtained by taking an image with the lens cap on. White correction (W) was obtained
by taking an image of a highly reflective Lambertian material calibration sheet providing
99% reflectance. Reflectance was then calculated from raw spectral reflectance (Ip) using:

R=(p —D)/(W —-D), M

Following scanning, the rhizome was reassembled to minimise oxidation and stored
in a ziplock bag at room temperature until chemical extraction of curcumin within 6 h.
Prevalence of curcumin cells varies between apical, nodal, and internodal regions therefore
this method was employed to capture curcumin variation due to anatomical features [32].
Some of the rhizome discs sampled were internodal and others included a portion of
undeveloped node (Figure 4).

2.4. Data Pre-Processing: Region of Interest Selection, Outlier Detection and Data Set Assignment

Regions of interest (ROI) were manually cropped from the background using the
lasso tool function in SpectrononPro software by highlighting the (1) whole raw flesh
inside the rhizome cross section, and (2) skin on the outside of the rhizome (Figure 3b,c).
For each highlighted ROI, the average reflectance of selected pixels was extracted using
SpectrononPro software v2.124 (Resonon Inc., Bozeman, MT, USA).
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Figure 4. True colour and infrared images of the (a,b) yellow, (c,d) orange, and (e,f) red turmeric varieties examined in
the study using hyperspectral images taken with PikaXC2. True colour images use spectral wavelengths: red = 640 nm,
green = 550 nm, blue = 460 nm, and infra-red images use spectral wavelengths: red = 860 nm, green = 650 nm, blue = 550 nm.

Scale bar represents 1 cm increment.
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Outlying data points were detected and removed in order to establish a reliable
and robust model [33]. Detection and removal of spectral outliers was carried out using
principal component analysis (PCA) of the pooled varieties data set and visual inspection
of the plotted spectra [34]. Three samples were spectrally and morphologically different
and determined to be tuberous roots (Yujin), not rhizomes and were subsequently removed
from the pooled data set [35]. Remaining samples (n = 152) were randomly assigned to
calibration (n = 121) and test (n = 31) data sets (80/20%, respectively) for use in model
development and evaluation (Table 1). This process was repeated until approximately
relative proportions (80/20%) for each of the turmeric varieties were represented in both
the calibration and test data sets (Table 1). Data sets were tested for centre and homogeneity
of variance. Mean curcumin concentration and variation within the data in the calibration
and test sets were not statistically different (p > 0.05) (Table 2). Samples of the orange
variety (n = 118) only were used develop an additional model for a single variety only
(Tables 1 and 2).

Table 2. Descriptive analysis of total curcumin (%) concentration for different varieties and locations in the calibration and

test sets.
All Samples Calibration Set Test Set
Variety Variety Variety
All Varieties All Varieties All Varieties
Yellow Orange Red (%) Yellow Orange Red (%) Yellow Orange Red (%)
(%) (%) (%) (%) (%) (%) (%) (%) (%)

Mean 0.023 0.369 0.830 0.372 0.023 0.368  0.805 0.366 0.021 0.371 0.929 0.391
SD 0.022 0.121 0.224 0.227 0.023 0120  0.232 0.226 0.018 0126  0.192 0.241
SE 0.005 0.011 0.058 0.018 0.006 0.012  0.067 0.021 0.010  0.025 0.111 0.043
CV 0.957 0.328 0.270 0.611 0.997 0.327  0.288 0.618 0.838  0.340  0.207 0.617
Min 0.003 0.062 0.388 0.003 0.003 0.062  0.388 0.003 0.007  0.105 0.708 0.007
Max 0.076 0.673 1.133 1.133 0.076 0.673 1.133 1.133 0.041 0.648 1.050 1.050

Skewness 1.336 -0.177  —0.345 0.836 1.352 -0.129 —0.172 0.817 1.212 —0.365 —1.711 0.983

SD: Standard deviation; SE: Standard error; CV: Coefficient of variation. Not statistically different between calibration and test data sets at
p < 0.05 independent student’s t-test.

