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Abstract: Convolutional neural networks (CNNs) are becoming an increasingly popular approach for
classification mapping of large complex regions where manual data collection is too time consuming.
Stream boundaries in hyper-arid polar regions such as the McMurdo Dry Valleys (MDVs) in Antarctica
are difficult to locate because they have little hydraulic flow throughout the short summer months.
This paper utilizes a U-Net CNN to map stream boundaries from lidar derived rasters in Taylor Valley
located within the MDVs, covering ∼770 km2. The training dataset consists of 217 (300 × 300 m2)
well-distributed tiles of manually classified stream boundaries with diverse geometries (straight,
sinuous, meandering, and braided) throughout the valley. The U-Net CNN is trained on elevation,
slope, lidar intensity returns, and flow accumulation rasters. These features were used for detection
of stream boundaries by providing potential topographic cues such as inflection points at stream
boundaries and reflective properties of streams such as linear patterns of wetted soil, water, or ice.
Various combinations of these features were analyzed based on performance. The test set performance
revealed that elevation and slope had the highest performance of the feature combinations. The
test set performance analysis revealed that the CNN model trained with elevation independently
received a precision, recall, and F1 score of 0.94 ± 0.05, 0.95 ± 0.04, and 0.94 ± 0.04 respectively, while
slope received 0.96 ± 0.03, 0.93 ± 0.04, and 0.94 ± 0.04, respectively. The performance of the test set
revealed higher stream boundary prediction accuracies along the coast, while inland performance
varied. Meandering streams had the highest stream boundary prediction performance on the test set
compared to the other stream geometries tested here because meandering streams are further evolved
and have more distinguishable breaks in slope, indicating stream boundaries. These methods provide
a novel approach for mapping stream boundaries semi-automatically in complex regions such as
hyper-arid environments over larger scales than is possible for current methods.

Keywords: lidar; fluvial geomorphology; stream width; remote sensing; deep learning

1. Introduction and Related Work

Stream width and stream cross sectional area are some of the most important metrics for
hydrologic and sediment transport modeling and is a reflection of flow magnitude and sedi-
ment load capacity [1–5]. Global hydrological maps do not yet include complete hydrological
datasets in the unglaciated regions of Antarctica such as the McMurdo Dry Valleys (MDVs)
because their ephemeral nature makes streams difficult to detect. In the MDVs, channel
runoff and sediment load capacity are a reflection of glacial ablation magnitudes, therefore
it is important to extract stream extents to better understand spatial patterns of glacial ab-
lation [6]. Patterns of channel dimension and occurrence across the MDV landscape will
provide information on regional glacial runoff, hence ablation magnitudes. The MDVs were
once considered stable, but due to an observed increase and leveling off of solar radiation,
it is now making a shift to Arctic and alpine-style permafrost and glacial melt [7]. This has
caused an increase in surficial warming on the glaciers and permafrost, leading to an increase
in flood frequency and magnitude as well as the thawing of permafrost soils [7]. The thawing
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of permafrost decreases the consolidation of sediments, allowing for easier mobilization of
sediments and landscape adjustments [8]. In order to obtain glacial runoff estimates and
fluvial geomorphic changes across a large scale, the detection of stream boundaries and their
extents are necessary. The detection of streams and their boundaries over other available
temporal datasets in the MDVs will aid in the detection of fluvial geomorphic shifts spatially
and supplement global hydrological datasets.

