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Abstract: Groups of landslides induced by heavy rainfall are widely distributed on a global basis
and they usually result in major losses of human life and economic damage. However, compared
with landslides induced by earthquakes, inventories of landslides induced by heavy rainfall are
much less common. In this study we used high-precision remote sensing images before and after
continuous heavy rainfall in southern Tianshui, China, from 20 June to 25 July 2013, to produce
an inventory of 14,397 shallow landslides. Based on the results of landslide inventory, we utilized
machine learning and the geographic information system (GIS) to map landslide susceptibility in
this area and evaluated the relative weight of various factors affecting landslide development. First,
18 variables related to geomorphic conditions, slope material, geological conditions, and human
activities were selected through collinearity analysis; second, 21 selected machine learning models
were trained and optimized in the Python environment to evaluate the susceptibility of landslides.
The results showed that the ExtraTrees model was the most effective for landslide susceptibility
assessment, with an accuracy of 0.91. This predictive ability means that our landslide susceptibility
results can be used in the implementation of landslide prevention and mitigation measures in the
region. Analysis of the importance of the factors showed that the contribution of slope aspect (SA)
was significantly higher than that of the other factors, followed by planar curvature (PLC), distance
to river (DR), distance to fault (DTF), normalized difference vehicle index (NDVI), distance to road
(DTR), and other factors. We conclude that factors related to geomorphic conditions are principally
responsible for controlling landslide susceptibility in the study area.
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1. Introduction

Extreme rainfall events and earthquakes are the two main factors inducing regional
landslides [1-6]. Compared with the spatial distribution of earthquakes, which are con-
centrated in plate margins and intracontinental orogenic belts [1,7], landslides induced
by heavy rainfall are more widely distributed on a global basis [8-12]. As the landslides
induced by heavy rainfall are characterized by wide distribution, high density, and long
travel distance, such landslide events often cause many casualties and major property losses
and ecological damage [13,14]. Landslide inventories are an essential basis for studying the
formation, distribution, landscape evolution, susceptibility, and risk assessment of regional
landslides [5,15-17]. An event inventory shows landslides caused by a single trigger, such
as an earthquake, rainfall event, or snowmelt event [18]. Compared with the widespread
concerns related to landslide disasters caused by earthquakes, inventories of landslides
induced by heavy rainfall are much fewer in number [19]. Nevertheless, in recent years,
the rapid development of space radar, satellite remote sensing, small unmanned aerial
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vehicles (UAV), and other technologies have provided high-precision images for landslide
interpretation induced by heavy rainfall events, which greatly facilitate the production of
corresponding landslide inventories [16,20-22].

Landslides are one of the most important natural hazards in China as they are
widespread and cause substantial damage and fatalities every year [23]. Consequently, the
development of methods to reduce the threat of landslides has long been an important
component of landslide research in China and elsewhere. As a method of assessing areas
with high landslide susceptibility, landslide susceptibility analysis is important for disaster
prevention and mitigation [24-28]. Regional evaluations of landslide susceptibility based
on physical models and GIS technology are widely used, and they are important for assess-
ing the future risks of landslides and debris flows, and they can make a major contribution
to disaster prevention and control planning [24,29,30]. However, these two traditional
methods are limited by problems of efficiency and cost and by their limited ability to
obtain useful information from complex datasets, together with their high dependence
on human subjectivity [31,32]. In recent years, with the rapid development of Artificial
Intelligence (AI) technology, machine learning provides possibilities for improving the
accuracy and efficiency of geological hazard susceptibility evaluation [31,33,34]. Machine
learning has achieved outstanding results in landslide and debris flow hazard analysis in
several regions [35-37]; however, as a new technology, the effect of machine learning in
different environments needs to be further examined.

From 20 June to 25 July 2013, continuous heavy rainfall induced a large number of
shallow landslides and debris flows in southern Tianshui, China. They resulted in 24 deaths
and one missing person; in addition, 2386 houses collapsed and 6666 were damaged. The
direct economic losses were USD 1.24 billion, in addition to the losses of life and property
and the trauma caused to the local inhabitants [38]. The study had three main components:
(i) Comparison of high-precision image data before and after rainfall events was used
to interpret and catalog landslides induced by heavy rainfall. (ii) The effect of machine
learning on the susceptibility evaluation of shallow landslides induced by heavy rainfall in
an area of high vegetation cover was examined. (iii) Evaluating the relative contribution of
various factors affecting landslide formation in a high vegetation coverage area.

