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Abstract: Ship targets are high-value military and civilian targets with broad application prospects.
However, the precise focusing of ships is still a difficult issue because of their complicated six-
degree-of-freedom motions on the sea surface. This paper focused on investigating the effect of
ship six-degree-of-freedom oscillation on Synthetic Aperture Radar imaging. Firstly, based on the
six-degree-of-freedom motions, the accurate range models for ship linear oscillation and angular
oscillation were built, and the superiority was verified by comparing them with the models described
in published literature. Secondly, we used the Taylor formula and Bessel function to expand the phase
error introduced by ship oscillation, then their effects on imaging were further analyzed. Finally,
based on the measured ship attitude data, we generated the semi-physical echoes of the oscillatory
ship to validate the analysis throughout this article. Based on the proposed range model, we also
made some tentative on the phase compensation method by fitting ship attitude angles with multiple
sinusoidal functions.

Keywords: ship; oscillation; six-degree-of-freedom motion; Doppler history; SAR imaging

1. Introduction

Ship targets are high-value military and civilian targets with broad application
prospects, so it is of great significance to obtain high-quality ship images in all condi-
tions. Synthetic Aperture Radar (SAR) is an advanced active aerospace microwave remote
sensing method, which can provide high-resolution images in all-weather and all-time, so
it is very suitable for imaging and recognition of marine vessels [1]. However, affected by
sea breezes and waves, the ships on sea surface often have complex forms of movements,
which significantly increases the difficulty of precise focusing.

A vessel floating on the surface of an undulating sea wave will move (e.g., oscillation,
nonuniform acceleration) according to its transfer functions and the properties of the
passing wave [2]. It is important to accurately describe the motion state of the ship, which
is essential to the pulse propagation distance calculation and SAR focusing. Excluding its
sailing, the ship’s micromotion on the sea surface can be described as six-degree-of-freedom
(6-DOF) motion. The actual motion parameters of the ship are time-varying, and it is so
complicated that it can hardly be expressed through analytical expressions. However, due
to the interaction between ship and complex ocean environment, based on seakeeping
theory of deep-water platform, ship motion can be generally viewed as the superposition
of surge, sway, heave, roll, pitch, and yaw with a multi-frequency motion [3,4]. Therefore,
it is possible to approximately derive the phase distortions introduced by 6-DOF oscillation
and make a qualitative analysis of their effects.

In recent years, ship oscillation and its effect are gaining increasingly widespread inter-
est, which is an unavoidable problem in ship high-resolution imaging. In 2001, Ouchi et al.
first described the phenomenon of nonuniform azimuth images shift observed in the
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RADARSAT images of cruising ships, which was caused by the pitch and roll motion of
the ship [5]. In 2008, Doerry of the Sandia National Laboratories submitted a report on
ship dynamics for maritime ISAR imaging, which detailed the ship dynamic motions and
analyzed their effect on ISAR imaging [6]. In 2011, Li et al., analyzed the influence of
typical target micromotions on SAR images, azimuth resolution limit, and ground moving
target indication (GMTI), the micromotion types include rotation, vibration, sinusoidal
motion, and rocking [7]. In more detail, the imaging distortions induced by each rota-
tion of a moving ship are quantitatively investigated through numerical simulations by
Liu et al. Furthermore, a systematic analysis shows that these distortions can be charac-
terized by four main types of transformations, namely, translation, rotation, scaling, and
shearing [8]. Besides, the focusing challenges of ships with oscillatory motions and long
coherent processing intervals were discussed in [9].

On the other hand, these imaging distortions would carry much valuable informa-
tion about the moving ship, and it may help refocus the smeared image. For example,
Filippo et al. used pixel tracking and convex optimization to estimate the micromotion
and inclination angle of the ships in the Cosmo-Skymed SAR data [10,11]. The imaging
algorithm faces many challenges due to the complex three-dimensional oscillation of ship
targets on the sea surface. However, this motion also provides more target observation
angles and more information on the target in theory. Therefore, it is possible to realize 3D
imaging of ship targets according to different imaging planes [12,13].

Besides, some researches related to the time-critical targets also have implications. In
2007, through a thorough motion analysis in a standard SAR system model, Ruegg et al.,
showed the effects of rotation and vibration in Millimeter-Wave SAR theoretically in
simulated and real data [14]. Paired echoes are the typical manifestation of Doppler
characteristics caused by vibrating targets in high-resolution SAR, and [15] proposed a
method for paired echo focusing and suppression of vibrating targets. Accurate estimation
of target micromotion can be helpful to compensate the phase error, and the precise
extraction and measurement methods of micromotion characteristic and micro-Doppler
feature are given respectively in [16,17]. Moreover, using an autoregressive moving average
(ARMA) model including a sinusoidal covariate for spectral analysis may help to extract
the characteristics of ship oscillation [18].

However, the in-depth analysis of ship oscillation is still limited since the lack of the
ship attitude data matching SAR echo data. An effective way to solve this problem is to
establish the ship motion model and SAR imaging simulations in which the motions of the
ship and radar platform are both numerically parameterized. For example, Margarit et al.
presented a SAR simulator to generate SAR and ISAR data of ship targets, and several
motion effects were also considered [19,20]. Moreover, the model establishment of the
ship target in the sea scene was systematically discussed in [21,22]. Besides, Cochin et al.
developed a software named MOCEM to produce high-resolution SAR images from CAD
models [23], and version 4 included new features to simulate the radar raw data of a
maritime scene composed of a ship on a dynamic sea surface [24].

Although much work has been carried out to analyze the impact of ship micromotion
on SAR/ISAR imaging, there are still some issues that need to be settled:

(1) The state-of-the-art researches concerning ship oscillation and SAR imaging are
relatively dispersed, and there is no systematic description and derivation of the
phase distortion introduced by ship 6-DOF oscillation;

(2) The ship oscillation in most of the existing analyses are obtained through numerical
simulation, and part of the conclusions lack the verification by measured attitude
data.

The above problems are what this paper is dedicated to solving. The organization
of this paper is as follows. In Section 2, based on the 6-DOF motion, the accurate range
models for ship linear oscillation and angular oscillation were built, and the superiority
was verified by comparing them with the models described in [7]. In Section 3, through
using the Taylor formula and Bessel function to expand the phase error introduced by
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ship oscillation, we further analyzed its effect on imaging. In Section 4, we first briefly
introduced the ship attitude data collected in the field campaign. Then, the semi-physical
echoes of the oscillatory ship were generated to analyze the impact of oscillation on imaging.
Besides, based on the proposed range model, we also made some tentative research on
the phase compensation method by fitting ship attitude angles with multiple sinusoidal
functions. Finally, Section 5 is a summary.

2. Model of Oscillatory Ship Target

The geometry and range model of an oscillatory ship target is introduced in this
section. Based on the 6-DOF motion, the accurate range models for ship linear oscillation
and angular oscillation were built. To make the equations and schematic diagrams in this
paper more concise, some repeated symbols and their meanings are listed in Table 1.

Table 1. Symbol list.

Symbols The Meaning of Symbol

O-XYZ The ship-fixed coordinate system
o′-x′y′z′ The interim space coordinate system

o-xyz The fixed space coordinate system
∆X, ∆Y, ∆Z The coordinate changes caused by the ship’s surge, sway, and heave
Ax, Ay, Az The amplitude of the ship’s surge, sway, and heave
ωx, ωy, ωz The angular frequency of the ship’s surge, sway, and heave
ϕx, ϕy, ϕz The initial phase of the ship’s surge, sway, and heave

Al , ωl , ϕl
The amplitude, angular frequency, and initial phase of a linearly
oscillating target along an axis of the space

θx, θy, θz The roll angle, pitch angle, and yaw angle of the ship
Bx, By, Bz The amplitude of the ship’s roll, pitch, and yaw

Ωx, Ωy, Ωz The angular frequency of ship’s roll, pitch, and yaw
Ψx, Ψy, Ψz The initial phase of the ship’s roll, pitch, and yaw

H The height of the radar platform (airplane)
va The velocity of the radar platform
vs The velocity of the ship
αv Heading angle, the angle between ship’s sailing direction and x-axis

α0
Radar observation angle, the angle between the RLOS 1 projection
direction and the platform moving direction

α1 The angle between the projection of linear oscillation axis and y-axis
β0 Grazing angle, the angle between the RLOS direction and the sea level
β1 The angle between the linear oscillation axis and the sea level

1 RLOS = radar line of sight.

2.1. Range Model of a Ship Target Based on 6-DOF Motion

Affected by sea breezes and waves, the sea-surface targets often have complex micro-
motion, which can be described as the 6-DOF motion. The geometry of a ship’s 6-DOF
motion is shown in Figure 1.

In Figure 1, O-XYZ is the ship-fixed coordinate system whose origin is located at
the centroid of the ship. The X-axis is the longitudinal axis, and the bow indicates the
positive direction of X. The Y-axis is the transverse axis, which is perpendicular to the
longitudinal section of the ship, and the left side of the ship’s sailing direction is the positive
direction. The Z-axis is the vertical axis, which is perpendicular to the X-axis and Y-axis,
and these three axes constitute a three-dimensional Cartesian coordinate system. The ship-
fixed coordinate system moves and oscillates with the ship, which is used to describe the
positions of targets relative to the ship centroid. The o′-x′y′z′ is an interim space coordinate
system that sails with the ship but does not oscillate, and it is consistent with O-XYZ at the
initial time. This coordinate system is used to describe the micromotion of the ship.
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Figure 1. The geometry of a ship’s 6-DOF motion. P is a point target fixed on the ship.