Detection of stream boundaries in hyper-arid regions is a difficult task, especially over
large-scale regions because stream beds are periodically dry. Bankfull events typically
recur every 1.5 to 2 years, but are even less frequent in arid climates than more humid
regions [4,9]. Therefore, streams with very little activity may be narrow and not exhibit
a clear distinction between active channel (normal high water lines) and bankfull extents
(where the stream meets the floodplain), as a result we categorize these channel boundaries
in the same class in this paper (Figure 1) [2,3]. Collecting sufficient stream boundary
data in the field is arduous even over smaller, more hydrologically active areas, therefore
remote sensing methods are required. Elevation and slope derived from lidar have been
used for stream location and/or stream boundary detection in the past [1,3,10–18]. Digital
elevation models (DEMs) have been commonly used to create flow accumulation models
for both channel detection and centerline extraction for runoff simulation [10,11]. Stream
boundaries have previously been estimated with topographic cues from lidar returns
and/or imagery [3,12,17–19]. The stream centerline extraction and detection of the area
of stream inundation and saturated soils of streams have also been accomplished using
both elevation and intensity returns [14–16,20,21]. In this study, we consider an alternative
stream boundary detection method using topographic and surface reflectance indicators
as features from lidar-derived rasters for hyper-arid regions such as the MDVs. These
topographic and surface reflectance features are utilized in a U-Net architecture for the
detection of stream boundaries in the 770 km2 of glacier-free regions within Taylor Valley;
one of the centrally located valleys the MDV. Based on a literature review, the use of deep
learning for detection of small stream (∼10–150 m wide) extents in hyper-arid regions on a
multi-basin scale has not been reported.

Figure 1. Cross section of stream indicators differentiating bankfull width and active channel width
which are indicated by the red dotted arrows at the cross section.

Existing remote sensing techniques are not suitable for large-scale, hyper-arid, polar
regions such as the MDVs. MDV streams are ephemeral and runoff is controlled by local
climatic changes that can vary spatially and on an hourly basis, therefore a stream may
not be detected during data collection. Considering this, conventional methods that are
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reliant on waterbody extraction are not sufficient for our purposes. Existing remote sensing
methods for channel extraction require a DEM and/or imagery where topographic cues
are used to delineate channel extents [3,12,13,17].

Current stream boundary extraction methods utilize cross sections that are equally
distanced and tangent to the stream centerline and/or require additional precipitation data
or imagery [3,12,13,17,18]. In Li et al. [22] small rivers (>30 m wide) were extracted using
spectral indices from Sentinel-2 imagery and DEM data. In hyper-arid regions such as the
MDVs, even visual inspection of imagery may not be sufficient for manual detection of
streams because stream flow, wetted soil, and ice change temporally and spatially. The main
source of runoff in Taylor Valley is glacially sourced, and runoff magnitudes vary widely
across the landscape, making stream boundary detection methods that rely on precipitation
data unsuitable. Cross section-based methods must extrapolate the boundaries between
cross sections, which can introduce large errors if the spacing between cross sections are too
large. Accurately identifying stream boundaries for large regions with multiple complex
watersheds is considered computationally expensive, as cross sections must be adequately
proximal and wide enough across the channel length to accurately represent stream extents
along the stream channel.

When cross section-based methods are used on large-scale regions with a wide range
of stream geometries, they may require extensive editing. Cross section-based stream
boundary detection methods typically are better suited for straight stream geometries
compared to meandering and braided geometries. These algorithms may require manual
editing of cross sections when it comes to streams that are meandering, multithreaded, at an
intersection, or in close proximity to another stream (Figure 2b–d) [3,17]. Braided streams
and streams that are close in proximity or near to a junction will exhibit multiple terraces
and inflection points along the cross section, causing the algorithm to possibly misclassify
stream boundaries by selecting the incorrect pair of inflection points (Figure 2b,d) [3].
Similarly, very tightly meandering streams at inner bends may have regions where the
tangent to the stream centerline may cause a single cross section to intersect upstream
and downstream rather than intersect the stream boundaries tangentially (Figure 2c) [3].
Instances such as these must be manually edited, which can become increasingly time
consuming for extensive networks on a multi-basin scale [3]. Ideally, a stream boundary
segmentation algorithm would be able to classify stream boundaries even along tightly
meandering stream channels without manual editing of cross sections. Stream boundary
extraction in Taylor Valley would require extensive manual editing with current methods
as it has a wide range of stream geometries. In this study, we delineate stream boundaries
across a wide array of stream geometries across the full extent of Taylor Valley using
airborne lidar (ALS) collected in 2014. This study explores a stream boundary detection
method that does not require cross sections, precipitation data, or imagery and can handle
multiple basins with streams that are ephemeral in nature, such as Taylor Valley.