2. Study Area

The study area is located in southern Tianshui, China (Figure 1). The geological
structure of the region is complex, influenced mainly by the Qinling Mountains latitudinal
structural belt, the Qilv-Holland Arc structural belt, the West Qinling Mountains northeast
structural belt, and the Longxi spiral structural belt. The main lithological unit in the area
is the Devonian Shujiaba formation, mainly composed of marl, slate with thin layers of
limestone and metasandstone. Yanshanian biotite granite and medium-coarse grained
granite are exposed in several areas in the north and east. Neogene strata are dominant in
the west and they have an unconformable relationship with the other strata. The lithology
is mainly gray-white and gray-green clay and red mudstone with a sandy conglomerate.
The thickness of the formation exceeds 1000 m. In addition, carboniferous glutenite and
late Devonian slate and sandstone are sporadically exposed in the north and south parts of
the study area.

The geomorphology of the study area is dominated by the intermediate- and low-
elevation mountains, with altitudes ranging between 1239 m and 2249 m. Because it is
located on the southern edge of the Chinese Loess Plateau, the area has a cover of quaternary
loess, forming a dual-stratum structure of bedrock and overlying loess. The development
of a large pore space and vertical joints in the loess makes it highly permeable, and in
addition, the bedrock has a low permeability; therefore, the excess pore water pressure
caused by heavy rainfall, combined with the seepage force at the stratum interface, is likely
the main reason for the extensive occurrence of shallow landslides in the area [39-41].
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Figure 1. Location of the study area and landslide inventory map.

The study area is located in the transitional region between a semi-humid and semi-
arid climate. The climate type is a warm temperate continental climate. The annual average
temperature is ~6-11 centigrade, with the highest temperatures generally occurring in
July, with s relative humidity of 66%. The average annual rainfall is 800-900 mm, and the
seasonal distribution of rainfall is very uneven; most of the rainfall occurs between July to
September, which comprises 68% of the annual total. The vegetation coverage in the area is
high (generally > 70%) and species-rich.
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3. Methods
3.1. Landslide Inventory and Mapping

Guzzetti et al. [18] comprehensively summarized landslide inventory methods and
divided them into two categories: traditional methods based mainly on geomorpholog-
ical field mapping and visual interpretation of aerial photos; and new methods based
on high-precision satellite image interpretation, analysis of surface morphology using
Airborne LiDAR (Light Detection and Ranging), and the automated and semi-automated
recognition of landslides. The former is expensive in terms of time and cost, and for these
reasons, traditional methods are gradually being superseded by high-precision optical
image interpretation and semi-automatic and automated recognition. However, due to
the limitations of automated and semi-automated methods in terms of the accuracy of
recognition, they cannot provide a truly comprehensive landslide inventory [42—44]. There-
fore, high-precision image interpretation has become the most commonly used method for
landslide inventory development in the case of recent earthquakes and rainfall and other
events [5,45]. In areas with high vegetation coverage, landslide scars induced by heavy
rainfall are clearly resolved in optical images. Therefore, in this study, we downloaded
2 m x 2 m Google earth images before and after an interval of continuous rainfall and
used them for comparative analysis (Figure 2), in order to provide a detailed recognition
of rainfall-induced landslides. Landslide interpretation, inventorying, and mapping was
conducted using ArcGIS 10.2 software (The company is located in Redlands, CA, USA).

T —

Liujiahe village

-

m ﬂ,,.Aftgr rainfal [ =

Figure 2. An example of the comparison of Google earth images before and after rainfall in the same area.
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3.2. Landslide Susceptibility Evaluation Based on Machine Learning

The process of modeling with machine learning includes the selection and preparation
of parameters, data acquisition and processing, and model selection, fitting, and evaluation.
A flow chart of the process is shown in Figure 3. The selection of a suitable terrain mapping
unit is the basis of landslide sensitivity analysis [25]. At present, the grid cell is still the most
commonly used terrain element in most of the literature [25,26]. In this study, in order to
balance the amount of information of grid acquisition, data volume, and calculation effi-
ciency, a 100 m x 100 m grid was selected as the evaluation unit for landslide susceptibility
analysis. A total of 65,472 grid cells were defined in the study area, of which 13,859 grid cells
corresponded to landslides. In this study, the extraction of geomorphic factors was based
on 12.5 m x 12.5 m Digital Elevation Mode (DEM) data from ALOS Satellite (Figure 4A),
and lithology and faults were derived from 1:50,000 geological mapping data (Figure 4B)
(source from China Geological Survey).
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Figure 3. Modeling flow chart (Note: LSs indicate landslides, and NLSs indicate non-landslides).