The definitions of the ship’s 6-DOF motion is shown in Table 2 [6]. These six motions
can be simply classified into two categories, the linear oscillation of a ship along three axes
and the angular oscillation of a ship around those three axes. The serial numbers in the
table correspond to those in Figure 1.

Table 2. Description of 6-DOF oscillatory motion of the ship.

Serial
Number

Motion
Name Description

1 Surge The linear oscillation of a ship along its longitudinal axis.
2 Sway The linear oscillation of a ship along its transverse axis.
3 Heave The linear oscillation of a ship along its vertical axis.
4 Roll The angular oscillation of a ship around its longitudinal axis.
5 Pitch The angular oscillation of a ship around its transverse axis.
6 Yaw The angular oscillation of a ship around its vertical axis.

Due to the interaction between ship and complex ocean environment, based on
seakeeping theory of deep-water platform, ship motion is generally viewed as the superpo-
sition of surge, sway, heave, roll, pitch, and yaw with a multi-frequency motion [3,4]. As
an ideal rigid target, the displacements caused by ship linear oscillation can be expressed
as follows: 

∆X =
Nx
∑

i=1
Ax,i sin(ωx,it + ϕx,i)

∆Y =
Ny

∑
i=1

Ay,i sin
(
ωy,it + ϕy,i

)
∆Z =

Nz
∑

i=1
Az,i sin(ωz,it + ϕz,i)

, (1)

where ∆X, ∆Y, ∆Z represent the displacements caused by the ship’s surge, sway, and heave,
respectively. Ax,i, Ay,i, Az,i, ωx,i, ωy,i, ωz,i, ϕx,i, ϕy,i, ϕz,i are the amplitudes, angular frequen-
cies, and initial phases for the i-th component of surge, sway, and heave, respectively. Nx,
Ny, Nz indicate the numbers of frequency components associated with surge, sway, and
heave.

The rotation angles of roll, pitch, and yaw can be written as

θx =
Mx
∑

i=1
Bx,i sin(Ωx,it + Ψx,i)

θy =
My

∑
i=1

By,i sin
(
Ωy,it + Ψy,i

)
θz =

Mz
∑

i=1
Bz,i sin(Ωz,it + Ψz,i)

, (2)
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where θx, θy, θz represent the rotation angles of roll, pitch, and yaw. Bx,i, By,i, Bz,i, Ωx,i, Ωy,i,
Ωz,i, Ψx,i, Ψy,i, Ψz,i are the amplitudes, angular frequencies, and initial phases for the i-th
component of roll, pitch, and yaw, respectively. Mx, My, Mz indicate the numbers of
frequency components associated with roll, pitch, and yaw.

Assuming that there is a point P on the ship, its coordinate in the ship-fixed coordinate
system is (Xp, Yp, Zp). Thus, the position of point P in the o′-x′y′z′ coordinate system at
time t can be derived by the following coordinate transformation: xp

′(t)
yp
′(t)

zp
′(t)

 = Rot1
(
θx, θy, θz

) Xp + ∆X
Yp + ∆Y
Zp + ∆Z

, (3)

Rot1
(
θx, θy, θz

)
=

[ 1 0 0
0 cos θx − sin θx
0 sin θx cos θx

] cos θy 0 sin θy
0 1 0

− sin θy 0 cos θy

[ cos θz − sin θz 0
sin θz cos θz 0

0 0 1

]
. (4)

Next, based on the 6-DOF motion, the range model of a ship target can be established,
the geometry of a navigating ship is shown in Figure 2. The o-xyz is a fixed space coordinate
system, whose y-axis is parallel to the direction of radar movement. At the initial moment,
the projection of aircraft on the sea level is at the origin o, and the coordinate of the ship’s
centroid in the o-xyz coordinate system is (x0, y0, z0).
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Assuming that the ship has periodic linear oscillation (surge, sway, heave) and an-
gular oscillation (roll, pitch, yaw) in addition to the uniform sailing. Combined with the
coordinate rotation matrix, the point P in o-xyz coordinate system can be expressed as xp(t)

yp(t)
zp(t)

 = Rot2(αv)

 xp
′(t)

yp
′(t)

zp
′(t)

+

[ 0
vst
0

]+

[ x0
y0
z0

]
, (5)

Rot2(αv) =

 cos αv sin αv 0
− sin αv cos αv 0

0 0 1

. (6)

The coordinate of the radar platform can be written as[
xr(t) yr(t) zr(t)

]T
=
[

0 vat H
]T . (7)
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Finally, the slant distance between the point P and the antenna phase center can be
expressed as

Rp(t) =
√(

xr(t)− xp(t)
)2

+
(
yr(t)− yp(t)

)2
+
(
yr(t)− yp(t)

)2. (8)

Based on the above formulas, a range model of a ship target based on 6-DOF motion is
given, which can be used to further analyze the phase and Doppler history of the oscillating
target and generate the SAR raw data.

2.2. Ship Linear Oscillation

The linear oscillation of ships includes three types: surge, sway, and heave. They
are all linear reciprocating motions along one axis of the ship. The only difference is the
direction of oscillatory axis. Considering that the bow may point to any direction, and to
simplify the derivation process, we analyzed these three kinds of linear oscillations based
on a point target oscillating along any direction. The geometric model of a point target
with linear oscillation is shown in Figure 3.
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2.2.1. Single-Frequency Linear Oscillation

As the approximate form in a short time, a single-frequency linear oscillation model is
first considered. Supposing that the point P oscillates with the fixed point P0 (x0, y0, z0),
the displacement of point P can be decomposed into three axes:

∆x = Al sin α1 cos β1 sin(ωlt + ϕl)
∆y = Al cos α1 cos β1 sin(ωlt + ϕl)
∆z = Al sin β1 sin(ωlt + ϕl)

, (9)

where Al , ωl , ϕl represent the amplitude, angular frequency, and initial phase of the linear
oscillation, respectively.

According to the results of [7], the distance between the oscillating point P and the
antenna phase center can be approximately expressed as
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Rp(t) =
√
(x0 + ∆x)2 + (vat− y0 − ∆y)2 + (H − z0 − ∆z)2

≈ ‖
→

RP0‖+ ‖
→

P0P‖ cos
〈 →

PP0,
→

RP0

〉
≈ ‖

→
RP0‖+ ‖

→
P0P‖ cos

〈 →
PP0,

→
R0P0

〉
=

√
x02 + (vat− y0)

2 + (H − z0)
2 + AlC0 sin(ωlt + ϕl)

, (10)

C0 = sin β0 sin β1 − cos β0cosβ1 cos(α0 + α1), (11)

where C0 represents the cosine value of the angle between the oscillating axis and RLOS at
the center moment.

However, since the neglect of the radar platform movement while calculating

cos
〈 →

PP0,
→

RP0

〉
, this approximate formula would lead to intolerable errors in some cases.

To reduce the range error caused by projection deviation, we rewrote this item:

cos
〈 →

PP0,
→

RP0

〉
= −x0 cos β1 sin α1−(vat−y0) cos β1 cos α1+H sin β1√

x0
2+(vat−y0)

2+H2

= H sin β1−H cot β0 cos β1 cos(α0+α1)−vat cos β1 cos α1√
(H csc β0)

2+(vat)2+2Hvat cot β0 cos α0

≈ kt

(
C0 − va sin β0 cos β1 cos α1

H t
)

, (12)

kt =
2H2

2H2 + sin2 β0

[
(vat)2 + 2Hvat cos β0 cos α0

] , (13)

where coefficient kt is the reciprocal of a quadratic polynomial, and it can be ignored when
observation time is short or grazing angle is small.

Then, a more accurate range equation for the target with linear oscillation can be
expressed as follows:

Rp(t) ≈ ‖
→

RP0‖+ ‖
→

P0P‖ cos
〈 →

PP0,
→

RP0

〉
≈

√
x02 + (vat− y0)

2 + (H − z0)
2 + Alkt

(
C0 − va sin β0 cos β1 cos α1

H t
)
× sin(ωlt + ϕl)

. (14)

Comparing the above formulas, it can be found that Equation (14) can be reduced to
Equation (10) when ignoring the time-varying coefficient kt and the first-order term in the
bracket. In the derivation of the new range approximate equation, the main modification

was replacing the constant cos
〈 →

PP0,
→

R0P0

〉
with variable cos

〈 →
PP0,

→
RP0

〉
, which can better

represent the projection direction of target oscillation. In the second item of Equation (14),
the coefficient of the linear term is much smaller than the constant C0 in most scenarios,
which does not have a great impact on the range. However, when C0 ≈ 0, such as the
radar works in the side-looking mode and the target oscillates along the azimuth direction,
the linear term would become dominant. However, in this case, the range model in [7]
shows that the range distortion introduced by target linear oscillation is zero, which is
unreasonable. In order to compare the fitting effects of these two approximate methods, an
experiment was conducted with a set of typical parameters: Al = 1 m, ωl = 2π/3 rad/s,
ϕ0= 0

◦
, va = 140 m/s, H = 6 km, fc = 5.4 GHz, α0 = 90

◦
, β0 = 40

◦
. The simulation results

are shown in Figure 4.
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As shown in Figure 4a, both methods can achieve good fitting results when the target
oscillates along the range direction. However, the method in [7] still has little error as
shown in the partial enlarged view, which is mainly due to the neglect of the change of

‖
→

RP0‖ when calculating cos
〈 →

PP0,
→

RP0

〉
. Furthermore, this error was reduced by adding

the time-varying coefficient kt in Equation (14). In Figure 4b, the model in [7] showed a
quite large fitting error when the target oscillates along the azimuth direction, and the
distortion envelope is linearly modulated. This error is mainly derived from ignoring the
change of projection direction, and it was also improved by adding the first-order term to
the constant C0.

