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Abstract: Unmanned aerial vehicles (UAV) has been increasingly applied to crop growth monitoring
due to their advantages, such as their rapid and repetitive capture ability, high resolution, and
low cost. LAI is an important parameter for evaluating crop canopy structure and growth without
damage. Accurate monitoring of cotton LAI has guiding significance for nutritional diagnosis and the
accurate fertilization of cotton. This study aimed to obtain hyperspectral images of the cotton canopy
using a UAV carrying a hyperspectral sensor and to extract effective information to achieve cotton
LAI monitoring. In this study, cotton field experiments with different nitrogen application levels
and canopy spectral images of cotton at different growth stages were obtained using a UAV carrying
hyperspectral sensors. Hyperspectral reflectance can directly reflect the characteristics of vegetation,
and vegetation indices (VIs) can quantitatively describe the growth status of plants through the
difference between vegetation in different band ranges and soil backgrounds. In this study, canopy
spectral reflectance was extracted in order to reduce noise interference, separate overlapping samples,
and highlight spectral features to perform spectral transformation; characteristic band screening
was carried out; and VIs were constructed using a correlation coefficient matrix. Combined with
canopy spectral reflectance and VIs, multiple stepwise regression (MSR) and extreme learning
machine (ELM) were used to construct an LAI monitoring model of cotton during the whole growth
period. The results show that, after spectral noise reduction, the bands screened by the successive
projections algorithm (SPA) are too concentrated, while the sensitive bands screened by the shuffled
frog leaping algorithm (SFLA) are evenly distributed. Secondly, the calculation of VIs after spectral
noise reduction can improve the correlation between vegetation indices and LAI. The DVI (540,525)
correlation was the largest after standard normal variable transformation (SNV) pretreatment, with
a correlation coefficient of −0.7591. Thirdly, cotton LAI monitoring can be realized only based
on spectral reflectance or VIs, and the ELM model constructed by calculating vegetation indices
after SNV transformation had the best effect, with verification set R2 = 0.7408, RMSE = 1.5231, and
rRMSE = 24.33%, Lastly, the ELM model based on SNV-SFLA-SNV-VIs had the best performance,
with validation set R2 = 0.9066, RMSE = 0.9590, and rRMSE = 15.72%. The study results show that the
UAV equipped with a hyperspectral sensor has broad prospects in the detection of crop growth index,
and it can provide a theoretical basis for precise cotton field management and variable fertilization.

Keywords: cotton; UAV; spectral transformation; vegetation index; LAI

1. Introduction

Cotton is the main cash crop in China [1], and different nitrogen application levels
have a significant impact on the growth of cotton [2–4]. The leaf area index (LAI) is one
of the important indicators reflecting crop canopy structure and growth [5,6]. Monitoring
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LAI changes can provide a basis for variable cotton fertilization [7,8]. Therefore, rapid,
accurate, and non-destructive monitoring of cotton LAI is of great significance for guiding
crop fertilization. Traditional LAI monitoring mainly relies on manual sampling, which
requires a large amount of labor, and involves time costs and lags; thus, it cannot meet the
needs of real-time monitoring.

Remote sensing technology can realize timely, dynamic, and macro monitoring, and it
has become an important means of monitoring crop growth information. In recent years,
a large number of studies conducted both domestically and abroad have used remote
sensing technology to investigate crop biomass [9–11], chlorophyll content [12–14], water
and nitrogen content [15–18], and other physiological and biochemical parameters. In terms
of monitoring crop LAI, a large number of studies have been carried out using remote
sensing means, such as handheld spectrometers [19], UAVs [20], and satellites [21–23].
Ground spectral monitoring has the advantages of being non-destructive and accurate;
however, due to the limitations of the shooting range and instrument weight, near-Earth
spectroscopy cannot achieve continuous and rapid monitoring at a spatial scale [24]. In
addition, studies have shown that satellite images have a certain potential in crop LAI
monitoring [25]; however, due to their image resolution of 10–60 m, they are mostly used
for crop LAI monitoring at the forest or large regional scale [26,27]. UAV has fast and
repeated capture capability in crop monitoring, and it has higher image resolution than
satellite images [28], making it more suitable for the precise monitoring of small plots. Some
scholars have monitored the LAI of wheat [29], rice [30], corn [31], and other crops [32,33]
using spectral images obtained by UAV, and have obtained good results. In summary,
based on the advantages of the UAV platform and the existing research, UAV has certain
feasibility in crop growth monitoring. Therefore, this study uses UAV as a platform to carry
out research on hyperspectral sensors.