Remote Sens. 2021, 13, 1819

6 of 21

105°40'0"E 105°50'0"E

- Landslides

Faults

——— Road

= River
17 .4—25 8

256 34.9]

High:2407

34.9-74.1

Low:B69

Landslidas

Aspect jaegree]
-1

0—22.5and
337 5-360

225-67.5

615 1125

42.6—167.5

[ 1s75-2025
[ RIEEERYCE]

2478 2925

[ EEEEERELE]

Landslides]

80-115

1.5 24.7]

Figure 4. Shows part of the landslide-influencing factors used in this study. (A) Digital Elevation
Mode (DEM); (B) Lithology and fault, 1. Carboniferous glutenite, 2. Middle Devonian marl, slate, 3.
Late Devonian slate and sandstone, 4. Paleogene sandstone, 5. Jurassic sandstone and limestone, 6.
Neogene mudstone, 7. Quaternary sediments, 8. Yanshanian granite; (C) Slope; (D) Slope aspect;
(E) Local relief; (F) Unit of slope; (G) TWI; (H) Watershed; (I) NDVIL

3.2.1. Selection of Factors Influencing Landslides

As a complex process of material transport and energy transfer on the earth’s surface,
the formation and distribution of landslides are determined by the effects of climate,
hydrology, geology, landforms, human activity, and other factors [46]. To a large extent,
the formation and distribution of landslides is related to specific local factors; for example,
in orogenic belts, slope, lithology, and structure are important factors [47,48], while in
mountains with low and intermediate altitudes, rainfall, soil properties, and engineering
activity are important [49,50]. Therefore, there is no consensus regarding which factors
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should be used in landslide susceptibility evaluation. In this study, based on an evaluation
of previous studies [24-28] and with regard to the specific environment of the Tianshui area,
we selected geomorphic factors, landslide material and geological conditions, and human
activity as the three categories of factors for landslide susceptibility analysis (Table 1).

Table 1. Fields and characteristics of the spatial database.

Field Parameter Units
1 ID Identification field /
2 LO Landslide occurrence or not /
3 AS Average slope °
4 SA Slope aspect °
5 LR Local relief km
6 Parameters related to PRC Profile curvature /
7 eomorphological conditions PLC Planar curvature /
8 & phiotos SUA Slope unit area km?
9 E Elevation km
10 TWI Topographic wetness index /
11 WA Watershed area km?

Normalized Difference

12 NDVI Vegetation Index /
13 FLI Formation lithological index
14 DTF Distance to fault km
15 Parameter related to material and ST Soil type 0/
16 cology conditions SC Sand content %o
17 8 gy SG Gravel content %
18 SIC Silt content %
19 CcC Clay content %
20 SB Soil bulk N/m?3
21 DR Distance to river km

22 Par'a met'e r relat.en.i t 0 DTR Distance to road km
engineering activities

Continuous heavy rainfall was the primary cause of the groups of shallow landslide
events. The shallow landslides induced by heavy rainfall are widely distributed all over the
world. Critical rainfalls that induce shallow landslides are an important factor in the study
of landslide triggering thresholds. The records of six rainfall stations in the study area show
that the accumulated rainfall from 20 June to 25 July 2013 is more than 230 mm, which
reaches the threshold of shallow landslide in many studies [51,52]. In other words, in the
event, the rainfall intensity meets the critical threshold in the whole area. In addition, due
to the study area being small, the error and resolution of the existing rainfall data cannot
meet the factor requirements of machine learning susceptibility evaluation. Therefore, we
chose to carry out unified value processing for the rainfall conditions of this evaluation,
focusing on the influence of geomorphic conditions, geological structure, and material
composition on the susceptibility of shallow landslide. The specific parameters adopted
and the rationale for their use are described below.