2.5. Curcumin Quantitation Using HPLC

The complete rhizome disc of flesh including skin (~1 g) was analysed for curcumin
concentration. Samples were extracted with 50 mL Milli-Q H,O and blended for 2 min and
made up to 100.0 mL with acetonitrile (ACN) in a 100.0 mL volumetric flask. Samples were
sonicated and shaken until no remaining colour was visible in the turmeric tissue. Solutions
were filtered through 0.45 um filter prior to analysis. Chromasolv™ HPLC gradient grade
ACN and HPLC grade Milli-Q water was used in all analyses.

The reverse-phase HPLC (Agilent Technologies 1290 Infinity II, quarternary pump,
autosampler, column oven and diode array detector) used a 75 x 4.6 mm column (Phe-
nomenex Synergi Fusion) with 4 um particle size. Mobile phase A (MPA) was water:ACN
(75:25%, v/v) and mobile phase B (MPB) was ACN (100%). The pump flow rate was
1.0 mL min~! and programmed to start at MPA /MPB 65:35 for 1.0 min, then grade to 45:55
at 6.0 min, then to 0/100 at 8.0 min, isocratic until 9.0 min, then back to 65:35 at 9.5 min
and isocratic until 10.0 min. Injection was 20 uL, the column oven was set to 35 °C and
detection was at 210 and 425 nm.

Standard aqueous solution of curcumin was prepared with curcumin (0.02 g) (Sigma-
Aldrich, Saint Louis, MO, USA) sonicated and dissolved in 200 mL solvent (water 50%/ACN
50% (v/v)). Calibration standards were prepared from curcumin stock standard by serial
dilution prior to analysis via HPLC as above. A calibration curve was constructed where
the known concentration curcumin was plotted against the total peak area of curcumin
(A = 425 nm). Calibration curve for ten standards showed good linearity (R? = 0.9998)
over the range of concentrations from 0.19 to 98.85% total curcumin. A further nine sam-
ples were analysed in triplicate to validate the HPLC method and are presented in the
Supplementary Materials (Figure S1).

The three curcuminoids in extracts of rthizomes were separated well by HPLC (Figure 5).
Curcuminoids: bisdemethoxycurcumin, desmethoxycurcumin, and curcumin eluted at
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approximately 3.34, 3.59, and 3.84 min (detection 425 nm) respectively for all turmeric
varieties analysed (Figure 5 and Figure S2). Total curcumin concentration was determined
by linear regression using the standard curve. Therefore, the proportion of curcumin
in individual samples was determined against the standard calibration curve by linear
regression. Peak areas of the three separate curcuminoids were obtained and summed for
use as total curcumin (%) reference values in further PLSR model development.
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Figure 5. Typical HPLC chromatograms (A = 425 nm) of the three turmeric (Curcuma longa) varieties
yellow (a), orange (b), and red (c) used in the study. The chromatograms show three distinct peaks for
the analogues of curcumin (bisdemethoxycurcumin, demethoxycurcumin and curcumin respectively)
and different relative proportions between the different varieties.

2.6. Calibration Model Development and Spectral Data Transformations

LSR models were developed to describe the association between total curcumin
concentrations in turmeric rhizome samples (described in an n x m matrix X) to their
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relative reflectance in the full spectral range (described in a n x p matrix Y) [36,37]. The
goal of PLSR is to make predictions of the matrix Y values using the information in matrix
X when the number of predictors (m) is much larger than the number of observations n
(i.e., m > n). PLSR models are developed in the current study because the number of
predictor variables (m = 462) is greater than the number of observations (n < 121) and
therefore standard multivariate regression models are not appropriate [33]. Additionally,
PLSR models are robust and reliable and can analyse noisy datasets and where collinearity
(often a feature of hyperspectral data) exists among predictor variables [17,36]. PLSR
finds a set of underlying variables (called latent variables, similar to Principal Components
Analysis) common to X and Y that explain as much of the covariance between X and Y as
possible [36,37]. The matrices X and Y are decomposed as X = TPT +Eand Y = UQT +F,
where these decompositions of X and Y take into account information from each other. The
aim of the decomposition is to maximize the covariance between T (the latent variables
from X) and U (the latent variables from Y). The PLSR model was fitted using the non-linear
iterative partial least squares (NIPALS) algorithm [36].