Next, continue to derive the Doppler frequency introduced by the target linear oscilla-
tion. The Doppler history of point P can be divided into two parts:

fd(t) = −
2
λ

dRp(t)
dt

= fd_re f (t) + fd_m(t), (15)

where fd denotes the total Doppler caused by the relative motion between the radar
platform and target, fd_re f represents the reference Doppler generated by the radar plat-
form movement, and fd_m represents the micro-Doppler caused by the target oscillation.
Moreover, these two components in the above formula can be expressed as

fd_re f (t) = −
2
λ

(vat− y0)va√
x02 + (vat− y0)

2 + H2
, (16)

fd_m(t) ≈ − 2
λ Alωlkt

(
C0 − va sin β0 cos β1 cos α1

H t
)
× cos(ωlt + ϕl)

− 2
λ Al

[
kt
′C0 − va sin β0 cos β1 cos α1

H (kt
′t + kt)

]
× sin(ωlt + ϕl)

, (17)

kt
′ = − sin2 β0

H2 k2
t

(
v2

at + Hva cos β0 cos α0

)
. (18)

According to Equation (17), the micro-Doppler introduced by the target linear oscilla-
tion can be expressed as the superposition of two modulated cosine and sine in which the
former is usually the dominant term. Similar to the range error, the micro-Doppler will
show an obvious linear modulation phenomenon when C0 is close to zero. Figure 5 shows
the micro-Doppler history caused by target linear oscillation.
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2.2.2. Multi-Frequency Linear Oscillation

In this subsection, a point target incorporating multi-frequency linear oscillation
model is considered. Similar to the former analysis, the displacement of point P can be
decomposed into three axes:

∆x = sin α1 cos β1

Nl
∑

i=1
Al,i sin(ωl,it + ϕl,i)

∆y = cos α1 cos β1

Nl
∑

i=1
Al,i sin(ωl,it + ϕl,i)

∆z = sin β1

Nl
∑

i=1
Al,i sin(ωl,it + ϕl,i)

, (19)

where Al,i, ωl,i, ϕl,i represent the amplitude, angular frequency, and initial phase of the
i-th frequency component, respectively. Nl indicates the number of frequency components
associated with linear oscillation.

Then, the range equation and micro-Doppler for the target with multi-frequency linear
oscillation can be respectively expressed as follows:

Rp(t) ≈
√

x02 + (vat− y0)
2 + (H − z0)

2

+ kt

(
C0 − va sin β0 cos β1 cos α1

H t
) Nl

∑
i=1

Al,i sin(ωl,it + ϕl,i)
, (20)

fd_m(t) ≈ − 2
λ kt

(
C0 − va sin β0 cos β1 cos α1

H t
)
×

Nl
∑

i=1
ωl,i Al,i cos(ωl,it + ϕl,i)

− 2
λ

[
kt
′C0 − va sin β0 cos β1 cos α1

H (kt
′t + kt)

] Nl
∑

i=1
Al,i sin(ωl,it + ϕl,i)

. (21)

2.3. Ship Angular Oscillation

The angular oscillation of ships includes three types: roll, pitch, and yaw. The most
obvious motion is rolling, which has minimal damping with a typical hull form [6]. In fact,
these three angular oscillations are not mutually independent, and the coupling between
these motions would change the states of each oscillation [25,26]. In this subsection, we only
made some tentative researches on the uncoupled angular oscillations based on the rotation
matrix. Considering that the sailing of the ship will not affect the angular oscillation in our
model, we assumed that the ship is berthed, and the ship centroid is located at the fixed
point P0 (x0, y0, z0). The geometric model is shown in Figure 6.
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2.3.1. Single-Frequency Angular Oscillation

As the approximate form in a short time, a single-frequency angular oscillation model
is first considered. The rotation angles of ship roll, pitch, and roll can be written as

θx = Bx sin(Ωxt + Ψx)

θy = By sin
(
Ωyt + Ψy

)
θz = Bz sin(Ωzt + Ψz)

, (22)

where Bx, By, Bz, Ωx, Ωy, Ωz, Ψx, Ψy, Ψz are the amplitudes, angular frequencies, and initial
phases of roll, pitch, and yaw, respectively.

The coordinate of point P in the ship-fixed coordinate system is (Xp, Yp, Zp). Based on
Equation (5), the coordinate of P in space coordinate system o-xyz can be expressed as xp(t)

yp(t)
zp(t)

 = Rot2(αv)·Rot1
(
θx, θy, θz

) Xp
Yp
Zp

+

[ x0
y0
z0

]
, (23)

where Rot2(αv) and Rot1
(
θx, θy, θz

)
represent the coordinate rotation matrixes.

Considering that the RLOS is changing with the radar platform position, the slant
range of the target with angular oscillation can be written as

Rp(t) =
√

xp(t)
2 +

(
vat0 − yp(t)

)2
+
(

H − zp(t)
)2

≈ ‖
→

RP0‖+ ‖
→

P0P‖ cos
〈 →

PP0,
→

RP0

〉
≈

√
xp02 +

(
vat− yp0

)2
+
(

H − zp0
)2

+ kt

 sin(αv − α0) cos β0 − sin αvsin β0vat/H

− cos(αv − α0) cos β0 + cos αvsin β0vat/H

sin β0


T

Rot1
(
θx, θy, θz

) Xp

Yp

Zp


, (24)

where xp0, yp0, zp0 denote the coordinates of point P in the fixed space coordinate system at
the initial moment.

By substituting the rotation matrix in Equation (4) into Equation (24), the range
distortions introduced by roll, pitch, and yaw motion can be respectively expressed as

Rp_roll(t) = kt

 sin(αv − α0) cos β0 − sin αv sin β0vat/H

− cos(αv − α0) cos β0 cos θx + cos αv sin β0 cos θxvat/H + sin β0 sin θx

cos(αv − α0) cos β0 sin θx − cos αv sin β0 sin θxvat/H + sin β0 cos θx


T Xp

Yp

Zp

, (25)
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Rp_pitch(t) = kt

 sin(αv − α0) cos β0 cos θy − sin αv sin β0 cos θyvat/H − sin β0 sin θy

− cos(αv − α0) cos β0 + cos αvsin β0vat/H

sin(αv − α0) cos β0 sin θy − sin αv sin β0 sin θyvat/H + sin β0 cos θy


T Xp

Yp

Zp

, (26)

Rp_yaw(t) = kt

[ − sin(θz − αv + α0) cos β0 + sin(θz − αv) sin β0vat/H

− cos(θz − αv + α0) cos β0 + cos(θz − αv) sin β0vat/H

sin β0

]T
 Xp

Yp

Zp

. (27)

From Equations (25)–(27), the range distortions introduced by single-frequency roll,
pitch, and yaw can be viewed as the superposition of composite sinusoidal functions, and
part of the terms are linearly modulated. When all the three angular oscillations exist, the
range expression will become extremely complicated, and the specific derivation results
can be seen in Appendix A.

Considering that the roll motion usually has the largest amplitude of the angular
oscillations, we took it as an example to analyze the ship angular oscillation. Based on the
auxiliary angle formula, Equation (25) can be rewritten as

Rp_roll(t) = kt cos(αv − α0) cos β0
(
Zp sin θx −Yp cos θx

)
+ kt sin β0

(
Yp sin θx + Zp cos θx

)
+ kt sin β0vat/H

[
cos αv

(
Yp cos θx − Zp sin θx

)
− sin αvXp

]
+ kt sin(αv − α0) cos β0Xp

= kt{Lx_1 cos[Bx sin(Ωxt + Ψx) + θx0_1] + Lx_2 cos[Bx sin(Ωxt + Ψx) + θx0_2] · t + Lx0}
, (28)

Lx_1 =
√

Y2
p + Z2

p ·
√

cos2(αv − α0) cos2 β0 + sin2 β0 Lx_2 =
√

Y2
p + Z2

p · cos αv sin β0va/H

θx0_1 = arctan cos(αv−α0) cos β0Zp+sin β0Yp
cos(αv−α0) cos β0Yp−sin β0Zp

θx0_2 = arctan Zp
Yp

Lx0 = − sin αv sin β0Xp
vat
H + sin(αv − α0) cos β0Xp

, (29)

where Lx_1 and Lx_1, θx0_1 and θx0_2 are the effective amplitude and initial phase of the
composite cosine, respectively. Lx0 is the residual linear term after merging. According
to Equation (28), the range distortion caused by roll motion consists of three components:
composite cosine, linear modulated composite cosine, and linear polynomial. Since the
va/H is usually close to zero, the first component will be dominant in most scenarios.