Parameters Related to Geomorphological Conditions

Average slope (AS) (Figure 4C). Slope is one of the most important factors influencing
stability. Different slope angles can affect the magnitude of normal stress and shear stress
on the potential failure surface.
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Slope aspect (SA) (Figure 4D). Slope aspect strongly affects hydrological processes via
evapotranspiration and weathering processes in a given microclimatic environment [53].

Local relief (LR) (Figure 4E). The potential energy of the slope is determined by its
relief. Statistical analysis of landslides shows that topographic relief is an important factor
affecting the spatial distribution of a landslide [22,54].

Profile curvature (PRC) and planar curvature (PLC). Profile and planar curvature are
important parameters reflecting the morphological characteristics of slopes. Curvature is
defined as the rate of change of slope gradient or aspect, usually in a specific direction [55].

Slope unit area (SUA) (Figure 4F). The slope unit is the fundamental spatial domain
used in quantitative geomorphological analyses. A slope unit can be used for terrain zona-
tion, using methods such as sensitivity modeling and hydrological and erosion modeling;
and those based on the geographical environment, including ecology, agriculture, forestry,
land use, and other aspects [56]. The slope unit used in this study was extracted by the
ArcSWAT module of ArcGIS software. Specifically, it was obtained from the ridgeline and
river network extracted under the condition of a 100-hectare flow accumulation.

Elevation (E). Temperature, rainfall, vegetation type, and microorganisms are depen-
dent on elevation. These factors can affect soil layer thickness: the lower the altitude, the
thicker the soil layer, while high mountain areas are mainly bare hard rock. In some cases,
precipitation and the incidence of landslides increase with increasing altitude [57].

Topographic wetness index (TWI) (Figure 4G). TWI reflects the distribution of soil
moisture, and soil moisture content in turn strongly affects the cohesion and internal
friction angle of slope materials.

Watershed area (WA) (Figure 4H). Zaruba and Mencl [58] observed a relationship
between the occurrence of landslides and watershed area. The larger the watershed area, the
greater the amount of water seeping into the ground, which increases slope instability [59,60].

Parameters Related to Landslide Materials and Geological Conditions

Normalized Difference Vegetation Index (NDVI) (Figure 4I). The NDVI effectively
reflects vegetation coverage, which has important effects on slope stability by reducing the
rainfall infiltration rate. The vertical and horizontal growth of plant roots also increases
slope stability [61]. NDVI was derived from Landsat-8 images (June 2016) with a resolution
of 30-m (Landsat-8 image courtesy of the US Geological Survey).

Formation lithological index (FLI) (Figure 4B). Lithology affects the spatial distribution
of landslides. The structural characteristics of the bedrock promote landslide initiation in
several ways: (1) by producing weak surfaces that are prone to sliding; (2) by facilitating
the introduction of groundwater into the overlying soil mantle; and (3) by destabilizing the
regolith because of weathering [46].

Distance to fault (DTF). The two principal effects of faults on landslides are (1) a fault
plane can act as the dominant structural plane in the formation of a sliding surface, and
(2) rock mass damage caused by fault activity may lead to slope instability.

Soil type (ST). Like lithology, soil is also the material basis of landslide formation.
There are substantial differences in soil microstructure, water permeability, and vegetation
growth between soil types.

Contents of sand (SC), gravel (SG), silt (SIC), and clay (CC). The grain-size composition
of the soil determines the cohesion, shear strength, and hydraulic conductivity of the slope,
and thus its stability.

Distance to river (DR). In many areas, landslides are clustered along rivers, and
landslide density decreases with increasing distance from rivers [17,62]. Fluvial incision
provides the potential energy for the development of a landslide, while the lateral erosion
of a river can destroy the slope toe, causing slope instability.
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3.2.2. Parameter Preprocessing
Parameters Related to Landslide Materials and Geological Conditions

In order to eliminate collinearity among the selected parameters, a heat map of a
parameter correlation matrix was calculated using the Seaborn Python visualization pack-
age (https://seaborn.pydata.org/generated /seaborn.heatmap.html#seaborn.heatmap, ac-
cessed date: 10 November 2020) (Figure 5). Strongly correlated parameters have a certain
degree of redundancy and they also affect the stability of the model operation. Through the
heat map of the parameter correlation matrix, it was found that several parameters selected
in the study have a strong correlation, for example, the following correlations coefficients
were obtained: SB vs. SC (0.86); SIC vs. SC (0.93); SB vs. CC (0.97), in other words, they
have an almost consistent influence on landslide development. Therefore, SB and SC were
excluded from this study.
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Figure 5. Heat map of the parameter correlation matrix.