Once the X and Y matrices have been decomposed and the latent variables described,
the decomposition of X (the spectral information matrix) is then regressed on the dependent
data Y (curcumin concentration matrix) such that:

Y = TDQT = X3, )

where £ is the regression coefficient matrix [36,37].

The optimal number of LVs for PLSR calibration models were selected at the minimum
predicted residual error sum of squares (PRESS) of the validation set [38]. To avoid
overfitting data and to obtain optimum performance from the model a full validation
(leave-one-out) method was used [38,39]. This was done by systematically removing one
sample from the data set and converging the model for the remaining samples. Then using
the model to predict the sample left out and repeating the procedure for all samples [38].

Calibration models using both raw and transformed data were evaluated during
model development using the optimal number of latent variables. PLSR models were
developed using The Unscrambler v11 software package (CAMO Software Inc., Trondheim,
Norway). A wide range of data transformation techniques were systematically performed
on calibration spectra to scatter effects and increase signal to noise ratio [40]. Transforma-
tions explored included smoothing, Savitzky—Golay (first to forth) derivatives with varying
polynomial orders, multiplicative scatter correction (MSC), extended multiplicative scatter
correction (EMSC), orthogonal signal correction (OSC), standard normal variate (SNV),
detrending and various combinations of techniques were investigated to select optimal
calibration [40-42]. All computations for outlier detection and data transformations and
were performed using The Unscrambler® software package (version 11, CAMO Software
Inc., Trondheim, Norway).

Selection of the best-fitted calibration using the highest coefficient of determination
for calibration (R%.) and cross-validation (R?.y) and the lowest root mean square error
for calibration (RMSE,) and cross-validation (RMSE,y). The best models identified were
further developed using wavelength selection.

2.7. Wavelength Selection Using Jack-Knife Uncertainty Testing

Hyperspectral data naturally contains very large numbers of variables (462 spectral
bands in this study) and many variables have high collinearity which can decrease the
ability of PLSR to successfully quantitate chemical reference values [38]. Therefore, selecting
the most informative wavelengths can simplify and enhance interpretation and accuracy
of models due to a reduction in latent variables in the models [43]. Normally, the analysis
of variability of the PLSR regression coefficients gives information about the significance
of variables. In this study, uncertainty testing (Jack-knifing) was used to select variables



Remote Sens. 2021, 13, 1807

10 of 20

by calculating the uncertainty estimates s?(b) associated with the regression coefficients (b)
and loadings to remove unstable wavelengths in the models using:

Zb:EMb—bmz, 3
s°(b) MmZ:)l( ) 3)

where M = the number of segments [44]. Using this method, wavelengths that are consid-
ered important in predicting curcumin well are retained in the model. This process was
repeated until model accuracy (R%. and R?) decreased from the previous model.

2.8. Evaluation of Calibration Models Using Test Data

The best fitted calibrations models were used to predict curcumin concentration in
the test data. Accuracy of the calibration models to predict curcumin in new samples was
evaluated by R? and RMSE for the test data set (R%p and RMSEp). Ratio of prediction to
(standard error) deviation (RPD) was also calculated using [17,45]:

RPD = SDy/RMSE,,, @)

Using this indicator, RPD below 1.5 is considered ‘very poor” and should not be used
for prediction [46]. RPD between 1.5 and 2.5 can be considered “useable’ but with potential
for increased efficacy, and ‘excellent” if above 2.5 [46].

2.9. Statistical Analysis of the Different Turmeric Varieties

Descriptive analysis of the calibration and test data sets and tests for equality and
difference between calibration and test sets, outlier detection, spectral data transforma-
tions and PLSR computations were performed using The Unscrambler® software package
(version 11, CAMO Software Inc., Trondheim, Norway). The three varieties of turmeric
were analysed for differences in total curcumin and the distribution of curcuminoids using
one-way Analysis of Variance (ANOVA) and likelihood ratio test by generalized linear
modelling using R (v4.0.0) in the RStudio (v1.2.5042) environment [47-49].