UAVs can quickly acquire a large amount of hyperspectral data, which contain rich
information, but they also have the problem of data redundancy. The hyperspectral
reflectance and vegetation indices of the cotton canopy can be extracted from UAV hyper-
spectral images. Among them, the hyperspectral reflectance of plant canopy is the most
direct response to vegetation characteristics. There has been a lot of research based on
this, such as Zhang et al. [29], who estimated the LAI of winter wheat using UAV hyper-
spectral images on the basis of spectral transformation and a variable selection method.
Li et al. [34], using the pretreated canopy spectral reflectance, effectively identified the
characteristic wavelength to achieve the rapid estimation of nitrogen concentration in
winter wheat leaves. Yang et al. [35] used preprocessing feature screening and modeling
of hyperspectral images obtained by UAV to monitor soil organic matter and soil total
nitrogen in farmland. In summary, hyperspectral images acquired by UAV have more
noise, whereas spectral transformation can effectively reduce image noise, and feature
screening can achieve dimension reduction for hyperspectral data. Therefore, in this study,
different spectral transformation methods and feature selection methods were selected to
process the cotton canopy spectrum to improve the model accuracy. Feature screening
after pretreatment directly reflects the vegetation characteristics; however, there are also
problems, such as the instability of screening results and modeling results, and the poor
quantitative analysis effect. Vegetation indices in quantifying plant growth through the
difference between vegetation in different band ranges and soil backgrounds. Han et al. [36]
used the vegetation indices extracted from UAV multispectral images to invert the leaf
surface number of winter wheat under different water treatment conditions. The number
of multispectral bands was limited, and the accuracy of the vegetation index model con-
structed on the basis of multispectral bands was reduced to some extent. Yao et al. [37]
used UAV narrowband spectral images to construct the modified triangular vegetation
index (MTVI), thereby improving the accuracy of the LAI monitoring model. In this study,
higher-resolution hyperspectral images were selected to obtain more band information to
reflect the physiological and biochemical information of cotton and achieve vegetation in-
dex optimization. However, when plants grow luxuriantly, vegetation indices will become
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saturated, whereby, with an increase in LAI, vegetation indices would remain unchanged
or exhibit a small change trend. Therefore, in this study, spectral reflectance and vegetation
indices were combined to establish a model to improve the accuracy of the cotton LAI
monitoring model.

Machine learning algorithms are increasingly combined with remote sensing technol-
ogy for crop growth monitoring due to their strong learning ability and ability to mine and
understand deep information in data [38,39]. Most domestic and foreign scholars extracted
vegetation indices from spectral information and used machine learning algorithms to
improve the accuracy of the monitoring model [27,37,38].

At present, LAI monitoring is typically conducted using the spectral data based
on spectral vegetation index modeling calculation, and the plant canopy hyperspectral
reflectance is the most direct response characteristic of vegetation, providing more detailed
and more abundant information in comparison with multispectral vegetation indices.
Furthermore, a reasonable spectrum transformation can partly eliminate the spectral data
from background and noise. However, hyperspectral data also have multicollinearity,
and machine learning can overcome the problem of collinearity between variables from
different angles. Therefore, in order to improve the accuracy of the cotton LAI monitoring
model, this study used different methods for spectral transformation and then screened
sensitive bands combined with vegetation indices established using hyperspectral data
after different methods of prediction processing. Two machine learning algorithms were
used to build LAI monitoring models, and the best model was identified in order to provide
a basis for accurate cotton field management and variable fertilization in Xinjiang.

2. Materials and Methods
2.1. Study Area and Experimental Design

Field trials were conducted at the agricultural test site of Shihezi University in Shihezi,
Xinjiang, China (44◦19′ N, 85◦59′ E). The study area is arid to semiarid, with an average
annual precipitation of 125.9–207.7 mm. The temperature difference between day and night
is large, and the previous crop planted was cotton. The test area is shown in Figure 1, and
the details are shown in Table 1.

Table 1. Crop management 2019.

Item Cotton

Sowing date 24 April 2019
Variety Xinluzao 53, Xinluzao 45, Luyanmian 24

Harvest date 15 October 2019
Soil type Heavy loam

Fertilization Whole growing season: NH4PO3 390 kg/hm2, K2SO4 180 kg/hm2

Irrigation Whole growing season: total irrigation water 3525 m3

In order to adapt the model to various environments, different cotton varieties and
nitrogen application treatments were set up. The cotton varieties were Xinluzao 53, Xin-
luzao 45, and Luyan Mian 24. Six nitrogen treatments were set for each variety: N0
(0 kg/hm2), N1 (120 kg/hm2), N2 (240 kg/hm2), NC (360 kg/hm2), N3 (480 kg/hm2), and
N4 (600 kg/hm2). All field trials were conducted in a randomized complete block design,
with each treatment repeated three times, using a total of 54 plots with an area of 21 m2

(2.1 m × 10 m). Cotton was sown on 24 April 2019 and harvested on 15 October 2019
(Figure 1).
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Figure 1. Study area survey: (a) location of study site; (b) study area1 plant Xinluzao 53 and
Xinluzao 43, study area2 plant Luyanmian 24; (c) the level of nitrogen fertilizer in each area. Note: N0
represents nitrogen application of 0 kg/hm2, N1 represents nitrogen application of 120 kg/hm2, N2
represents nitrogen application of 240 kg/hm2, NC represents nitrogen application of 360 kg/hm2, N3
represents nitrogen application of 480 kg/hm2, and N4 represents nitrogen application of 600 kg/hm2.