Resampling

In a machine learning algorithm, if the ratio of non-landslides (NLSs) to landslides
(LSs) is 1:1, machine learning may focus on the classification of LSs rather than of NLSs.
However, in the present study, the ratio of NLSs to LSs is close to 4:1 (Figure 6). In
order to maintain a balance between the two types of samples, SMOTE (synthetic mineral
oversampling technology) was used to increase the number of LS samples [63]. This
method randomly selects a nearest neighbor sample B from A (a sample in NDFs), and
then, randomly selects a point C from the relationship between A and B, as a new minority
sample. After resampling, the ratio of NLS sample size to LS sample size is 1:1, which
provides a balance between the data samples.
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Figure 6. Sample ratio for LSs (landslides) and NLSs (non-landslides).

Data Standardization

The data were standardized in order to improve the accuracy of the model algorithm
and to speed up the convergence of the model. In addition, several machine learning
algorithms are very sensitive to feature scales. Therefore, we used a standard scalar
algorithm (from Scikit-learn, https:/ /scikit-learn.org, accessed date: 10 November 2020) to
normalize the factors by removing the mean and scaling according to the variance. Scikit-
learn is a Python library that provides a standard interface for implementing machine
learning algorithms [64].

3.2.3. Candidate Machine Selection

We chose 21 types of model algorithms that are widely used in machine learning [35].
Via inspection and testing, we chose the most suitable model algorithm for landslide
susceptibility evaluation in an area of dense vegetation.

Ensemble Methods

The principle of the ensemble method is to combine several classifiers (or different
parameters of an algorithm) to improve the effectiveness of each single classifier. The
classifiers can be divided into average methods and boosting methods. AdaBoost, Gradient
Tree Boosting (GDBT), Bagging, Random Forest, and Extra Trees were selected in this study.

Generalized Linear Models (GLMs)

The generalized linear model is an extension of the linear model. The relationship
between the mathematical expectation of the response variable and the prediction variable
of the linear combination is established by the relationship function. Logistic Regression
(LR), Passive Aggressive, Ridge, Stochastic Gradient Descent (S5GD), and Perceptron were
used in this study.
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Naive Bayes (NB)

Naive Bayes classification is based on Bayesian probability. Assuming that the at-
tributes are independent of each other, the probability of each feature is obtained and the
larger one is taken as the prediction result. Gaussian Naive Bayes and Bernoulli Naive
Bayes were selected.

Nearest Neighbors

The principle of the nearest neighbor method is to find a specified number of nearest
sample points and then use them to predict new points.

Support Vector Machines (SVM)

The principle of SVM is to solve the separation hyperplane, which can correctly
divide the training dataset and provide the largest geometric interval. Support Vector
Classification (S§VC), Linear SVC, and Nu-SVC were selected.

Trees

The tree classifier is a tree structure in which each internal node represents a judgment
of an attribute, and each branch represents an output of the judgment result. Finally, each
leaf node represents a classification result. Decision Tree and Extra Tree were selected.

Discriminant Analysis

Discriminant analysis is a method of multivariate statistical analysis that classifies the
studied objects according to several observed indexes. Linear discriminant and quadratic
discriminant analyses were selected.

eXtreme Gradient Boosting (XGBoost)

XGBoost is a boosting algorithm and a type of lifting tree model. It implements the
GBDT algorithm efficiently and makes many improvements to the algorithm, integrating
numerous tree models to produce a strong classifier.

3.2.4. Model Fitting and Tuning

The initial model is trained by the training data in a cross-validation dataset. The
models are then sorted according to the average accuracy score (ACC) of the test data in the
cross-validation data set. ACC represents the correct allocation rate of all samples involved
in the modeling. It can be seen in Figure 7 that the overall fitting effect of the comprehensive
model is better than that of other models, and the highest score was achieved by ExtraTrees,
followed by RandomForest, Bagging, and KNeighbors. ACC is calculated as follows:

ACC = (TP + TN)/(TP + FN + FP + TN) 1)

True positive (TP): the predicted class is positive, and the prediction agrees with the
actual class;

False positive (FP): the predicted class is positive, and the prediction disagrees with
the actual class;

True negative (TN): the predicted class is negative, and the prediction agrees with the
actual class;

False negative (FN): the predicted class is negative, and the prediction disagrees with
the actual class.
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Figure 7. Ranking of model accuracy scores.
The terms are listed in Table 2 and are defined as follows:

Table 2. Confusion matrix results.