Next, we further analyzed the range distortion and micro-Doppler by Bessel function.
Based on Jacobi–Anger expansion, which is the Bessel function of the first kind [27], the
composite cosine and sine can be rewritten as

cos[Bx sin(Ωxt + Ψx)] = J0(Bx) + 2
∞
∑

n=1
J2n(Bx) cos[2n(Ωxt + Ψx)]

sin[Bx sin(Ωxt + Ψx)] = 2
∞
∑

n=1
J2n−1(Bx) sin[(2n− 1)(Ωxt + Ψx)]

, (30)

Jn(Bx) =
∞

∑
k=0

(−1)k

k!Γ(k + n + 1)

(
Bx

2

)2k+n
, (31)

where Jn(·) denotes the nth Bessel function, and Γ(·) denotes the Gamma function.
Then, ignoring the coefficient kt which is close to 1, the range distortion in Equation

(28) can be rewritten as

Rp_roll(t) ≈ Lx_1 cos[Bx sin(Ωxt + Ψx)] cos θx0_1 − Lx_1 sin[Bx sin(Ωxt + Ψx)] sin θx0_1 + Lx0

+ Lx_2 cos[Bx sin(Ωxt + Ψx)] cos θx0_2 · t− Lx_2 sin[Bx sin(Ωxt + Ψx)] sin θx0_2 · t

= (Lx_1 cos θx0_1 + Lx_2 cos θx0_2 · t)
{

J0(Bx) + 2
∞
∑

n=1
J2n(Bx) cos[2n(Ωxt + Ψx)]

}
− 2(Lx_1 sin θx0_1 + Lx_2 sin θx0_2 · t)

∞
∑

n=1
J2n−1(Bx) sin[(2n− 1)(Ωxt + Ψx)] + Lx0

. (32)
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Based on Equation (32), the micro-Doppler caused by roll motion can be expressed as

fd_roll(t) ≈ − 4
λ Lx_2 cos θx0_2

∞
∑

n=1
J2n(Bx) cos[2n(Ωxt + Ψx)]

+ 4Ωx
λ (Lx_1 cos θx0_1 + Lx_2 cos θx0_2 · t)

∞
∑

n=1
2n · J2n(Bx) sin[2n(Ωxt + Ψx)]

+ 4
λ Lx_2 sin θx0_2

∞
∑

n=1
J2n−1(Bx) sin[(2n− 1)(Ωxt + Ψx)]

+ 4Ωx
λ (Lx_1 sin θx0_1 + Lx_2 sin θx0_2 · t)

∞
∑

n=1
(2n− 1) · J2n−1(Bx) cos[(2n− 1)(Ωxt + Ψx)]

− 2
λ Lx_2 cos θx0_2 J0(Bx) +

2
λ sin αv sin β0Xp

va
H

. (33)

Equations (32) and (33) indicate that the range distortion and micro-Doppler caused
by roll motion can be expressed as the superposition of multiple-frequency sinusoids,
and some of the sinusoids are linear modulated. From Equation (31), when Bx is small,
Jn(Bx) will decrease rapidly with the increase of n, so they can be approximated by several
sinusoidal functions. The results are similar when there is only pitch motion, but are a little
different for yaw motion, the specific results are shown in Appendix B.

Finally, to illustrate the effectiveness of the range model proposed in this paper, a set
of angular oscillation parameters of two types of ships for sea-state 5 were employed to
simulate the range distortions and micro-Doppler caused by target angular oscillations.
The parameters are listed in Table 3 [28,29].

Table 3. Computed worst-case ship motion parameters for two ship types in sea-state 5.

Ship Type Motion Type Double Amplitude (deg) Average Period (sec)

Destroyer
Roll 38.4 12.2
Pitch 3.4 6.7
Yaw 3.8 14.2

Carrier
Roll 5.0 26.4
Pitch 0.9 11.2
Yaw 1.33 33.0

Supposing the initial phases of oscillation for both ships are zero, and only the angular
oscillation exists during the observation time. The coordinate of point P in the ship-fixed
coordinate system is (10 m, 10 m, 10 m), the system parameters are the same as those in
Section 2.2, and the heading angle is 0◦. Based on the oscillation parameters in Table 3,
the trajectories of point P in the fixed space coordinate system during 30 s are shown in
Figure 7. Then, the range models in this paper and reference [7] were used to calculate the
distortions introduced by angular oscillations. The results are shown in Figure 8.

According to Figure 7, when only a certain angular oscillation exists, the trajectories
of the target are relatively simple, which are typical circular arcs. Especially when the
oscillation amplitudes are small, they can even be approximated as straight lines. However,
the target trajectories become quite complicated when all the three-axis oscillations exist,
as shown by the purple dot-dash lines in Figure 7. Since the target moves simultaneously
in three degrees of freedom, its trajectories perform as the complex and nonperiodic spatial
curves.

Figure 8 shows the comparison of range error calculated by range models in this
paper and published literature. Since the change of projection direction caused by platform
motions is not considered in [7], it will cause a large deviation which is mainly presented
as the linear form. Besides, although the trajectory is relatively complex when all the
three-axis oscillations exist, the range distortion caused by it is almost the same as that
caused by only roll motion. Furthermore, this phenomenon is more obvious for destroyer.
The above experiments proved that the proposed model has enough fitting accuracy for
the target with angular oscillations.
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Then, we further simulated the micro-Doppler introduced by target angular oscilla-
tions. The results are shown in Figure 9, and two typical heading angles were considered
in this experiment.

According to the above simulation results, the following conclusions can be drawn:

(1) Under the given coordinate (10 m, 10 m, 10 m), the magnitude of the micro-Doppler
introduced by the three angular oscillations is fd_roll > fd_pitch > fd_yaw. The roll mo-
tion seems to be dominant when the ship is small, and this dominance will gradually
weaken as the ship size increases.

(2) When all the three angular oscillations exist at the same time, the micro-Doppler
will become a relatively complex form, and the its periodicity will also be weakened,
which may require more sinusoidal terms to better fit it.

(3) With different heading angles, the micro-Doppler caused by angular oscillations has
significant differences. According to Equation (33), the mean micro-Doppler introduced
by roll motion is determined by 2 sin αv sin β0Xpva/(λH) − 2Lx_2 cos θx0_2 J0(Bx)/λ.
Bring the simulation parameters into this formula, when the heading angle is 0◦ and
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90◦, the mean micro-Doppler of point P introduced by carrier rolling is –5.45 Hz and
5.45 Hz, respectively. The calculation results agree well with simulation results in
Figure 9e, which proves the validity of the proposed model.
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2.3.2. Multi-Frequency Angular Oscillation

In this subsection, a point target incorporating multi-frequency angular oscillation
model is considered. Similar to the former analysis, we took the roll motion as an example
to derivate the introduced range distortion and micro-Doppler.

By substituting the roll angle in Equation (2) into Equation (25), and ignoring the
coefficient kt which is close to 1, the range distortion introduced by multi-frequency roll
motion can be expressed as

Rp_roll(t) ≈ Lx_1 cos

[
Mx

∑
i=1

Bx,i sin(Ωx,it + Ψx,i) + θx0_1

]
+ Lx_2 cos

[
Mx

∑
i=1

Bx,i sin(Ωx,it + Ψx,i) + θx0_2

]
· t + Lx0. (34)

Then, according to the chain rule for composite functions derivation, the micro-
Doppler introduced by roll motion can be written as

fd_roll(t) ≈
2Lx_1

λ

Mx
∑

i=1
Ωx,iBx,i cos(Ωx,it + Ψx,i) sin

[
Mx
∑

i=1
Bx,i sin(Ωx,it + Ψx,i) + θx0_1

]
+

2Lx_2
λ

Mx
∑

i=1
Ωx,iBx,i cos(Ωx,it + Ψx,i) sin

[
Mx
∑

i=1
Bx,i sin(Ωx,it + Ψx,i) + θx0_2

]
· t

− 2Lx_2
λ cos

[
Mx
∑

i=1
Bx,i sin(Ωx,it + Ψx,i) + θx0_2

]
+ 2

λ sin αv sin β0Xp
va
H

. (35)

As shown in Equations (34) and (35), the expressions of range distortion and micro-
Doppler become extremely complex because of the multi-frequency components. Since it is
relatively difficult to directly analyze the angular oscillation with Mx frequency components,
we took the dual-frequency roll motion as an example to make a tentative analysis. When
Mx = 2, based on Jacobi–Anger expansion, the composite cosine in Equation (34) can be
expanded as
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cos
[

2
∑

i=1
Bx,i sin(Ωx,it + Ψx,i) + θx0_1

]
= cos θx0_1

{
J0(Bx,1) + 2

∞
∑

n=1
J2n(Bx,1) cos[2n(Ωx,1t + Ψx,1)]

}{
J0(Bx,2) + 2

∞
∑

n=1
J2n(Bx,2) cos[2n(Ωx,2t + Ψx,2)]

}
− cos θx0_1

{
2

∞
∑

n=1
J2n−1(Bx,1) sin[(2n− 1)(Ωx,1t + Ψx,1)]

}{
2

∞
∑

n=1
J2n−1(Bx,2) sin[(2n− 1)(Ωx,2t + Ψx,2)]

}
− sin θx0_1

{
2

∞
∑

n=1
J2n−1(Bx,1) sin[(2n− 1)(Ωx,1t + Ψx,1)]

}{
J0(Bx,2) + 2

∞
∑

n=1
J2n(Bx,2) cos[2n(Ωx,2t + Ψx,2)]

}
− sin θx0_1

{
J0(Bx,1) + 2

∞
∑

n=1
J2n(Bx,1) cos[2n(Ωx,1t + Ψx,1)]

}{
2

∞
∑

n=1
J2n−1(Bx,2) sin[(2n− 1)(Ωx,2t + Ψx,2)]

}
. (36)

From Equation (36), the composite cosine with dual-frequency can be expressed as
products of the sum of sinusoidal and co-sinusoidal functions. The cross-terms generated
by multiplication operation have new angular frequencies, which can be expressed as
pΩx,1 + qΩx,2 (p, q ∈ N+). The expansion result of the composite sine in Equation (35) is
similar to Equation (36).