2.2. UAV Canopy Hyperspectral Image Data Collection and Processing

Hyperspectral images were obtained on the 57th, 66th, 76th, 88th, 98th, 112th, and
120th days after seedling emergence using a Nano-Hyperspec (USA) sensor mounted on
a UAV, and with a whiteboard placed on the ground each time you shoot. The sampling
time involves the cotton seedling stage, bud stage, flower and boll stage, and wadding
stage. A DJI M600Pro (Shenzhen, China) six-rotor UAV with a maximum load of 10 kg was
used; it is equipped with six batteries and flies at an altitude of 100 m when collecting data.
Nano-Hyperspec is a push-and-sweep imaging spectrometer, and its basic parameters are
shown in Table 2. The UAV acquired the canopy spectral images by following the same
route every time, and the images were in HDR format. The image data were imported
into the Nano-Hyperspec’s built-in calibration software SpectralView for correction, and
the corrected image was imported into ENVI5.1 for image mosaicking and reflectivity
calculation using a whiteboard.
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Table 2. Main parameters of Nano-Hyperspec sensor.

Parameters Values

Weight (kg) 0.6
Spectral range (nm) 400–1000
Number of channels 270

Spectral sampling interval (nm) 2.2

2.3. Plant Sampling and Data Processing
2.3.1. LAI Acquisition and Processing

After obtaining the hyperspectral images using the UAV, three consecutive represen-
tative sample plants were randomly selected in each plot. The leaves of the whole plant
were taken, and the total leaf area of each plant was measured using the LI-3000. LAI was
calculated according to Equation (1).

LAI =
Total leaf area

Land area
. (1)

2.3.2. Hyperspectral Processing

In the process of UAV hyperspectral image acquisition, due to the influence of en-
vironmental factors, the image produces noise, which is inevitable in the process of data
acquisition. Although atmospheric correction is carried out in the process of image mo-
saicking, some interference still exists. In order to effectively extract the bands sensitive to
cotton LAI, the original spectrum is often pretreated to highlight the characteristic bands
and remove background noise. In this study, three different methods were used: SG
smoothing combined with first-order derivative (SG-FDR), SG smoothing combined with
second-order derivative (SG-SDR), multiplicative scatter correction (MSC), and standard
normal variable transformation (SNV) for spectral preprocessing. SG-FDR, SG-SDR, and
SNV were used for spectral reflectance modeling, while MSC, SG, and SNV were used for
vegetation index construction.

SG smoothing uses the polynomial method to do the least square fitting to the spectral
data in the window and uses the polynomial coefficients obtained to calculate the derivative
values of the center point of the window and the smoothing data values to achieve spectral
denoising. After several times of verification, the third-degree polynomial can be set to
achieve a certain degree of denoising. The smoothed data are processed by derivative to
eliminate the baseline shift, atmospheric scattering, and other background interference
in the spectrum, and to magnify the slope change of the curve, so as to improve the
resolution and sensitivity. MSC can effectively eliminate the soil particles, the scattering
effect between enhanced spectral data and the geometric characteristics of the relevant
spectral information. The first will be the average spectra of all samples as a standard
spectrum, of each sample spectra with the standard spectra of monadic linear regression,
and then by each sample spectrum minus linear translation quantity, divided by tilting the
offset is calculated.

Hyperspectral images contain information of 270 bands. Data redundancy and
collinearity will occur when using full-band modeling; thus, it is necessary to screen
out sensitive bands to reduce data dimensionality and redundant information. In this study,
two methods, i.e., the successive projections algorithm (SPA) and shuffled frog leaping
algorithm (SFLA), were used to screen the characteristic bands strongly correlated with
cotton LAI. SFLA chose the 10 bands with the highest selection probability for modeling.
SPA chose the combination of bands with the most information and the least collinearity by
projecting their respective wavelengths onto other wavelengths to calculate their projection
vectors and selecting the length of projection vectors as the characteristic bands [40]. SFLA
is a swarm intelligence algorithm based on frog social behavior, which combines a deter-
ministic method and stochastic method, and it is an effective tool to solve combinatorial
optimization problems.
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A large number of vegetation indices have been used to monitor crop growth in
previous studies. In this study, four typical vegetation indices (Table 3) were selected, and
16 vegetation indices were constructed by pairwise combination of their original spectra
and hyperspectral reflectance after multiple scattering correction (MSC), SG smoothing,
and standard normal variable transformation (SNV) within the full spectral band range of
400–1000 nm. Then, correlation analysis was conducted between each spectral index and
cotton LAI.

Table 3. Vegetation indices tested in this study.

Vegetation Indexes Formula Reference

Normalized difference vegetation index (NDVI) NDVI = Rλ1−Rλ2
Rλ1+Rλ2

[40]
Ration vegetation index (RVI) RVI = Rλ1

Rλ2
[40]

Difference vegetation index (DVI) DVI = Rλ1 − Rλ2 [41]
Nonlinear vegetation index (NLI) NLI = R2

λ1−Rλ2

R2
λ1+Rλ2

2.4. Data Analysis
2.4.1. Model

In order to overcome the collinearity problem of hyperspectral data, this paper adopted
two methods, multiple stepwise regression (MSR) [42] and extreme learning machine
(ELM) [43], to construct the regression model, which was implemented using Matlab 2019a.