Predicted Label
Positive Negative
Positive True Positive (TP) False Negative (FP)
True label
Negative False Positive (FP) True Negative (TN)

We selected the first four models for optimization (Figure 8). The model was fitted
using a parametric grid method and the grid search cross-validation method, and the best
super parameters were found by AUC (area under the receiver operating characteristic
curve) scoring method. According to the optimal super parameters of each model given in
Table 3, the training set of the model was cross-validated 10 times, and the models were
reordered according to the average accuracy score of the test data. After optimization,
the performance of the four models was seen to have improved. ExtraTrees remained the
optimal model, with a test data ACC of 0.91, and an average AUC of 0.97 after 10-time
cross validation (Figure 9). AUC represents a trade-off between sensitivity and specificity.
After optimization, the accuracy of the Bagging model was significantly improved.

ExtaTressCiassie I
RandonorestCiasir [
caggingCiassfer

KNeighborsClassifier _ _ J
0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 08 0.9
Accuracy Score

Algorithm

Figure 8. Ranking of ACC scores after model optimization.
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Table 3. Model optimal super parameter results and the time consumed. (Note: Please refer to
the Scikit-learn website for the explanation of each parameter and its role in model adjustment:
https://scikit-learn.org, accessed date: 10 November 2020).

Classifier Algorithm Best Parameter Runtime (s)

‘n_estimators’ = 500
1 ExtraTreesClassifier ‘random_state” = 0 50,615.69
‘criterioin’ = gini

‘criterioin” = ‘entropy’
‘max_depth’ = 54

2 RandomForestClassifier n_estimators'=500 329,402.72
‘oob_score’ = True
3 BaggingClassifier max_samples’ = 1.0 35,085.42

‘n_estimators’ = 500

‘algorithm’ = auto
4 KNeighborsClassifer ‘n_neighbors’ = 8 41,816.73
‘weithts” = ‘distance’

1.0

ROC fold 0 (AUC = 0.97
ROC fold 1 (AUC = 0.97
ROC fold 2 (AUC = 0.97

0.8

)
)
)
% ROC fold 3 (AUC = 0.97)
% 0.6 ROC fold 4 (AUC = 0.97)
:~:§ ROC fold 5 (AUC = 0.97)
D%j ROC fold 6 (AUC = 0.97)
v 04 ROC fold 7 (AUC = 0.97)
= ROC fold 8 (AUC = 0.97)
ROC fold 9 (AUC = 0.97)
0.2 Chance
= Mean ROC (AUC = 0.97 = 0.00)
0.0 + 1 std. dev.
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 9. Receiver Operating Characteristic Curve (ROC) and AUC of ExtraTrees using 10-time
cross validation.

4. Results
4.1. Landslide Inventory and Mapping

Comparison of the remote sensing images before and after rainfall event enabled us
to identify 14,397 landslides in an area of 655 km?. The interpretation results are shown
in Figure 1. The landslide density reached 22/km?, with the largest landslide area being
39,637 m2. The average landslide area is 907 m?. The total area of all landslides in the study
region is 13.06 km?, accounting for 2% of the total. In the landslide inventory, the largest
10 landslides account for 1.8% of the total landslide area, while the top 10% of large land-
slides account for 10.9%. Compared with the results of landslide inventories in other areas,
the proportion of large-scale landslides of the total landslide area is relatively small [53,65].
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Kernel density spatial analysis, with a default radius of 1 km (unweighted) and with
area weighting, was carried out using the ArcGIS 10.2 toolbox (Figure 10). The results
show that the spatial distribution of landslides induced by heavy rainfall is not completely
uniform. In the case of a non-weighted distribution, the landslides are clustered in the
north and south, and the density and area of the cluster in the north are higher than those
of the south (Figure 10A). From the area-weighted distribution (Figure 10B), it was found
that large landslides are mainly concentrated in the northern region and compared to the
non-weighted distribution, the distribution range of large landslides in the northern region
is larger and more dispersed.