With the increase of frequency components number associated with angular oscillation,
the expression of the composite cosine will be shown as the products of more Jacobi–
Anger expansion. This leads to range distortion and micro-Doppler need more sinusoidal
functions to approximate, which undoubtedly increase the difficulty of accurate estimation
of ship attitude.

3. The Effect of Oscillation on Imaging

Oscillations impart complicated nonlinear phase histories to radar echoes. They
give rise to special SAR image characteristics, apart from the common defocusing and
displacement which can also be induced by slowly moving targets. Therefore, it is necessary
to give a specific analysis of their influence on SAR imaging.

From the analysis in Section 2, the phase distortions caused by oscillation can be
approximated as the superposition of sinusoids and linear modulated sinusoids. Thus,
based on the proposed rang models, the impact of target oscillation on imaging will be
further analyzed in this part. According to the relationship between coherent processing
interval (CPI) and oscillation period, this issue can be divided into two cases to discuss
respectively. The first case is that the CPI is less than the oscillation period, which is more
common in the actual signal processing, especially for large ships and low sea conditions.
The Taylor expansion will be used to calculate the amplitude of different order phase error
components. The second case is that CPI is greater than the oscillation period, which can
be effectively analyzed by paired echo principle (PEP) [30,31]. In order to simplify the
derivation, the following analysis is based on single-frequency oscillation. The system
simulation parameters used in this section are listed in Table 4.

Table 4. The system parameters of SAR simulation.

Symbol Parameter Values

f Center Frequency 5.4 GHz
fa Pulse Repetition Frequency (PRF) 420 Hz
Br Signal Bandwidth 300 MHz
H Platform Height 6 km
β0 Grazing Angle 40◦

θrc Squint Angle 0◦

va Platform Velocity 140 m/s
LD Antenna Length 1 m
T0 CPI 3.73 s
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3.1. CPI Less Than the Oscillation Period

The phase distortion introduced by oscillation is nonperiodic in this case, which can be
expanded by low-order Taylor expansion. It is well known that the phase errors of different
orders have different impacts on SAR focusing, and the effects of different order phase
errors on chirp signal matched filtering have been soundly investigated in [1,7,32–34]. The
relationship between the phase error order and the effects on azimuth images are listed in
Table 5.

Table 5. Effects of different order phase errors on azimuth images.

Phase Error
Order Effects on SAR Azimuth Images

1 Peak displacement
2 Defocus of impulse response, decrease of peak amplitude
3 Unbalanced sidelobes, peak displacement, and amplitude decrease
4 Symmetrical increase of sidelobe, decrease of peak amplitude

Higher-order Paired echoes, ghost images

3.1.1. Ship Linear Oscillation

According to Equation (14), when the coefficient kt is ignored, the range distortion
introduced by linear oscillation can be concluded to the following form:

Rp_linear(t) ≈ Al [C0 − va sin β0 cos β1 cos α1t/H]× sin(ωlt + ϕl) = (klt + bl)× sin(ωlt + ϕl). (37)

According to the binomial expansion, the nth-order derivative of the linear modulated
sinusoidal function in Equation (37) at t = 0 can be expressed as

g(kl , bl , ωl , ϕl , n) = R(n)
p_linear(0) = nωn−1

l kl sin
(

ϕl +
n− 1

2
π

)
+ ωn

l bl sin
(

ϕl +
n
2

π
)

. (38)

Then, perform the nth-order Taylor expansion of the phase distortion at t = 0:

Rp_linear(t) ≈
n

∑
m=0

g(kl , bl , ωl , ϕl , m) · tm

m !
. (39)

Based on the above formula, the phase error can be written as

φp_linear(t) =
4π

λ
Rp_linear(t) ≈

4π

λ

n

∑
m=0

g(kl , bl , ωl , ϕl , m) · tm

m !
=

n

∑
m=0

φm(t), (40)

where φm(t) denotes the mth-order phase error component, λ is the wavelength.
Within the observation time T0, the maximum variation of each order phase error

component can be expressed as follows:

max{φm(t)} −min{φm(t)} =


4π

λ·m ! g(kl , bl , ωl , ϕl , m) ·
(

T0
2

)m
, m = 2p

8π
λ·m ! g(kl , bl , ωl , ϕl , m) ·

(
T0
2

)m
, m = 2p + 1

p ∈ N. (41)

Since the CPI is less than the oscillation period, the initial phase will have a great
influence on the amplitude of phase error. Therefore, based on the parameters in Table 4,
we further analyzed how the phase error changes with the initial phase. The oscillation
period and amplitude are set as 30 s and 1 m, respectively. The maximum variation of
phase error components from first-order to fourth-order are shown in Figure 10.
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Figure 10. The maximum variation of phase error components from 1st-order to 4th-order, the
oscillation period and amplitude is set as 30 s and 1 m, respectively. (a) Target oscillates along the
range direction; (b) target oscillates along the azimuth direction.

According to the simulation parameters, when the target oscillates along the range
direction, bl is equal to Al and kl is approaching zero. When the target oscillates along the
azimuth direction, bl is close to zero and kl is far less than Al. Therefore, the maximum
variation of phase error components will present sinusoidal forms, as shown in Figure 10.
To explicitly illustrate the impact of linear oscillation on imaging and verify the validity of
the presented analysis, we generated the echoes of a point target with linear oscillation. The
algorithm used for imaging is the classic Range Doppler (RD) algorithm, and the results
are shown in Figure 11.
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Figure 11. Focusing results of point target with linear oscillations. (a) Target oscillates along the range direction, ϕl = 0;
(b) target oscillates along the range direction, ϕl = π/2; (c) target oscillates along the azimuth direction, ϕl = 0; (d) target
oscillates along the azimuth direction, ϕl = π/2. The red dot represents the true position of the target.

According to Figure 10a, when the target oscillates along the range direction, the odd-
order phase errors are cosine functions and the even-order phase errors are sine functions.
Thus, when the initial phase is 0, the echoes contain a large linear phase error (LPE) and
a certain degree of cubic phase error (CPE). Therefore, the azimuth images will show the
phenomenon of peak displacement and unbalanced sidelobes, as shown in Figure 11a.
When the initial phase is π /2, the quadratic phase error (QPE) is dominant, so there
will be heavily azimuth defocus in the focusing result, as shown in Figure 11b. When
the target oscillates along the azimuth direction, the phase errors are relatively small, so
the main effects on imaging are presented as slight displacement and defocus, as shown
in Figure 11c,d.

3.1.2. Ship Angular Oscillation

As shown in Equation (32), the range distortion introduced by roll motion can be
expressed as the superposition of multiple-frequency sinusoids, and some of the sinusoids
are linear modulated. The range distortion can be rewritten as

Rp_roll(t) ≈
∞

∑
i=1

(kr1,it + br1,i) cos[2i(Ωxt + Ψx)] +
∞

∑
i=1

(kr2,it + br2,i) sin[(2i− 1)(Ωxt + Ψx)] + L0_new, (42)
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where

kr1,i = 2J2i(Bx)Lx_2 cos θx0_2 br1 = 2J2i(Bx)Lx_1 cos θx0_1

kr2 = −2J2i−1(Bx)Lx_2 sin θx0_2 br1 = −2J2i−1(Bx)Lx_1 sin θx0_1

L0_new = Lx0 + (Lx_1 cos θx0_1 + Lx_2 cos θx0_2 · t)J0(Bx)

. (43)

Then, based on Equation (38), the nth-order derivative of Rp_roll(0) can be obtained:

R(n)
p_roll(0) =

∞

∑
i=1

g
(

kr1,i, br1,i,−2iΩx,
π

2
− 2iΨx, n

)
+

∞

∑
i=1

g(kr2,i, br2,i, (2i− 1)Ωx, (2i− 1)Ψx, n) + L(n)
0_new. (44)

Then, within the observation time T0, the maximum variation of each order phase
error component can be expressed as follows:

max{φm(t)} −min{φm(t)}
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4π
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∞
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∞
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]
·
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2

)m
, m = 2p

8π
λ·m !