MSR is an optimization of multiple linear regression, and its modeling idea is to screen
variables according to the importance of independent variables to dependent variables and
the correlation between independent variables. It introduces the independent variables
one by one into the multiple linear regression and explains each variable with the F test,
and performs the t-test on the selected variables. When the originally introduced variable
becomes no longer significant with the dependent variable t-test due to the later introduced
variable, this variable is deleted to ensure that only significant variables are included in the
equation before each new variable is introduced. This occurs until there are no significant
variables to choose from and no insignificant variables to exclude from the regression
equation. This ensures that multiple linear regression with the last set of variables is the
best and simplest.

ELM is a new fast learning algorithm, which can be used for classification, regression,
clustering, and feature learning of single-layer or multi-layer hidden nodes. Compared
with traditional feedforward neural networks which have a slow training speed, can easily
fall into a local minimum, are more sensitive to the choice of shortcomings (e.g., a machine
learning algorithm with randomly generated input layer and hidden layer connection
weights and thresholds for hidden neurons), and cannot be adjusted in the process of
training, ELM has been proposed to optimize the faults of traditional feedforward neural
network and has shown good generalization performance.

2.4.2. Verification of Accuracy

A single sampling can obtain 54 datasets, where each dataset includes 54 ground-
measured data and one UAV datum. A total of 345 samples were obtained throughout the
growth period in 2019, and the dataset was divided into a 2:1 ratio of the training set to the
validation set, with 230 samples in the training set and 115 samples in the validation set.
Based on the cotton verticillium wilt monitoring experiment carried out by the aerospace
information research institute, Chinese Academy of Science in the Cotton Research Institute
of Xinjiang Academy of Agricultural Reclamation Sciences, UAV hyperspectral data and
ground LAI of 30 cotton field samples of health and verticillium wilt incidence 78 days after
cotton emergence was obtained for the external test of the model. Fourfold cross-validation
was adopted to realize model validation. The determination coefficient (R2), root-mean-
square error (RMSE), and relative root-mean-square error (rRMSE) were used to evaluate
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the accuracy of the LAI estimation model. A larger R2 denotes better model fit; smaller
RMSE and rRMSE denote higher model accuracy. The calculation formulas are as follows:

R2 =
∑n

i=1 (xi −
−
x)

2
(yi −

−
y)

2

n ∑n
i=1 (xi −

−
x)

2
n ∑n

i=1 (yi −
−
y)

2 ,

RMSE =

√
1
n

n

∑
i=1

(yi − xi)
2,

rRMSE =
RMSE
−
X

,

where i is the data of the i sample point, xi is the measured value of the cotton leaf area
index of the i sample point, yi is the predicted value of cotton leaf area index at the i sample

point estimated by the model,
−
x is the average measured value of cotton leaf area index,

and
−
y is the average value of cotton leaf area index estimated by the model.

3. Result
3.1. LAI Variability and Spectral Correlation Analysis of Cotton under Different N Treatments

Table 4 shows the statistical data of LAI measurement under different nitrogen treat-
ments. Cotton LAI under each treatment showed significant differences throughout the
growth period. Figure 2a–c shows the canopy reflectance corresponding to Xinluzao 53,
Xinluzao 45, and Luyanmian 24 in different growth period LAI values in hyperspectral
images. As can be seen from the figure, LAI gradually increased during cotton growth, and
the corresponding spectral reflectance increased within the range of 760~1000 nm. LAI of
Xinluzao 53 and Xinluao 45 had already decreased at the time of sampling in the wadding
stage, while spectral reflectance decreased in the range of 760~1000 nm. LAI of Luyanmian
24 did not decrease at the sampling stage of the wadding stage. Figure 2d shows the canopy
reflectance corresponding to different LAI values in hyperspectral images. A higher LAI in
the 760–1000 nm range led to obviously higher canopy reflectance. In contrast, Figure 2e
shows that LAI values in the 490–760 nm range were negatively correlated with canopy
reflectance. This indicates that the spectral image of cotton canopy height obtained using a
UAV can effectively reflect the change in cotton LAI value.

Table 4. Descriptive statistics of cotton LAI from the study area.

Treatment Samples Mean Max Min SD CV (%)

N0 59 5.7184 11.1160 1.5579 2.3759 41.55%
N1 59 6.2615 14.1788 1.8039 3.0755 49.12%
N2 59 6.5248 16.7327 2.1276 3.1760 48.68%
NC 56 6.5194 13.3353 1.9923 2.9464 45.19%
N3 56 6.3688 12.5138 2.2898 2.8290 44.42%
N4 56 6.2308 13.5870 1.9065 3.0774 49.39%