=z
=]
)
N
$

T
[s]

Figure 10. Kernel density analysis (search radius 1 km). (A) Non-weighted landslide density.
(B) Area-weighted landslide density.

4.2. Landslide Susceptibility Mapping

Although the ExtraTrees model achieved the highest score after optimization (Figure 8),
it can only output the classification result (i.e., 0/1) and cannot generate a probability
value. However, probability values are needed to produce a landslide susceptibility map.
Therefore, the RandomForest (Super parameter: ‘criterion” = ‘entropy’, ‘max_depth’ = 54,
‘n_estimators’ = 300, ‘obb_score” = True) was used as the final model to produce a landslide
susceptibility map for the study area. The methods provided by Scikit-learn were used
to construct the probability set. In the binary case, the probabilities are calibrated using
Platt scaling (Platt “Probabilistic outputs for RandomForests and comparisons to regular-
ized likelihood methods”): logistic regression of the RandomForest scores and fitting by
additional cross-validation of the training data [66].

The natural discontinuity method was used to divide the probability values of land-
slide susceptibility into five categories [67]: very low, low, moderate, high, and very high
(Figure 11), and the corresponding proportions were 41.2%, 24.5%, 13.1%, 6.2%, and 15.0%
respectively. It can be seen that the proportion of the landslide susceptibility area does not
decrease with increasing sensitivity. The proportion of the extremely low susceptibility
area is the highest, followed by the low susceptibility area, and the proportion of the high
susceptibility area is the lowest. The spatial distribution of the very high susceptibility
area is not completely uniform: the northern region has a more dense and larger range of
distribution characteristics than the central and southern regions, which is consistent with
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the actual distribution of landslides. The area surrounding the study area has mainly a
very low susceptibility, which may be related to rainfall intensity.
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Figure 11. Landslide susceptibility map of the Tianshui area calculated using the RandomForest model.

5. Discussion

The interpretability of the model helps to determine the potential relationship between
different influencing factors and landslide susceptibility. This in turn enables the landslide
susceptibility assessment results to be applied outside the study area and to increase our
understanding of the contribution of the various factors influencing landslide formation
under similar environmental conditions.

The calculated weight of each factor is shown in Figure 12, from which it can be
seen that although all of the factors contribute to the landslide development, there are
differences in the size of their contributions. Among the factors, the contribution of
SA (14%) is significantly higher than those of the other factors, followed by PLC (8%).
DR, DTF, NDVI, and DTR have contributions of 7%, and the other factors contribute
less than 6%. Geomorphic factors can be seen to be the most important controls for
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landslide susceptibility, while factors related to the landslide material and geological
conditions play a secondary role, and the impact of engineering activity is relatively small.
In the present study, four soil-related factors (SIC, ST, SG, and CC) made only small
contributions to landslide development, which may be related to inaccuracies in the soil
data. Specifically, from the distribution of SA (Figure 13A), LSs accounted for the highest
proportion when 94° < SA < 246°, indicating that sunlit slopes are more prone to landslides
than shaded slopes. The influence of this aspect on the spatial distribution of landslides
has been concerning for a long time. Many research results show that the influence of
the slope aspect on landslide formation is mainly manifested in three categories: (i) The
microclimate of slopes with different orientations shows regular differences. Compared
with the shaded slope, the sunlit slope has higher temperature and precipitation, the
physical and chemical weathering rate is, therefore, faster, forming a thicker soil layer,
ensuring the material source of landslide formation [51,68]. (ii) Comparing with the shaded
slope, the vegetation coverage of the sunlit slope is low, and most of it consists of shrubs
and herbs [69]. The influence of shallow roots on the stability of the landslide on the sunlit
slope is significantly weaker than that of the vertical roots of trees on the shaded slope. The
influence of vegetation on slope stability is bidirectional, and it has adverse effects on the
development of deep landslides, while vegetation can restrain the development of shallow
landslides [70]. (iii) The continuous alternation of wet and dry on a sunlit slope can easily
form the macropore system in the unsaturated zones of the slopes, which is conducive to
the rapid infiltration of precipitation, thus is unfavorable to slope stability [71,72].
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Figure 12. Calculated importance of the parameters.
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Figure 13. Distribution of (A) Slope aspect (SA), (B) Planar curvature (PLC), (C) Distance to river (DR), (D) Distance to fault
(DTF), (E) Normalized Difference Vegetation Index (NDVI), and (F) Distance to road (DTR). ‘1 (0)’ indicates grid cells prone
to (not prone to) landslides.