Convolutional neural networks (CNNs) have demonstrated excellent results in pattern
recognition across scales in remote sensing [23–25]. A CNN is a type of neural network
that can assign importance or weights and biases to different objects in an image in order
to distinguish two or more classes [26]. Analogous to a human’s visual cortex, a CNN
uses hidden layers to pass results successively to build a mathematical model for object
identification [27]. CNNs have the ability to learn and detect objects at different localities
and scales within an image, making it suitable for land surface segmentation [28–30].
Because of this ability, we use a CNN to detect dry stream networks and their stream
boundaries in Taylor Valley, eliminating the need for cross sections; therefore set distanced
interpolation. U-Net has been shown to be highly successful in pattern recognition and
land surface segmentation using fewer training samples than other CNN algorithms [31,32].
Additionally, studies within remote sensing have shown that U-Net models create smoother
and more connected features, which is important for hydrologic applications [21]. For these
reasons, U-Net was selected for semi-automatic detection of streams and their stream
boundaries in Taylor Valley.
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Figure 2. Cross sections (A–A’) of different stream geometries in profile view. The straight streams
(a) typically exhibit clear inflection points on either sides of the stream. The diagram shows the active
channel in blue, the stream centerline dashed in red, and the cross section dashed in black. Braided
(b), meandering (c), and streams that intersect (d) can have multiple inflection points making it more
difficult to identify stream boundaries. (a) Straight: If stream boundaries exhibit a distinguishable
slope (steep profile) cross section methods may succeed. (b) Braided: If multiple channels exist, current
methods may fail due to multiple pairs of inflection points. (c) Meandering: if a cross section appears
at an inner bend and intersects the stream at multiple locations on the stream, current methods may
fail due to multiple pairs of inflection points. (d) Stream junction: if a cross section appears in a region
with an adjoining stream and a cross section intersects both streams, current methods may fail due to
multiple pairs of breaks in slope.

The aim of this study is to define a semi-automatic method for stream boundary detec-
tion using high-resolution, lidar-derived rasters as features in a U-Net CNN architecture
along stream channels in Taylor Valley. Our study only aims to detect stream boundaries
that are visually distinguishable. Furthermore, this study does not try to discern stream
boundary turning points from those caused by undercutting of the underlying strata.
Provided that stream flow in the MDVs is unconventionally periodic and that there is
limited field data, we are constrained to work with some level of ambiguity in the correct
labeling of stream boundaries. Manual segmentation and prediction of stream boundaries
is particularly difficult for less active, unmonitored streams. Given the extreme ephemeral
nature of streams in the MDV, we propose a new method for detection of stream boundaries.
Topographic, geometric, and lidar surface reflectivity indicators derived from airborne
lidar were utilized for model training and prediction. To our knowledge, a semi-automatic
stream boundary detection method that has been adapted for hyper-arid regions like the
MDVs has not been attempted before on a multi-basin scale. This will aid future studies that
would like to automatically classify stream boundaries in hydrologically similar regions for
simulation of fluvial processes and estimation of geomorphic rates of change. In Taylor
Valley specifically, detection of stream boundaries on available, temporally-spaced DEMs
will allow researchers to detect and simulate changes within the different climatic zones to
observe correlation between stream channel morphology and climatic perturbations.