3.2. Characteristic Band Screening

SG-FDR, SG-SDR, and SNV methods were used to preprocess hyperspectral data,
and SPA and SFLA methods were used to screen the characteristic bands of the original
spectrum (OR) and the three preprocessed spectral data. In the SPA, the minimum and
maximum number of extracted feature bands were set to 0 and 60 respectively. As shown in
Figure 3, the minimum RMSE was 1.6563, and 11 characteristic bands (722, 871, 931, 938, 940,
942, 9444, 949, 960, 991, and 996 nm) were extracted, which were the spectral data after SNV
pretreatment. In the process of feature band extraction by SFLA, the screening probability of
each band was calculated, and the top 10 bands with the highest probability were selected
as feature bands (Figure 4). The distribution of characteristic bands screened using the
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two methods is shown in Figure 5. The SPA screening results were relatively concentrated,
and each pretreatment showed a great difference. However, SFLA screening results were
scattered, and the distribution of characteristic bands screened by each pretreatment was
roughly the same, but there were also some differences.
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3.3. Optimal Spectral Index Band Combination Extraction

As shown in Figure 6, a correlation coefficient matrix was used to analyze the corre-
lation between 16 vegetation indices and cotton LAI. The band position with the highest
correlation was taken as the optimal band combination. After each preprocessing method,
the optimal band combination of each vegetation index and its correlation with cotton
LAI were recorded, as shown in Table 5. Among them, the highest correlation vegetation
index was DVI (540,525) after SNV preprocessing, with a correlation coefficient of −0.7591.
The correlation between the vegetation indices constructed after different preprocessing
methods and the cotton LAI was compared, revealing the following order: SNV > MSC >
SG > OR. When comparing the correlation between different vegetation indices and cotton
LAI after SNV preprocessing, the DVI showed the highest correlation, with no significant
differences in NDVI, RVI, and NLI (all greater than 0.7).
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Figure 6. Vegetation index construction based on correlation matrix; different preprocessing spectral
reflectance construction vegetation indices: (a) OR-NDVI, (b) OR-RVI, (c) OR-DVI, (d) OR-NIL,
(e) MSC-NDVI, (f)MSC-RVI, (g) MSC-DVI, (h) MSC-NIL, (i) SG-NDVI, (j) SG-RVI, (k) SG-DVI,
(l) SG-NIL, (m) SNV-NDVI, (n) SNV-RVI, (o) SNV-DVI, and (p) SNV-NIL.

Table 5. Correlation and selected bands of optimal vegetation indices after spectral transformation.

Pretreatment
Vegetation Indices

NDVI RVI DVI NIL

OR 0.6885 (907,745) 0.6558 (443,631) −0.5551 (538,531) 0.4969 (893,747)
MSC 0.7013 (907,745) −0.7009 (745,907) −0.7581 (540,525) 0.7120 (907,745)
SG −0.6775 (640,436) 0.6840 (436,640) −0.6868 (451,445) −0.3775 (989,996)

SNV −0.7176 (525,540) 0.7186 (540,525) −0.7591 (540,525) 0.7114 (907,745)

3.4. Model
3.4.1. Cotton LAI Monitoring Model Based on Spectral Reflectance

On the basis of the feature bands screened out by spectral features after different
pretreatments, MSR and ELM were used to build the model. The results are shown in
Table 6 and Figure 7, in which the model construction progress of MSR was significantly
lower than that of ELM. The best result using MSR was the model constructed based on
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SNV-SFLA results, as shown in Figure 8, with training set R2 = 0.6074, RMSE = 1.9066, and
rRMSE = 30.35%.

Table 6. Cotton LAI monitoring model training sets (Cal) and validation sets (Val) result based on
spectral reflectance.

Modeling
Approach

Pre-Processing Feature
Selection

Cal Val
R2 RMSE rRMSE R2 RMSE rRMSE

MSR

original SPA 0.5541 2.0040 31.81% 0.4806 2.0459 32.90%
SFLA 0.5687 1.9442 29.97% 0.4975 2.0532 34.57%

SG-FDR
SPA 0.5163 2.0640 33.26% 0.4912 2.0853 32.79%

SFLA 0.5724 1.9689 30.95% 0.5457 1.9059 31.10%

SG-SDR
SPA 0.5933 1.9353 31.40% 0.5098 1.9539 30.41%

SFLA 0.5494 1.9126 30.22% 0.5921 1.8809 30.83%

SNV
SPA 0.5962 1.9336 30.78% 0.5850 1.7983 28.79%

SFLA 0.6074 1.9066 30.35% 0.5941 1.7873 28.61%

ELM

original SPA 0.6755 1.5823 24.94% 0.6270 1.9398 31.54%
SFLA 0.7030 1.5569 24.32% 0.6424 1.8620 30.72%

SG-FDR
SPA 0.6962 1.6283 26.09% 0.6569 1.7172 27.21%

SFLA 0.7377 1.5623 23.83% 0.6807 1.6009 27.41%

SG-SDR
SPA 0.6280 1.7851 28.42% 0.6105 1.8546 29.68%

SFLA 0.7183 1.6316 25.90% 0.6846 1.5459 24.88%

SNV
SPA 0.7059 1.4961 24.25% 0.6991 1.7553 27.34%

SFLA 0.7340 1.4494 23.40% 0.7153 1.6796 26.32%
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3.4.2. Cotton LAI Monitoring Model Based on Vegetation Indices

MSR and ELM models were established on the basis of the four planting cover
indices constructed using hyperspectral reflectance after different preprocessing meth-
ods, and the results are shown in Table 7 and Figure 9. The vegetation indices con-
structed after SNV preprocessing were the best (Figure 10): training set of MSR model
R2 = 0.5983, RMSE = 1.8771, and rRMSE = 28.93%; validation set of MSR model R2 = 0.5666,
RMSE = 1.9037, and rRMSE = 28.93%; training set of ELM model R2 = 0.7457, RMSE = 1.5067,
and rRMSE = 24.02%; validation set of ELM model R2 = 0.7408, RMSE = 1.5231, and
rRMSE = 24.33%.
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Table 7. Cotton LAI monitoring model result based on vegetation indices.