[
∞
∑

i=1
g
(
kr1,i , br1,i ,−2iΩx , π

2 − 2iΨx , n
)
+

∞
∑

i=1
g(kr2,i , br2,i , (2i− 1)Ωx , (2i− 1)Ψx , n) + L(m)

0_new

]
·
(

T0
2

)m
, m = 2p + 1

p ∈ N
. (45)

The results are similar when there are only pitch and yaw motions. Based on the
oscillation parameters in Table 3 and the system parameters in Table 4, we simulated how
the maximum variation of each order phase error components change with the initial phase.
The results about the destroyer oscillation are shown in Figure 12. Then, the initial phases
0 and π /2 are chosen for imaging simulation. The coordinate of the point target is (10 m,
10 m, 10 m) in the ship-fixed coordinate system, the imaging results are shown in Figure 13.
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According to Figure 12, when initial phases are zero, the LPEs caused by these four
oscillations have different magnitudes, which will lead to the varying degrees of peak
displacement in the azimuth, as shown in the first row in Figure 13. Meanwhile, roll
motion will introduce obvious QPE, which will cause the azimuth defocus, as shown in
Figure 13a,d. The CPE will cause the unbalanced sidelobes of the impulse response, as
shown in Figure 13b,c. When the initial phases are π /2, the LPEs and CPEs of the four
types of oscillations are close to zero, so the imaging results are centrosymmetric and
located in the true position, the defocusing is mainly determined by the magnitude of the
QPEs and quartic phase errors.

Then, the motion parameters of the carrier in sea-state 5 were also used to analyze
the effects of angular oscillation. The maximum variations of each order phase error
component and the imaging results are shown in Figures 14 and 15 respectively. Compared
with the oscillation parameters of the destroyer, the carrier’s oscillations have smaller
amplitudes and longer periods, so their impact on imaging is relatively slight.
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Figure 13. Focusing results of the point target with angular oscillations of the destroyer on sea-state 5. (a) Roll motion,
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3.2. CPI Greater Than the Oscillation Period

In this case, since the phase error contains periodic sinusoidal terms, it cannot be
approximated by lower-order expansion. As a series expansion method, the Bessel function
was used to expand the phase error, then the impacts of oscillation on imaging can be
further analyzed. According to [29], the following expansion can be obtained:

ejb sin x =
∞

∑
n=−∞

Jn(b)ejnx = J0(b) +
∞

∑
n=1

Jn(b)
[
ejnx + (−1)ne−jnx

]
, (46)

where Jn(·) denotes the nth Bessel function of the first kind.

3.2.1. Ship Linear Oscillation

The phase error introduced by ship linear oscillation can be rewritten as

φp_linear(t) = 4π[bl sin(ωlt + ϕl) + klt sin(ωlt + ϕl)]/λ. (47)

First, the sinusoidal phase error exp(j4πbl sin(ωlt + ϕl)/λ) is considered. According
to Equation (46), the sinusoidal phase error can be expanded as

ej4πbl sin (ωl t+ϕl)/λ = J0(4πbl/λ) +
∞

∑
n=1

Jn(4πbl/λ)
[
ejnϕl ejnωl t + (−1)ne−jnϕl e−jnωl t

]
. (48)

Based on the shift property of Fourier Transform, the exponent terms in Equation (48)
will produce paired echoes on both sides of the impulse response, as shown in Figure 16a.
Moreover, the relative amplitude of the nth paired echoes is Jn(4πbl/λ)/J0(4πbl/λ). The
time interval between adjacent echoes is ∆t = ωl/(2πK), where K denotes the frequency
modulation ratio of the chirp signal. As the oscillation period increase, the interval between
adjacent echoes will gradually decrease and the echoes energy will be more concentrated
in the azimuth.
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Figure 16. The effect of sinusoidal phase error. (a) Sinusoidal phase error; (b) linearly modulated
sinusoidal phase error. The blue line represents the pulse compression result of the original LFM
signal, the red line represents the pulse compression result of the signal added phase error.

Then, take the linear modulated sinusoidal phase error into account. It should be
noted that the linear coefficient kl is proportional to va/H, so its value will be far less than 1
and its impact can be ignored in most scenarios except for bl = 0. In order to use the Bessel
function to analyze this linear modulated sinusoidal phase error, we rewrite this term as
follows:

klt sin(ωlt + ϕl) ≈ sin(klt) sin(ωlt + ϕl) =
1
2
[cos((ωl − kl)t + ϕl)− cos((ωl + kl)t + ϕl)]. (49)

Therefore, the linear modulated sinusoidal phase error can be divided into two parts:

ej 2π
λ cos ((ωl−kl)t+ϕl) ≈ ej 2π

λ sin ((ωl−kl)t+ϕl+
π
2 )

= J0(2π/λ) +
∞
∑

n=1
Jn(2π/λ)

[
ejn(ϕl+π/2)ejn(ωl−kl)t + (−1)ne−jn(ϕl+π/2)e−jn(ωl−kl)t

] , (50)
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e−j 2π
λ cos ((ωl+kl)t+ϕl) ≈ e−j 2π

λ sin ((ωl+kl)t+ϕl+
π
2 )

= J0(−2π/λ) +
∞
∑

n=1
Jn(−2π/λ)

[
ejn(ϕl+π/2)ejn(ωl+kl)t + (−1)ne−jn(ϕl+π/2)e−jn(ωl+kl)t

] . (51)

From the above formulas, since the kl is small, the linear modulated sinusoidal phase
error will produce two symmetrical echoes on both sides of n∆t, and the echoes will
decrease rapidly with the increase of t, as shown in Figure 16b.

Then, in order to verify the presented conclusions, we conducted several imaging
experiments based on the parameters in Table 4. The oscillation period is one second, and
the linear oscillation amplitude is set as 1 m and 0.05 m, which are larger and smaller than
the range unit, respectively. The imaging results are shown in Figure 17.
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Figure 17. Focusing results of point target with linear oscillation. (a) Target oscillates along the range direction, Al = 1 m; (b)
target oscillates along the range direction, Al = 0.05 m; (c) target oscillates along the azimuth direction, Al = 1 m; (d) target
oscillates along the azimuth direction, Al = 0.05 m.

In the case of the target oscillating along the range direction, the phase distortion in-
troduced by linear oscillation is approximately sinusoidal function. According to Equation
(37), the sinusoidal phase error will produce paired echoes on both sides of the impulse
response, as shown in Figure 17a,b. Besides, if the oscillation amplitude is larger than
the range unit, the range cell migration will result in the energy being distributed across
multiple range gates, as shown in Figure 17a.

In the case of the target oscillating along the azimuth direction, the phase distortion
introduced by target motion is linear modulated sinusoidal form with relatively small
amplitude. If the oscillation amplitude is large enough, it will also produce symmetrical
echoes on both sides, and the echoes will decrease rapidly with the increase of azimuth
time, as shown in Figure 17c.

3.2.2. Ship Angular Oscillation

The scenarios of CPI exceeding the ship’s angular oscillation periods are not common,
only when the radar platform moves very slowly or the platform runs in an extremely high
orbit. There is a simple analysis of this situation, ignoring the residual linear polynomial of
Equation (42), the phase error introduced by roll motion can be rewritten as follows:

φp_roll(t) ≈ 4π
λ

[
∞
∑

i=1
br1,i cos[2i(Ωxt + Ψx)] +

∞
∑

i=1
br2,i sin[(2i− 1)(Ωxt + Ψx)]

]
+ 4π

λ

[
∞
∑

i=1
kr1,it cos[2i(Ωxt + Ψx)] +

∞
∑

i=1
kr2,it sin[(2i− 1)(Ωxt + Ψx)]

] . (52)

According to Equation (48), each sinusoidal phase error will produce infinitely sym-
metric echoes after Fourier Transform. Furthermore, Equation (52) indicates that this
process will be repeated at least four times, so this multi-sinusoidal phase error will cause
the echo energy to disperse to nearby azimuth units. In addition, the angular oscillation
usually leads to the rang cell migration of the target, which also causes the dispersion of
the energy in the range direction. Therefore, the final imaging results distorted by single
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angular oscillation are often disordered lines, which are symmetric in the azimuth direction.
However, if all the three-axis oscillations exist simultaneously, the disorder will intensify
and the symmetry will gradually disappear.

In order to make the CPI larger than the oscillation periods in Table 3, we changed
the flight speed of the platform to 14 m/s, CPI will be extended to 37.3 s, the remaining
system parameters are the same as in Table 4. The imaging results distorted by four kinds
of oscillation are shown in Figure 18.

According to Figure 18, when the CPI is longer than oscillation periods, the range
cell migration and periodic phase error caused by ship angular motions will lead to
serious defocus in both range and azimuth direction. Moreover, since the phase error
introduced by angular oscillation presents a multi-sinusoidal form, the defocused energy
will be approximately evenly distributed in the azimuth direction, which resulting in the
disordered lines. When the oscillation periods are close to CPI, the periodicity of the phase
error is weakening. Therefore, the imaging results will be presented as line segments, as
shown in Figure 18g, which is similar to the images distorted by high-order phase errors.
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4. Measured Data and Experimental Results

In order to further analyze the influence of ship oscillation and verify the validity of
the range model proposed in this paper, a field campaign was carried out to obtain the
real attitude data of the ship. It should be noted that the following experiments are mainly
about the ship angular oscillation, while linear oscillation is hard to be measured by our
experimental equipment.

Based on the measured ship attitude data, a set of semi-physical simulations were
carried out to illustrate the impact of angular oscillation on ship imaging. Then, we
verified the conclusion that the oscillatory angle can be approximated as multi-sinusoidal
in a certain time. Finally, a phase compensation experiment was conducted to verify the
validity of the proposed range model.