3. Results
3.1. Quantitation of Three Curcuminoids and Total Curcumin in Varieties of C. longa

Total curcumin (%) concentrations were significantly different among all varieties
(Figure 6). The red variety had higher total curcumin (%) compared with the other varieties
and ranged between 0.39 and 1.13% (Figure 6). The orange variety had higher curcumin
(0.369%) compared with the yellow variety and ranged between 0.06 and 0.67% (Figure 6).
The yellow variety had lower total curcumin compared with red and orange and ranged
from <0.01 to 0.08% (Figure 6).

The turmeric varieties also contained different proportions of three curcuminoids
(Figure 7). The red variety had higher proportion bisdemethoxycurcumin than both orange
and yellow (Figure 7a). The orange variety contained higher proportion demethoxycur-
cumin compared to yellow and similar compared to red (Figure 7b) and the yellow variety
had higher proportion curcumin compared with both orange and red (Figure 7c).

3.2. Descriptive Statistics for Data Sets Used in Model Calibration and Prediction

Mean curcumin concentration for the pooled data set (containing all three varieties)
for calibration (0.366%) and test (0.391%) sets was not statistically different (Table 2). Mean
curcumin concentration in the orange variety only data set for calibration (0.368%) and test
(0.371%) sets was not statistically different (Table 2).



Remote Sens. 2021, 13, 1807

11 of 20

1.25}
a

1.00}
<
C
€ 0.75} b
= —_—
(S
>
o
w 0.50f
°
- ——

0.25}

C
S E— —
0.00 L —
Yellow Orange Red

Variety

Figure 6. Total curcumin (%) concentration in fresh rhizomes of varieties (yellow, orange and red) (a,
b, ¢) examined in the study.

=+

o
(2]

a
100} ook
S |
< b
E 75; < 80} T
3] €
a ? 50+ 3 60} -
2 =
‘ ‘qE'j b a ab o
2 25-_'_EEE o

a

., 100f

X

£

E sl

5

[§)

<

o 50t

c

kS

5

E 25}

m c

ol :

Yellow Orange Red

Variety

Yellow Orange Red Yellow Orange Red

Variety Variety

Figure 7. Percentage distribution of the three curcuminoids bisdemethoxycurcumin (a), demethoxycurcumin (b), and

curcumin (c) within different varieties of turmeric examined in the study. Different letters within each panel are statistically

different (p < 0.001).

3.3. Attributes of Developed Prediction Models Using the Full Spectrum and Transformed Spectra

Partial least squares regression (PLSR) models developed using images of rhizome
flesh had higher accuracy and prediction performance than rhizome skin. Calibration
models to predict total curcumin were first developed using pooled data using from
three turmeric varieties and images of rhizome skin (R%. = 0.64, RMSE. = 0.136) and flesh
(R%. = 0.83, RMSE, = 0.093) (Figure 8a,b). Models were examined for prediction perfor-
mance using a test set of images of rhizome skin (R%, = 0.37, RMSE, = 0.188,
RPD = 1.28) and flesh (Rzp = 0.55, RMSE,, = 0.160, RPD = 1.51) (Figure 8a,b). Additionally,
reference values were compared with predicated values and deviation using samples in
the test set (Figure 8c). A wide variety of transformations were investigated and models
using transformed spectra with the highest R?. are presented in Table 3. Application
of Savitzky—Golay second order transformation with symmetric 11-point smoothing to
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spectra increased R?, for flesh (R2. = 0.95, RMSE, = 0.050), however transforming spectra
did not improve models using images of rhizome skin (R%. = 0.63, RMSE, = 0.137) (Table 3).