2. Study Area

The study area is located in Taylor Valley in the MDVs in East Antarctica (Figure 3).
Taylor Valley is centrally located in the MDVs and encapsulated by the Asgard Mountains,
the Kurkri Hills, and the Ross Sea. Taylor Valley has one terminal glacier (Taylor Glacier)
that flows from the Polar Plateau and 15 smaller alpine glaciers that flow from the side
valleys. The Transantarctic Mountains to the west obstruct ice flow from the East Antarctic
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Ice Sheet to the valley producing a severe rain shadow. The valley is approximately
70 km long and 12 km wide. Elevation ranges from 0 to 2000 m and slopes are generally
gentle to moderate in regions where stream flow exists. The valley primarily consists of
glacial tills and fluviolacustrine deposits and at higher elevations there is exposed bedrock.
The grounds are underlain by permafrost with active layers that are 45–70 cm thick near the
coastal regions, 20–45 cm thick 60 km inland, and <20 cm along the polar plateau during
the summer months [33].

The MDVs are one of the most arid regions of the world with sublimation (∼35 cm/year)
exceeding what little precipitation (<10 cm/year) the valleys receive [34–36]. It is contin-
uously dark during the winter months and temperatures can get as low as −60 ◦C [37].
During the 6–12 weeks of summer, temperatures can reach 5 ◦C [37]. Temperatures typically
oscillate above and below the melting point of water throughout the summer days.

The MDVs have three geomorphic zones called microclimate zones. These zones are
the upper stable zone (USZ), the inland mixing zone (IMZ), and the coastal thaw zone (CTZ)
and are defined by summer temperature, soil moisture, and relative humidity. The sporadic
runoff is almost entirely glacially sourced and flows to the perennially frozen closed-basin
lakes [38,39]. The lack of vegetation allows streams with unconsolidated sediment to
transport large sediment loads during times of flooding [38]. Due to the stream’s ephemeral
nature, runoff may or may not exist at a given point in time. This makes the detection of the
streams and its boundaries very difficult with existing methods. Several streams in Taylor
Valley have already experienced extensive incision and bank undercutting due to climatic
changes [6,7]. Although stream runoff is quite sporadic, runoff is predicted to become more
frequent and will in turn further shape the valleys [40].

Figure 3. Location map of Taylor Valley, Antarctica with the area of interest highlighted in red.
Imagery courtesy of Earthstar Geographics.

3. Methods

The creation of the training data, labeling, U-Net training, and prediction are depicted
in Figure 4 and described in the subsections below.
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Figure 4. Flow chart of the proposed semi-autonomous stream and boundary detection.

3.1. Data Preparation

Airborne lidar data collected in 2014 by the National Center for Airborne Laser Mapping
(NCALM) on the ice-free regions of Taylor Valley (∼560 km2) with a point density of 2.7 pts/m2

was utilized for stream boundary detection [41]. Digital imagery with 5–20 cm resolution
collected simultaneous to the lidar survey as well as elevation and slope rasters were used
for manual segmentation of stream boundaries to compile training data. The lidar surveys
include the collection of ground point locations in space and raw intensity of lidar returns.
Natural neighbor interpolation was used to convert the lidar dataset into a digital elevation
model (DEM) and an intensity raster with spatial resolutions of 1 × 1 m2. A slope and flow
accumulation model were calculated from the DEM using the slope and multi-flow direction
(MFD) algorithms implemented in the ArcGIS software [42]. The DEM, intensity, slope,
and flow accumulation rasters were then utilized as input features into the U-Net algorithm
for training to find the best model for stream boundary prediction. Only the top performing
models will be discussed here, but all performance metrics are available in Table A1.

The test set locations were manually selected, divided into raster tiles, normalized,
and then manually digitized for ground truth. The selected feature rasters were broken
up into 217 well-distributed 300 × 300 m raster tiles (covering ∼1% of the study area)
throughout Taylor Valley. The test set includes regions with different channel geometries
(straight, sinuous, meandering, and braided/intersecting streams) and stream sizes as
well as those that lack streams with various topography. Stream test set locations were
identified and selected based on evidence of stream existence where there was visibly
distinguishable boundaries. Stream existence was determined using stream centerlines
of major streams mapped by the Long-Term Ecological Research (LTER) and imagery
exhibiting linear patterns of water, ice, or wetted ground downstream of glaciers and
overlapped by stream centerlines extracted from MFD flow accumulation. Evidence of
stream existence and imagery were used to avoid misclassifying turning points associated
with other topographic features such as underlying strata.