4.1. Measured Data of Ship Attitude
4.1.1. Experimental Condition

The field campaign was carried out on 28 December 2019, and Figure 19 shows the
equipment and condition of this test. Figure 19a shows the experimental vessel, which is a
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fishing boat with 20 m in length and 3 m in width. Figure 19b shows the appearance of the
inertial measurement unit (IMU), which was fixed in the middle of the boat. Furthermore,
there were two antennas placed tandem on the longitudinal axis of the ship, the signal
source can be selected from the Global Navigation Satellite System (GNSS) or BeiDou
Navigation Satellite System (BDS). Based on this instrument, we can measure the attitude
angles, position, and speed of the ship. When the satellite signal quality is excellent and
the baseline length is greater than two meters, the measurement accuracy of heading angle,
attitude angles (roll and pitch), and position can reach 0.1 degrees, 0.05 degrees, and 3 m,
respectively. Figure 19c shows the experimental region of this test, which is around an
anchorage near to Yantai Port. The center coordinate of this anchorage is 37◦39.828N,
121◦30.581E.

Table 6 summarizes the sea state at the beginning and the end of data acquisition, all
the marine environment data was obtained from Aeronautical Information Services (AIS).
According to Table 6, the sea state during the experiment was level 3, which means there
are slight waves and the ships may feel slightly bumpy.

Table 6. Summary of the sea states during data acquisition.

Data Center Position Parameter Value

28-12-2019
08:14 (local time)

37◦39.815N
121◦29.812E

Wind speed 4.8 m/s
Wind direction 211.2◦

Wave height 0.7 m

28-12-2019
14:14 (local time)

37◦40.395N
121◦31.293E

Wind speed 4.0 m/s
Wind direction 209.0◦

Wave height 0.5 mRemote Sens. 2021, 13, x FOR PEER REVIEW 25 of 35 
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(3) Anchored the ship to the center of the anchorage, then recorded the attitude data of 
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(4) Weighed anchor and drove the ship back-and-forth along a specific route, recorded 

the attitude data of the ship during this process, this step took about 40 min; 
(5) Back to the harbor. 

In the above processes, the ship motion and attitude data were all recorded. Part of 
the measured ship motion data in processes (2), (3), and (4) are shown in Figure 20. 

The variation range and standard deviation of the measured attitude angles in the 
three states are listed in Table 7. In the unanchored state, the ship is affected by the sea 
wind and waves without any traction, so the variation range and the stand deviation are 
both the largest (the heading angle in the navigating state was controlled artificially, so 
there was a larger dynamic range). 
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Figure 19. Experimental condition of this test: (a) experimental vessel (20 m × 3 m); (b) fixed position and appearance of
the IMU; (c) experimental region (an anchorage near Yantai Port).

4.1.2. Measured Data

The data collection was mainly done by a laptop connected to the IMU. When the
IMU is powered on, it will send the measured motion and attitude data to the computer
via the serial port in real time, with a recording interval of 0.1 s. It should be noted that the
attitude data output by the IMU is the real-time heading, pitch, and roll angles of the ship,
where the heading angle is the sum of the ship’s navigating angle and yaw angle.

The process of ship movement measurement test can be briefly described as follows:

(1) Set off from the harbor to experimental region;
(2) Turned off the power and allowed the ship to drift along the current, then recorded

the attitude data of the ship, this process lasted about 1.5 h;



Remote Sens. 2021, 13, 1821 24 of 32

(3) Anchored the ship to the center of the anchorage, then recorded the attitude data of
the ship, this process continued for 2 h;

(4) Weighed anchor and drove the ship back-and-forth along a specific route, recorded
the attitude data of the ship during this process, this step took about 40 min;

(5) Back to the harbor.

In the above processes, the ship motion and attitude data were all recorded. Part of
the measured ship motion data in processes (2), (3), and (4) are shown in Figure 20.

The variation range and standard deviation of the measured attitude angles in the
three states are listed in Table 7. In the unanchored state, the ship is affected by the sea
wind and waves without any traction, so the variation range and the stand deviation are
both the largest (the heading angle in the navigating state was controlled artificially, so
there was a larger dynamic range).

Table 7. Ship attitude angles comparison in different states.

Ship State Variation Range (deg) Standard Deviation (deg)

Roll Pitch Yaw Roll Pitch Yaw

Unanchored 7.14 3.66 14.59 1.23 0.49 4.84
Anchored 6.30 2.63 5.71 1.22 0.45 1.64

Navigating 6.53 2.71 33.39 0.99 0.48 9.36

4.2. Experiments Based on the Measured Attitude Data

The experiments in this subsection are mainly based on the measured attitude data,
including (1) generating the semi-physical echoes of the oscillatory ship to analyze the
impact of oscillation on imaging; (2) compensating the phase distortion based on the
proposed range model to verify its accuracy.
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4.2.1. Focusing Results of the Oscillatory Ship

The focusing results of the oscillatory ship based on the measured attitude data are
given in this subsection. The established ship point-array model is shown in Figure 21,
the basic shape and size of the ship were derived from the experimental vessel in the
field campaign. The length, width, and height of the ship model is 20 m, 3 m, and 4 m,
respectively. This model consists of 278 point scatters, the interval between adjacent scatters
is about 0.5 m, and the reflection coefficient of each point is equal. Markers A, B, and C
represent the scatters at the stern, mast, and bow, respectively.
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Figure 21. Ship point-array model with a size of 20 m × 3 m × 4 m.

Based on the presented ship model and the measured ship attitude data, the semi-
physical echoes of the oscillatory ship in different states can be generated. If the point
scatters are well focused, the imaging results will be the projection of the ship in the
direction of RLOS, which will change with the relative position between the platform and
the ship target. The simulation system parameters are listed in Table 6. The ship attitude
angles used for imaging are shown in Figure 22, and the focusing results of the oscillatory
ship in different states are shown in Figure 23.
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Figure 22. The ship attitude angles used for imaging. (a) In the unanchored state; (b) in the anchored state; (c) in the
navigating state.

It can be seen that the effect of oscillation on ship imaging would be affected by many
factors. For example, the defocus of the ship in Figure 23l is more serious than that in
Figure 23b,g, since the heading angle was about 180 degrees in the navigating state, the
displacement caused by pitch motion will be more projected to the radial direction. Besides,
compared to the images in the first row and the second row, the anchored ship is less
defocused with the same heading angle.
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Furthermore, ship angular oscillation can cause some special defocusing phenomena.
Since the ship rotates around the centroid, the phase error caused by oscillation is usually
maximum at both ends and minimum at the center. Therefore, when the linear phase error
is dominant, the imaging result will be a ship stretched in the azimuth direction, as shown
in Figure 23f,m. When the quadratic phase error is dominant, the targets at different range
cells will be defocused to different length of line segments, so the imaging results are ‘X’
shaped, as shown in Figure 23a,l.

4.2.2. Phase Compensation Based on the Proposed Range Model

According to the simulation results in Section 2.3, if the ship attitude angles can be
approximated by single-frequency or multiple-frequency sinusoidal functions during CPI,
the range error caused by angular oscillation can be accurately calculated through the
proposed range model. Thus, based on the measured attitude angles, this subsection made
some tentative research on the phase compensation and refocus of the oscillatory ship,
which has two main purpose:

(1) verifying the accuracy of the proposed range model for ship angular oscillation;
(2) exploring the feasibility of phase compensation by fitting ship attitude angles with

multi-frequency oscillation model.

First, we explored the feasibility and the application scenarios of approximating the
ship attitude angles by multiple sinusoidal functions based on the measured ship attitude
data. We selected 20 s of data in the three states, and all of them show irregular fluctuations,
as shown in Figure 24.
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Figure 24. The measured ship attitude angles with a duration of 20 s. (a) A drifting ship in the unanchored state; (b) a
drifting ship in the anchored state; (c) a moving ship in the navigating state.

Then, the attitude angles were fitted by 1~8 terms of Fourier series based on the least
square principle, the duration of the data was selected as 5 s, 10 s, and 20 s, respectively.
The fitting results are shown in Figure 25. Since the fitting results of unanchored state and
anchored state are similar, here only shows the results of the former.
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Figure 25. The fitting results of the measured ship attitude angles by using 1~8 terms of Fourier series. (a–c) Roll, pitch,
heading angles in the unanchored state; (d–f) roll, pitch, heading angles in the navigating state. The abscissa of the graph is
the number of the terms used for fitting, and the ordinate is the R-square (coefficient of determination), which indicates the
fitting effect.

As shown in Figure 25, when the observation time is five seconds, the Fourier series
fitting method had a high fitting accuracy only using several sine and cosine terms. In
particular, the roll motion, as the main component of angular oscillation, can be approxi-
mately expressed as a sine within the duration of five seconds. With the increase of the
observation time, the number of sinusoidal terms required for accurate fitting is gradually
rising. However, if the observation time is too long, such as 20 s, since the randomness of
the sea breeze and waves, it is difficult to exactly describe the attitude angles even using
eight sinusoidal terms. Through the above simulation and analysis, within a few seconds,
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it is reasonable to approximate the ship attitude angles as the superposition of multiple
sinusoidal functions.