a b
Cal: R? = 0.64; RMSE¢ = 0.136 Cal: R? = 0.83; RMSE¢ = 0.093
Val: R? = 0.36; RMSEy = 0.181 Val: R? = 0.70; RMSEgy = 0.125
Test: R? = 0.37; RMSEp = 0.188; RPD = 1.28 Test: R? = 0.55; RMSEp = 0.160; RPD = 1.51
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Figure 8. Models developed using raw reflectance spectra from three turmeric varieties (yellow, orange, and red) and
all available wavelengths of rhizome skin (a), and rhizome flesh (b); figures show measured vs. predicted curcumin (%)
concentration in the calibration set (Cal): open triangle; validation set (Val): open upside-down triangle; and test set: closed
circle predicted curcumin concentration. Predicted curcumin (%) (closed circle) for individual samples in the test set using
the flesh model plotted with measured reference value (cross) and deviation bars (similarity to calibration samples) for
individual samples in the test data set (c).
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Table 3. Performance of PLSR models to predict total curcumin (%) concentration of fresh turmeric rhizomes using a variety

of spectral analytical techniques.

Model Images Transformation WL LV R%¢c R%cv RMSEc RMSEcy R?p RMSEp RPD

Three varieties pooled with:
. Flesh 95 8 0.71 0.64 0.12 0.14 0.55 0.16 1.52
wavelength selection Skin 9 4 025 0.18 0.19 0.21 027 020 1.19
best transformation/s Flesh SG 462 14 0.95 0.74 0.05 0.12 0.37 0.19 1.28
Skin SG 462 6 0.63 0.43 0.14 0.17 0.48 0.17 1.41
best transformation/s + Flesh SG 25 4 0.71 0.67 0.12 0.13 0.52 0.16 1.47
wavelength selection Skin SG 88 3 0.55 0.48 0.15 0.16 041 0.18 1.32

Orange variety only with:

. Flesh 28 8 0.70 0.58 0.07 0.08 0.51 0.09 1.46
wavelength selection Skin 180 2 020 017 011 011 011 011 1.15
best t h tion/ Flesh SG 462 9 0.85 0.61 0.05 0.08 0.57 0.08 1.56
est transtormation/s Skin SG + MSC 462 1 0.19 0.16 0.11 0.11 0.08 0.12 1.07
best transformation/s + Flesh SG 33 3 0.75 0.71 0.06 0.07 0.51 0.09 1.45
wavelength selection Skin SG + MSC 54 3 0.28 0.22 0.10 0.11 0.24 0.11 117

WL: Number of remaining wavelengths after wavelength selection to reduce dimensionality by uncertainty (Jack-knife) testing; LV: Optimal
latent variables in the model; RPD: Ratio of prediction to deviation SG: Savitzky—-Golay 2nd order derivative transformation with symmetric
11 point smoothing and 2nd order polynomial; SG + MSC: Savitzky-Golay 2nd order derivative transformation with symmetric 16 point
smoothing and 2nd order polynomial followed by multiplicative scatter correction.

Calibration models were developed using data from the orange variety only from
images of rhizome skin (R%. = 0.21, RMSE, = 0.107) and flesh (R?. = 0.85, RMSE, = 0.046)
(Figure 9a,b). Models were examined for prediction performance using a test set of im-
ages of rhizome skin (R?, = 0.21, RMSE, = 0.110, RPD = 1.15) and flesh (R?, = 0.62,
RMSE,, = 0.076, RPD = 1.65) (Figure 9a,b). Additionally, reference values were compared
with predicated values and deviation using samples in the test set (Figure 9¢c). Applica-
tion of spectral transformations did not improve model accuracy for models using the
orange variety only. Results of all models developed using the full spectrum and respective
prediction performance using test data are depicted in Table 3. Models developed using
pooled data from all three varieties were tested for prediction robustness using test data for
rhizome skin (R?p = 0.37, RPD = 1.28) and flesh (R?, = 0.55, RPD = 1.51) (Table 3). Models
using only orange variety data were tested for prediction robustness using test data for
rhizome skin (Rzp =0.21, RPD = 1.15) and flesh (Rzp = 0.62, RPD = 1.66) (Table 3). Full
spectrum models were based on 462 spectral wavelengths (predictor variables). However,
some wavelengths may be redundant, contain noise/interference and not be conducive to
the development of multispectral systems suitable for real-time monitoring that require
fewer variables.