Modeling Approach Pre-Processing
Cal Val

R2 RMSE rRMSE R2 RMSE rRMSE

MSR

original 0.4853 2.0545 32.27% 0.5464 1.9651 32.51%
MSC 0.5659 1.7751 29.30% 0.5255 2.2638 34.39%
SG 0.6182 1.8385 28.94% 0.4268 2.2133 36.05%

SNV 0.5983 1.8771 28.93% 0.5666 1.9037 32.06%

ELM

original 0.6977 1.5894 25.22% 0.6897 1.6902 27.19%
MSC 0.7124 1.6080 25.39% 0.6946 1.6199 26.27%
SG 0.7338 1.4907 23.31% 0.6555 1.7947 29.55%

SNV 0.7457 1.5032 24.05% 0.7408 1.5231 24.33%Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 24 
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3.4.3. Cotton LAI Monitoring Model Based on Combination of Spectral Reflectance and
Vegetation Indices

The spectral reflectance after SNV treatment was screened by SPA and SFLA, and
then, the MSR and ELM models were established by combining the vegetation indices
constructed after different preprocessing methods. As shown in Table 8 and Figure 11, the
ELM model results were significantly better than the MSR model results. As can be seen
from Figure 12, both model methods underestimated larger LAI and overestimated smaller
LAI values; however, the MSR model was worse in estimating larger LAI values. The
ELM model based on SNV-SFLA-SNV-VIs had the best effect, with training set R2 = 0.9208,
RMSE = 0.8216, and rRMSE = 12.89%, and validation set R2 = 0.9066, RMSE = 0.9590, and
rRMSE = 15.72%.

Table 8. Cotton LAI monitoring model training sets (Cal) and validation sets (Val) result based on
spectral reflectance and vegetation indices.

Modeling Approach Pre-Processing
Cal Val

R2 RMSE rRMSE R2 RMSE rRMSE

MSR

SNV-SPA-MSC-VIS 0.6957 1.6132 26.23% 0.5438 2.0009 31.05%
SNV-SFLA-MSC-VIS 0.6380 1.7654 27.73% 0.6587 1.7485 28.57%

SNV-SPA-SG-VIS 0.5957 1.8014 29.10% 0.5401 2.1069 33.00%
SNV-SFLA-SG-VIS 0.6344 1.7082 27.46% 0.6577 1.8399 29.02%
SNV-SPA-SNV-VIS 0.6515 1.8212 29.15% 0.6669 1.5740 24.99%

SNV-SFLA-SNV-VIS 0.6198 1.8380 29.22% 0.6180 1.7853 28.64%

ELM

SNV-SPA-MSC-VIS 0.8463 1.0950 17.22% 0.8359 1.3086 21.34%
SNV-SFLA-MSC-VIS 0.8818 1.0181 16.00% 0.8888 0.9817 16.03%

SNV-SPA-SG-VIS 0.8346 1.1763 19.07% 0.8327 1.2348 19.23%
SNV-SFLA-SG-VIS 0.8728 1.0824 16.92% 0.8723 1.1258 18.48%
SNV-SPA-SNV-VIS 0.8712 1.0838 17.45% 0.8696 1.0510 16.54%

SNV-SFLA-SNV-VIS 0.9208 0.8216 12.89% 0.9066 0.9590 15.72%
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Figure 12. Linear results of training sets (Cal) and validation sets (Val) measured and predicted values
based on spectral reflectance and vegetation indices: (a) MSR-SNV-SPA-MSC-VIs, (b) MSR-SNV-
SPA-SG-VIs, (c) MSR-SNV-SPA-SNV-VIs, (d) MSR-SNV-SFLA-MSC-VIs, (e) MSR-SNV-SFLA-SG-VIs,
(f) MSR-SNV-SFLA-SNV-VIs, (g) ELM-SNV-SPA-MSC-VIs, (h) ELM-SNV-SPA-SG-VIs, (i) ELM-SNV-
SPA-SNV-VIs, (j) ELM-SNV-SFLA-MSC-VIs, (k) ELM-SNV-SFLA-SG-VIs, and (l) ELM-SNV-SFLA-
SNV-VIs.
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3.4.4. Optimization Model Test