Next, we used 1~4 sinusoidal functions to fit the attitude angles used for imaging in
Section 4.2.1, and then compensated the phase errors of Point A, B, and C according to the
range model proposed in this paper. The residual phase errors of these three points in the
unanchored state and navigating state are shown in Figure 26.
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Finally, the attitude angles obtained by 1~4 sinusoidal fitting were used for compen-
sating the phase error of oscillatory ship. The refocusing results are shown in Figure 27.
The imaging results showed that it is feasible to use several sinusoidal functions to fit the
ship attitude angles for phase compensation.
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Figure 27. The refocusing results of the oscillatory ship after phase compensation. (a–d) In the unanchored state; (e–h) in
the navigating state. The number of terms used for fitting attitude angles from left to right is 1, 2, 3, 4.
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However, the phase compensation method based on the proposed range model is
only theoretically feasible at present, there are still many practical problems. The ship
attitude parameters are generally unknown in practice, so the phase compensation in
this subsection was conducted based on the assumption that we can get optimal attitude
angles estimation by parameters search methods, such as grid search and random search.
Nevertheless, it is foreseeable that these search methods have heavily computation burden
because of the numerous search parameters, especially for multi-frequency oscillation. The
searching process needs further optimization to achieve efficient phase compensation for
oscillating ship.

5. Conclusions

Oscillatory motions widely exist on the sea-surface targets, which significantly in-
creases the difficulty of precise focusing. In this paper, we proposed the accurate range
models for ship linear oscillation and angular oscillation, and the superiority was verified
by comparing them with the models described in published literature. Then, we further
analyzed the effect of oscillation on imaging. In the case of CPI less than the oscillation
period, we gave the expressions of the maximum errors of each order phase component
based on Taylor expansion. Furthermore, the impact of the oscillation initial phase was
further analyzed. In the case of CPI greater than the oscillation period, the Bessel function
was employed to expand the periodic sinusoidal phase error. Typical defocusing results are
symmetric ghost points or disordered lines. Finally, based on the measured ship attitude
data, we generated the semi-physical echoes of the oscillatory ship to analyze the impact
of oscillation on imaging. In most scenarios, the roll motion has the greatest amplitude,
but the influence on imaging would be affected by many factors, such as the heading
angle, ship state, and selection of CPI. In addition, based on the proposed range model,
we also made some tentative on the phase compensation method by fitting ship attitude
angles with multiple sinusoidal functions. This article has tried to reveal the underlying
problems of ship imaging with respect to complicated oscillation, which could provide
some perspectives to the high-resolution imaging technique development of ships in the
future.
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Appendix A. The Specific Derivation Result of Range Distortion When Roll, Pitch,
and Yaw Motion All Exist

In Section 2.3.1, the range distortions introduced by roll, pitch, and yaw motion were
given, respectively. When all the three angular oscillations exist, the range expression will
become extremely complicated, and the specific derivation results were shown here.

Considering the existence of all the three angular oscillations, the rotation matrix in
Equation (4) can be rewritten as

Rot1
(
θx, θy, θz

)
=

 cos θy cos θz − cos θy sin θz sin θy

sin θx sin θy cos θz + cos θx sin θz − sin θx sin θy sin θz + cos θx cos θz − sin θx cos θy

− cos θx sin θy cos θz + sin θx sin θz cos θx sin θy sin θz + sin θx cos θz cos θx cos θy

 . (A1)
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By substituting the Equation (A1) into Equation (24), the range distortions introduced
by all angular oscillation can be expressed as

Rp_all(t) = kt


cos β0 A11 + sin β0 A12 + sin β0

vat
H A13

cos β0 A21 + sin β0 A22 + sin β0
vat
H A23

cos β0 A31 + sin β0 A32 + sin β0
vat
H A33


T Xp

Yp
Zp

, (A2)

where

A11 = sin(αv − α0) cos θy cos θz − cos(αv − α0) sin θx sin θy cos θz − cos(αv − α0) cos θx sin θz, (A3)

A12 = − cos θx sin θy cos θz + sin θx sin θz, (A4)

A13 = − sin αv cos θy cos θz + cos αv sin θx sin θy cos θz + cos αv cos θx sin θz, (A5)

A21 = − sin(αv − α0) cos θy sin θz + cos(αv − α0) sin θx sin θy sin θz − cos(αv − α0) cos θx cos θz, (A6)

A22 = cos θx sin θy sin θz + sin θx cos θz, (A7)

A23 = sin αv cos θy sin θz − cos αv sin θx sin θy cos θz + cos αv cos θx sin θz, (A8)

A31 = sin(αv − α0) sin θy + cos(αv − α0) sin θx cos θy, (A9)

A32 = cos θx cos θy, (A10)

A33 = − sin αv sin θy − cos αv sin θx cos θy. (A11)

Appendix B. The Range Distortion and micro-Doppler Introduced by Pitch and Yaw

In this part, the specific derivation results of the range distortion and micro-Doppler
introduced by pitch and yaw are given. The results are similar when there is only roll
motion and pitch motion, but are a little different for yaw motion, the specific derivation
results are shown as follows.

First, we made the derivation for pitch motion. Based on the auxiliary angle formula,
Equation (26) can be rewritten as

Rp_pitch(t) = kt sin(αv − α0) cos β0
(
Zp sin θy + Xp cos θy

)
+ kt sin β0

(
Zp cos θy − Xp sin θy

)
− kt sin β0

[
sin αv

(
Zp sin θy + Xp cos θy

)
− cos αvYp

]
vat/H − kt cos(αv − α0) cos β0Yp

= kt
{

Ly_1 cos
[
By sin

(
Ωyt + Ψy

)
+ θy0_1

]
+ Ly_2 cos

[
By sin

(
Ωyt + Ψy

)
+ θy0_2

]
· t + Ly0

} , (A12)

Ly_1 =
√

X2
p + Z2

p ·
√

sin2(αv − α0) cos2 β0 + sin2 β0 Ly_2 = −
√

X2
p + Z2

p · sin αv sin β0va/H

θy0_1 = arctan sin(αv−α0) cos β0Zp−sin β0Xp
sin(αv−α0) cos β0Xp+sin β0Zp

θy0_2 = arctan Zp
Xp

Ly0 = cos αv sin β0Yp
vat
H − cos(αv − α0) cos β0Yp

, (A13)

where Ly_1 and Ly_1, θy0_1 and θy0_2 are the effective amplitude and initial phase of the
composite cosine, respectively. Ly0 is the residual linear term after merging.

Since the range distortions introduced by pitch motion and roll motion are similar, the
micro-Doppler introduced by pitch motion can be referred to Equation (33), which will not
be repeated here.

Next, we made the derivation for yaw motion. Equation (27) can be rewritten as

Rp_yaw(t) = kt cos β0
(
−Xp sin(θz − αv + α0)−Yp cos(θz − αv + α0)

)
+ kt sin β0

[
Xp sin(θz − αv) + Yp cos(θz − αv)

]
vat/H + kt sin β0Zp

= kt{Lz_1 cos[Bz sin(Ωzt + Ψz) + θz0_1] + Lz_2 cos[Bz sin(Ωzt + Ψz) + θz0_2] · t + Lz0}
, (A14)
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Lz_1 = −
√

X2
p + Y2

p · cos β0 Lz_2 =
√

X2
p + Y2

p · sin β0va/H

θz0_1 = α0 − αv + arctan Xp
Yp

θz0_2 = −αv + arctan Xp
Yp

Lz0 = sin β0Zp

, (A15)

where Lz_1 and Lz_1, θz0_1 and θz0_2 are the effective amplitude and initial phase of the
composite cosine, respectively. Lz0 is the residual constant term after merging.

The expression of range distortion introduced by yaw motion is a little different with
the former results, but is can still be simplified by angle auxiliary formula. Then, based on
Jacobi-Anger expansion, Equation (A14) can be rewritten as

Rp_yaw(t) ≈ (Lz_1 cos θz0_1 + Lz_2 cos θz0_2 · t)
{

J0(Bz) + 2
∞
∑

n=1
J2n(Bz) cos[2n(Ωzt + Ψz)]

}
− 2(Lz_1 sin θz0_1 + Lz_2 sin θz0_2 · t)

{
2

∞
∑

n=1
J2n−1(Bz) sin[(2n− 1)(Ωzt + Ψz)]

}
+ Lz0

. (A16)

Then, the micro-Doppler caused by yaw motion can be expressed as

fd_yaw(t) ≈ − 2
λ Lz_2 cos θz0_2 J0(Bz)− 4

λ Lz_2 cos θz0_2
∞
∑

n=1
J2n(Bz) cos[2n(Ωzt + Ψz)]

+ 4Ωz
λ (Lz_1 cos θz0_1 + Lz_2 cos θz0_2 · t)

∞
∑

n=1
2n · J2n(Bz) sin[2n(Ωzt + Ψz)]

+ 4
λ Lz_2 sin θz0_2

∞
∑

n=1
J2n−1(Bz) sin[(2n− 1)(Ωzt + Ψz)]

+ 4Ωz
λ (Lz_1 sin θz0_1 + Lz_2 sin θz0_2 · t)

∞
∑

n=1
(2n− 1) · J2n−1(Bz) cos[(2n− 1)(Ωzt + Ψz)]

. (A17)
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