3.4. Attributes of Developed Prediction Models Following Spectral Wavelength Selection

To improve the accuracy of models and reduce computer processing demands, the
previous PLSR models were redeveloped following data reduction via wavelength selec-
tion. Models developed using reduced and transformed spectra using the pooled data
set from images of the rhizome skin (R%. = 0.55, RMSE, = 0.150) and flesh (R? = 0.71,
RMSE, = 0.120) were improved compared to models using all raw spectral wavelengths
(Table 3). Models were tested for prediction performance using test data for rhizome skin
(R?; =0.41, RPD = 1.32) and flesh (R?, = 0.52, RPD = 1.47) (Table 3).

Additional models were developed using data from the orange variety only. Reduced
and transformed spectra of images of rhizome skin (R%. = 0.28, RMSE, = 0.102) and
flesh (R?. = 0.75, RMSE, = 0.059) were also improved compared to using all raw spectral
wavelengths (Table 3). Models developed using reduced and transformed spectra from
images of only the orange variety were tested for prediction performance using test data
for rhizome skin (RZp = 0.24, RPD = 1.17) and flesh (RZp = 0.51, RPD = 1.45). Results
for all PLSR models developed following wavelength selection and respective prediction
performance are reported in Table 3.
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Figure 9. Models developed using raw reflectance spectra from orange variety turmeric only and all available wavelengths
of rhizome skin (a), and rhizome flesh (b); figures show measured vs. predicted curcumin (%) concentration in the calibration
set (Cal): open triangle; validation set (Val): open upside-down triangle; and test set: closed circle predicted curcumin
concentration. Predicted curcumin (%) (closed circle) for individual samples in the test set using the flesh model plotted
with measured reference value (cross) and deviation bars (similarity to calibration samples) for individual samples in the
test data set (c).

4. Discussion
4.1. Curcumin Concentration among the Turmeric Varieties

The red variety had the highest total curcumin content varying between 0.39 and
1.34%. Variation in curcumin among varieties of C. longa and other species are well
documented [50-52]. Curcumin content in rhizomes can vary with soil nutrient availability
and agronomic conditions [51]. Distribution of curcuminoids for the red variety was
similar to two identified varieties (Prathibha and Suguna) [52]. In this study, the red
variety also contained proportionally more bisdemethoxycurcumin than the orange and
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yellow varieties. Anatomical variation in the number and shape of curcumin cells has
been associated with variability among rhizomes of Curcuma spp. [53]. Additionally, the
number of curcumin cells are higher in the apical and nodal region compared with the
internodal region [32]. Thus, high variation within samples of the red and orange variety
could therefore be explained by the presence or absence of anatomical features of the
individual samples such as apical regions or nodes.

4.2. Assessment of Model Accuracy and Prediction Performance using Images of Rhizome Flesh

Rhizome flesh using pooled data from all three varieties provided moderate curcumin
prediction for calibration and validation (R%. = 0.83, R%., = 0.70). The usefulness and
accuracy of models developed in this study were evaluated on the basis of both calibration
and validation model accuracy (R%. and R?(,) and precision (RMSE., and RMSE_) followed
by accuracy (R?p) and ratio of prediction to standard deviation (RPD) using the test
data [54]. The respective coefficient of determination (R?) values indicate the percentage
variation in predicted curcumin concentration explained by the measured reference value.
Therefore, higher R? values have improved prediction capability and specifically, models
with an R? above 0.50 allow for prediction between nominally low and high concentration
to be made and between and R? between 0.66 and 0.81 used for screening and approximate
quantitative predictions [55]. Prediction accuracy (R%p = 0.55) of curcumin prediction
was low for the flesh pooled data model, despite high calibration accuracy (R?. = 0.83).
Therefore, this model would only be suitable to make predictions that discriminate between
‘low” and ‘high’ values and as such may be suitable in a two-level grading system.