For the ranges of 5 < PLC < 48, 84 < DR< 760, 0 < DTF < 2677, 0.03 < NDVI < 0.56,
150 < DTR < 1270 (Figure 13), the proportion of LSs is higher, which indicates that land-
slides are more likely to occur within these ranges. For this landslide event, the shape of the
slope was the second most important factor after slope aspect because there are significant
differences in the ponding capacity and degree of surface differentiation of different types
of slopes, such as concave, convex, and flat slopes [73]. This difference may be amplified
under the effect of heavy rainfall, thus strongly influencing the development of landslides.
DR, DTF, and DTR have similar distribution characteristics. The intensity of fluvial erosion,
the damage of fault to rock mass strength, and the level of engineering activity all decrease
with increasing distance from these elements [17,74]. Therefore, the smaller the distance
from these features, the higher the proportion of LSs, and with the increase of distance,
NLSs gradually occupy a higher proportion. The influence of vegetation on landslide
development is reflected by the fact that areas of low vegetation coverage are more prone
to landslides [61]. This is mainly because vegetation delays rainfall infiltration, increases
evaporation, and well-developed root systems significantly increase slope stability. Similar
to the results of some studies, slope aspect is the most important factor in the suscepti-
bility evaluation [73]. However, due to the differences in geographical location, climate
environment, topography, and vegetation types, the role of slope aspect in many regions
may be very different. For example, the weight of landslide susceptibility factors in an
orogenic belt and in a mountainous hilly region may be completely different. The location
and climatic conditions of the study area determine that the microclimate of different slope
aspects is very important to the development of landslides, and the microclimate signif-
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icantly affects the vegetation type and coverage, water system development, humidity
index, soil thickness, and other factors, thus profoundly affecting the spatial distribution
of landslides [53].

The LSs based on machine learning are relatively flexible and practical, and they are
readily applicable in disaster prevention and land management. The research results can be
used as a reference for decision-makers and planners in the study area. With the increasing
population pressure in western China, there is a trend towards an increased settlement
on steep hillsides. Therefore, in order to protect human life and property, landslide
susceptibility maps can be used as a basic tool for land management and planning in future
construction projects in such areas.

6. Conclusions

We have compared high-precision remote sensing images in southern Tianshui before
and after an interval of continuous high rainfall (from 20 June to 25 July 2013), with the aim
of identifying rainfall-induced landslides. According to the inventory map of landslides,
various machine learning methods were applied to landslide susceptibility evaluation, and
we selected the optimal model for landslide susceptibility evaluation in areas of low and
medium elevation mountains with a high vegetation coverage and produced a landslide
susceptibility map. Finally, in order to better understand the factors controlling landslide
susceptibility, we analyzed the role and weight of each influencing factor in the training
process. The main conclusions are as follows:

(1) The 21 initial models were trained with the training data in the cross-validation
dataset, and the models were then sorted according to the average accuracy score
(ACC). The results showed that the overall fitting effect of the comprehensive model
was better than for the other models. The ExtraTrees model had the highest score,
with an average test data accuracy of 0.91, and the average AUC after 10-times
cross validation was 0.97. This model can be effectively used for the susceptibility
evaluation of shallow landslides.

(2) Among all of the selected evaluation factors, slope aspect made a larger contribution
to landslide development than the other factors. For 94° < SA < 246°, LSs accounted
for the highest proportion, which indicates that sunlit slopes are significantly more
prone to landslides than shaded slopes, followed by PLC, DR, DTE, NDVI, and
DTR. Geomorphic conditions are the most important factors in triggering landslides
induced by heavy rainfall, followed by fluvial erosion and fault distribution, while
human activities have only a small influence.

(3) Inthe evaluation of landslide susceptibility based on machine learning, the prediction
performance of various models is significantly different. Extensive comparative
prediction in different environments, closely linking the model evaluation with the
goals of the study and increasing the understanding of the ability and limitations
of the model are the key to model selection in the future, so as to strengthen the
application of artificial intelligence technology in the field of geological disaster
prevention and improve the prediction accuracy and efficiency.
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