In order to better evaluate the model performance, the selected optimal model was
tested. Figure 13a shows the validation accuracy of the optimal model under different
sample times. It can be seen from Figure 13a and Table 9 that the model validation based
on different sampling times is less accurate than the whole growth period validation. LAI
that was too large or too small showed relatively low accuracy but, except for validation
that was based on data on 112 days after seedling, the R2 of other models was above
0.85. The best model was validation based on data on 88 days after seedling emergence, it
R2 = 0.8920, RMSE = 0.2665, and rRMSE = 3.61%. Therefore, this model is feasible for the
LAI estimation of a single growth period. Figure 13b shows the validation accuracy of the
optimal model under different nitrogen application levels. It can be seen from Figure 13b
and Table 10 that the validation accuracy of the model varies under different nitrogen
application levels. The validation accuracy is as follows: NC > NO > N1 > N3 > N2 > N4.
The optimal precision is NC processing R2 = 0.9531, RMSE = 0.7111, and rRMSE = 10.41%.
The minimum accuracy is N4 processing R2 = 0.7990, RMSE = 1.0063, and rRMSE = 18.04%.
To better explore the generalization performance of the model, data obtained from cotton
fields with healthy and verticillium wilt incidence were selected for external verification,
and the verification results are shown in Figure 13c, with result R2 = 0.6712, RMSE = 1.2983,
and rRMSE = 23.45%, the accuracy goes down.
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application levels. (c) Optimal model external test results.

Table 9. Cotton LAI monitoring verification results of different sample times in the optimal model.

Modeling Sample Times R2 RMSE rRMSE

ELM-SNV-
SFLA-SNV-VIs

57 DAYS 0.8522 0.4896 16.98%
66 DAYS 0.8657 0.8113 15.61%
76 DAYS 0.8868 0.3753 7.07%
88 DAYS 0.8920 0.2655 3.61%
98 DAYS 0.8848 0.7803 10.48%

112 DAYS 0.7929 1.0940 15.17%
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Table 10. Cotton LAI monitoring verification results of different N concentrations in the opti-
mal model.

Model N Level R2 RMSE rRMSE

ELM-SNV-
SFLA-SNV-VIs

N0 0.9468 0.7654 11.09%
N1 0.9351 0.7174 12.26%
N2 0.8706 0.9191 15.26%
N3 0.9330 1.0176 15.17%
N4 0.7990 1.0063 18.04%
NC 0.9531 0.7111 10.41%

4. Discussion

In this study, different growth period LAI changes and spectral responses were ana-
lyzed, and the results showed that with the increase of the growth period, LAI increased,
while LAI of early-maturing varieties decreased at the floc opening stage and LAI of late-
maturing varieties tended to remain unchanged, which was caused by the gradual cessation
of vegetative growth and the drop of aging leaves at the later stage of crop growth. In
terms of spectral response, LAI in the visible region was negatively correlated with canopy
spectral reflectance, while LAI in the near-infrared region was positively correlated with
canopy spectral reflectance, which is consistent with previous studies on winter wheat [44],
rice [45], and rape [32]. This is due to the spectral reflectance of vegetation. The difference
in the 350–800 nm range is mainly due to the influence of chlorophyll and other pigments
in plants, and the difference in the 800–1000 nm range is due to the scattering of plant
cells and tissues. Cotton growing luxuriantly and multi-leaf superimposed radiation will
produce high reflectance in the near-infrared band. Therefore, canopy spectra of different
LAI values differ more significantly in the near-infrared region.

The original canopy spectrum is affected by the solar radiation flux, crop structure
characteristics, and soil background conditions [46]. Spectral pretreatment can reduce
background noise information and effectively improve the accuracy of spectral informa-
tion [34]. Previous studies have shown that SNV can be used to eliminate the interference
caused by light scattering and path length changes, and it can better predict the monitoring
of the P and K content in tea [47]. Rei et al. [48] estimated the chlorophyll content after
treating the original canopy spectrum with different methods, and the results showed that
SNV and MSC did not show better performance. This is in contrast to this study’s results,
which is potentially related to the spectral data in this study being obtained from UAV
sensors, to atmospheric differences, to unmanned aerial vehicle (UAV) flight patterns and
noise, or to the Rei blade clip being used to obtain spectral data, which did not require
further correction.

The hyperspectral analysis includes two steps: characteristic band screening and
regression modeling [49]. In this study, LAI-sensitive bands were screened out using SPA
and SFLA, and the results showed that the model based on SFLA had better performance.
Ren et al. [50] compared four band screening methods to grade black tea. Li et al. [51]
estimated soil arsenic content on the basis of hyperspectral data, obtaining similar results
in this study. This is because, compared with the SPA algorithm, SFLA is a novel method of
forwarding variable cyclic selection. The maximum projection vector wavelength is taken
as the combination of candidate wavelengths, and the correction is made on this basis. In
combination with the modeling method, acceptable prediction results are obtained on the
spectrum, and better generalization performance can be obtained by reducing the data
dimension, which has broad application potential. In the existing research models, band
screening effectively reduced the data dimensionality, but the traditional linear regression
modeling still had collinearity problems.