Transforming the data using a second order Savitzky—Golay derivative improved
calibration accuracy (R%. = 0.95) and was the most accurate of all calibration models
developed. Higher R? values, between 0.92 and 0.96 reflect a model suitable for quality
assurance applications [54,55]. However, prediction accuracy (R?, = 0.37) further decreased
compared with that of raw data and the model did not predict test data to an acceptable
level (RPD = 1.28). The prediction performance (robustness) of a model is considered
‘useable’ if the ratio of performance to deviation (RPD) falls between 1.5 and 2.5 and
‘excellent’ if greater than 2.5 [46,54]. We suggest the decrease in prediction accuracy can be
explained by ‘data clusters” of samples with very low (<0.1%) curcumin in the calibration
data combined with a lack of similar samples in the test data. The combined effect was
reduced bias (regression slope) for test predictions resulting in poor prediction performance
(Figure 8c). Therefore, we conclude that the best model, using data pooled from all three
varieties, was developed using raw (un-transformed) spectra (RPD = 1.51) and may be
suitable for adaption in a two-level grading system (Figure 8b).

We further hypothesised that large variation among the three varieties (low in yellow
and high in red) coupled with under-representation of yellow and red samples contributed
to reduced prediction accuracy in pooled data. Our hypothesis was then confirmed
when the PLSR model developed using the orange variety only had higher R?, compared
with using data pooled from three varieties. This was the most accurate and robust
model we developed and we consider it suitable for use in screening and approximate
on-farm quantitation [46,55]. Additionally, models developed using one variety only were
further improved by wavelength selection (Jack-knifing) making this method suitable for
adaptation to smaller more portable multispectral imaging systems. We noted that not all
samples in the test set were still predicted well (for example, W2, W23 and W103). Sample
sizes > 200 have been successful for predicting quality parameters using images of flesh and
skin in avocados [56]; therefore, we suggest increasing sample size prior to future model
development. In general, each sample in the test set had similar deviation at the point of
prediction in our study (Figure 9¢). Deviation bars at the prediction point for a specific
new sample in the test set, describe that sample’s similarity to all samples in the calibration
data [57]. Samples with small deviation are considered ‘similar” to calibration samples and
therefore represent ‘reliable’ predictions and samples with high deviation are considered
‘dissimilar” to calibration samples and “unreliable” predictions [57]. Therefore, confirming



Remote Sens. 2021, 13, 1807

16 of 20

test samples were similar to samples in the calibration data and that their prediction could
be considered reliable.

We had initially hypothesised that pooling three varieties would provide a wider range
of curcumin values leading to increased model accuracy and therefore better prediction
performance. However, on the contrary, using images of the orange variety only increased
prediction performance because of two reasons: orange only test samples were more similar
to the sample in the calibration data and reduced clustering of the data, especially with
very low curcumin concentrations. The pooled model often predicted test samples with
relatively low (<0.01%) or high (>0.8%) curcumin poorly and was evidenced by large
deviation (prediction reliability) at the prediction point. Using images from one turmeric
variety only resulted in a calibration model that is more accurate and reliable at predicting
new values. Our study suggested that models developed for curcumin prediction are
variety dependent and we suggest that models should be developed for each variety prior
to on-farm implementation.

4.3. Assessment of Model Accuracy and Prediction Performance using Images of Rhizome
Outer-Skin

Our results indicated Vis/NIR hyperspectral imaging of rhizome skin did not predict
curcumin in fresh turmeric well. The most accurate (R?. = 0.63) model developed using
skin images involved transformation (Savitzky—Golay second order derivative) of spectral
data and was not improved by wavelength selection. Importantly, prediction accuracy
(R%, = 0.48) and prediction performance (RPD = 1.41) was considered ‘below acceptable’
and ‘un-useable’. Interestingly, model redevelopment using images of the orange variety
only did not improve accuracy nor prediction performance. This was in contradiction to
the models we developed using images of flesh. Internal prediction of parameters using
images of the outer-skin of intact samples are always challenging because of heterogeneity
and accuracy can be increased by milling, mincing, or grinding [15]. Internal curcumin
prediction may have been possible using images of rhizome skin if light penetrated deeper
through the skin and into the flesh or had we measured curcumin in the skin only which
could then be correlated to curcumin concentration measured in the flesh. We did not
measure light penetration in our samples. However, shorter wavelengths penetrate deeper
into biological samples than longer ones [58]. Additionally, image deep learning in other
studies has shown to improve prediction accuracy which can be further explored for skin
images [59]. Therefore, we suggest further investigation using different detectors and
spectral wavelengths is still required.