Artificial intelligence (AI) coupled with promising machine learning (ML) techniques
well known from computer science is broadly affecting many aspects of various fields,
including science and technology, industry, and even our day-to-day life [52]. In recent
years, in order to better realize the monitoring of cotton growth information, some scholars
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introduced machine vision, deep learning, and other technologies, which effectively im-
proved the monitoring model accuracy [11,53]. In this study, the LAI monitoring model
was established by comparing MSR and ELM algorithms, and the results showed that
ELM was superior to MSR. The SNV-SFLA-ELM model has the best accuracy (R2 = 0.7340,
RMSE = 1.4494, and rRMSE = 23.40%; verification set R2 = 0.7153, RMSE = 1.6796, and
rRMSE = 26.32%), Yu et al. [54] compared PLSR and ELM to construct a hyperspectral
inversion model of nitrogen content in rice leaves, and the results showed that ELM had
better performance. Chen et al. [55] diagnosed the nitrogen content in the apple canopy on
the basis of hyperspectral reflectance. Liu et al. [56] estimated rice chlorophyll content on
the basis of hyperspectral reflectance, and the ELM model had the best effect. Meanwhile,
the above study results show that ELM has a small computation scale and good generaliza-
tion, but its practical application is slow. In this study, the ELM model also showed good
prediction ability, but it needs to be improved for future research and application.

The model established in this study can be used for monitoring LAI throughout the
growth period of cotton, including different cotton varieties. Chen et al. [57] established
LAI monitoring models for cotton at different growth stages using multispectral data
obtained by UAV, with R2 = 0.65 and RMSE = 0.62, similar to the performance of the
monitoring model established on the basis of vegetation indices in this study. Hyperspectral
reflectance can directly reflect the geometric and physiological characteristics of vegetation,
and vegetation indices can quantitatively describe plant growth through the difference of
vegetation and soil background in different band ranges. They are homologous but have
different characteristic emphases. Therefore, in order to improve the accuracy of the model,
canopy spectral reflectance and vegetation indices were combined to construct the model
in this study, and more sensors and modeling methods could be introduced to monitor the
model construction in the future.

In summary, SNV pretreatment was used for spectral data and SFLA was used to
screen sensitive bands, which could optimize model variables. However, the correlation
between vegetation indices established by spectral reflectance after SNV pretreatment and
LAI was higher, which could improve model accuracy. ELM can effectively resist noise and
is more suitable for modeling remote sensing data. The SNV-SFLA-SNV-VIs model was
the optimal model established in this study, with training set R2 = 0.9208, RMSE = 0.8216,
and rRMSE = 12.89%, and validation set R2 = 0.9066, RMSE = 0.9590, and rRMSE = 15.72%.
In order to determine the predictive ability of the model in different periods, the model
was verified in different periods in this study. The results showed that the accuracy of
the validation model based on a single period decreased, but the overall accuracy was
high, while LAI that was too large or too small had a greater error in estimation. Thus,
although this model has a broad application prospect in monitoring LAI during the whole
growth period of cotton, future studies still need to add data sets on this basis to ensure
the universality of the model. In addition, this study based on the optimal model of
different N application levels of LAI estimation ability test, the results show that the model
under different nitrogen levels estimate ability has significant differences. Under different
nitrogen levels, the N4 interchange and N2 precision is relatively low and, combined with
the model, may be related to the LAI distribution under different nitrogen treatment. The
model for larger LAI will be underestimated, while for smaller LAI, overestimation will
occur. The research on this part is relatively weak, which is an important issue to be paid
attention to in the future model construction and optimization process.

In this study, different nitrogen treatments and different cotton varieties were estab-
lished, but the method in this study was based on the spectral data of a cotton canopy
in the same year at a specific site, which limits its prediction ability for other datasets or
regions. Therefore, in order to optimize the SNV-SFLA-SNV-VIs model in terms of stability
and accuracy, further datasets involving additional years, planting patterns, and regions
need to be collected for model correction, in order to realize LAI estimation of cotton in
Xinjiang by using a machine learning method in the future.
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5. Conclusions

In this study, using the spectral data of cotton canopy height obtained by UAV, band
combinations were screened using different pretreatment and band screening methods, and
vegetation indices were constructed using hyperspectral data after different pretreatment
methods were used to estimate the LAI of cotton throughout the growth period using MSR
and ELM. The results showed that the canopy spectra of different LAI were significantly
different in the 760–1000 nm range, and there was an obvious correlation between the
canopy spectrum and LAI. By comparing methods under different pretreatments, it can be
seen that the band screening based on SPA was too concentrated, resulting in information
redundancy and incomplete information extraction. The sensitive bands screened by SFLA
were evenly distributed. The vegetation index established based on the hyperspectral
data pretreated by SNV had a higher correlation with LAI, and the DVI had the highest
correlation. In comparing the results of the cotton LAI estimation model established using
two modeling methods based on different modeling objects, ELM was superior to MSR.
SNV-SFLA was the best monitoring model based on pretreated hyperspectral reflectance,
and SNV was the best monitoring model based on vegetation indices. However, when
combining hyperspectral reflectance with vegetation indices, the ELM model based on
SNV-SFLA-SNV-VIs had the best effect among all models, with training set R2 = 0.9208,
RMSE = 0.8216, and rRMSE = 12.89%, and validation set R2 = 0.9066, RMSE = 0.9590, and
rRMSE = 15.72%. Therefore, the combination of both modeling objects could effectively
improve the model’s accuracy.
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