4.4. Implications of This Scoping Study

A costly and laborious initial process is required to develop PLSR models using HSI
that require sample reference values to first be attained using traditional laboratory meth-
ods. However, the initial cost of HSI establishment including a benchtop HSI system, may
not differ significantly compared with the cost of a HPLC instrument (Figure S3). After
HSI modelling has been established, the cost to analyze a new sample can be reduced
by up to 76% and processing time can be decreased by 66% per sample (30 to 10 min)
when compared with HPLC. However, one important compromise is lower accuracy of
curcumin prediction when using HSI rather than by HPLC. However, developments in
machine and deep learning of HSI have recently increased the prediction accuracy of plant
components [59]. Machine learning can be further explored to increase accuracy of cur-
cumin prediction [59]. Additionally, benefits of higher accuracy using traditional methods
is offset by the ability of HSI methods to analyze large quantities of samples due to reduced
cost. Therefore, HSI would provide information across larger samples sizes and within
short-time frames, such as in post-harvest processing and quality assurance [60]. This tech-
nology has the potential to be upscaled and used on farms following engineering design
and modification to suit post-harvest processing lines and most recently has successfully
been incorporated into commercial sorting of potato for sugar-end defect [61]. Adaption of
HSI to help with grading rhizomes would be particularly useful where fresh turmeric rhi-
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zomes are being harvested for end use refinement into curcumin-based medicinal and/or
pharmaceutical products.

5. Conclusions

The red variety of C. longa contained the highest curcumin and we recommend
farmers cultivate this variety where curcumin yield is desired. The results from this study
demonstrate that Vis/NIR hyperspectral imaging combined with PLSR has potential to
predict curcumin in fresh turmeric using images of rhizome flesh but not outer-skin. During
harvesting and washing, finger rhizomes are often broken from the mother rhizome and are
still marketable, therefore, scanning of any broken rhizome pieces, randomly selected from
a process batch, and using the PLSR models we developed may allow for on-farm means-
based grading of packaged rhizomes under a two-level system. Developing models for
each variety (rather than pooling varieties) improved prediction performance and reliability
and is a more appropriate approach than using pooled data. Models developed using one
turmeric variety (orange) were more accurate and had higher prediction performance and
reliability. These were further improved by wavelength selection (Jack-knifing) making this
method suitable for adaptation to smaller more portable multispectral imaging systems.
However, larger sample sizes for each specific variety and investigation of data collected
from other spectral regions should be undertaken in future studies. Additionally, this
method should be examined to predict individual curcuminoids and emerging image deep
learning algorithms may further improve model prediction performance in the future.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/1s13091807 /51, Figure S1: Linear regression of total curcumin (%) concentration extracted
and analysed by UV-Vis and HPLC (a) and boxplot showing total curcumin (%) concentration
of triplicate analysis conducted for n = 3 of each variety of yellow (Y), orange (W) and red (S)
turmeric rhizomes (b). To validate the HPLC method triplicate replications using three samples
of each variety were analysed by both HPLC and UV-Vis to correlate results. Samples were
prepared and analysed using the HPLC method above and Genesis 20 UV-Vis spectrometer in
Shimadzu quartz crystal cuvettes with 10 um light path at 425 nm (Thermo Scientific, Waltham,
Massachusetts, USA). Curcumin concentration values for both instruments were correlated with
R? = 0.999994 (Figure Sla). Confirming accuracy of the HPLC method. Curcumin (%) concentra-
tion for the triplicate samples in the HPLC method validation set are presented in (Figure S1b),
Figure S2: Spectral peaks used to identify the curcuminoids at retention time bisdemethoxycurcumin
at 3.349 min (a), demethoxycurcumin at 3.3593 min (b), and curcumin at 3.844 min (c), Figure S3: Cost-
benefit analysis comparing traditional laboratory based HPLC curcumin detection and prediction
using hyperspectral imaging and PLSR methods.
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