The minimum and maximum within each tile for elevation, slope, intensity, and flow
accumulation were calculated. To normalize the data the pixel values of each tile were sub-
tracted from the tile minimum and then divided by the pixel value range. Normalization of
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slope and intensity by the minimum and maximum values help in regions where indicators
are not as noticeable. This includes regions where stream boundaries exist, but are more
easily detected with accentuation of the slope. Flow accumulation normalization was help-
ful for regions that had subtle patterns of ice or wetted ground. After normalization, the bit
depth output was 8-bit unsigned. The resulting normalized elevation, slope, intensity,
and flow accumulation, airborne digital imagery, and profiles were used for manually
locating streams and digitizing their stream boundaries. Two classes were defined in the
raster: “stream areas” and “non-stream areas”.

Stream boundary indicators include: inflection points, a change in sediment texture,
and staining of the floodplain as diagrammed in Figure 1 [2]. Other stream indicators in
the MDV are linear patterns of snow, ice, water, or wetted ground. Regions with concave
profiles with topographic and visual indicators such as these were utilized to digitize stream
boundaries. Topographic profiles, elevation, slope, and flow accumulation were used for
manual detection of the stream boundaries using topographic cues such as inflection points
and linear depressions (Figure 5a–c). The digital imagery, intensity, flow accumulation,
and a hillshade were supplementary for manual stream identification (Figure 5d–f). Digital
imagery, intensity, and flow accumulation can only provide visual information about stream
location if either water, snow, or wetted soil exists in the channel, but cannot provide enough
information for stream boundary detection.

Figure 5. Examples of visual feature indicators for stream boundary segmentation. (a) Hillshade
with stream boundary ground truth (b) Elevation feature raster used for manual stream boundary
segmentation using linear depressions and a rapid change in elevation (c) Slope feature raster used
for manual stream boundary segmentation using a topographic features such as rapid change in
slope with inflection points on either side of the banks (d) Hillshade with stream boundary ground
truth (e) Intensity feature raster used for stream identification using linear patterns of reflectivity
(f) Flow accumulation feature raster used for manual stream segmentation using linear patterns of
high flow accumulation.

It should be noted that CNN training relies on correctly labeled stream boundaries
in the training data. Stream boundary segmentation is limited by the ability to manually
differentiate stream boundary turning points from other topographic turning points such



Remote Sens. 2022, 14, 234 8 of 16

as underlying strata or outcrops. Any inflection points not distinguishable from stream
boundaries such as underlying changes in strata in close proximity to stream boundaries
can cause manual misclassification. Therefore, only samples with distinguishable stream
boundaries such as breaks in slope were included. Prediction in turn will be focused on
correctly identifying stream networks with distinguishable stream boundaries.

3.2. U-Net

U-Net is commonly used for raster segmentation. Normally, a RGB or greyscale image
and its user classified ground truth are used as inputs; the output is an image where
each pixel is assigned to a class [43]. This is accomplished by designing an architecture that
incorporates a stacked convolutional layer and padding framework to ensure preservation of
spatial resolution [44]. Furthermore, U-Net takes advantage of an encoder-decoder structure
where the encoder learns abstract low-level features while the decoder develops high-level
features through upsampling [45]. Essentially, the encoder decreases the spatial resolution
of the image in order to increase computational efficiency and more easily differentiate
different classes [46]. The decoder restores the image to it’s full-resolution to recover spatial
information [46].

3.3. Training

The open source Landcover Dronedeploy tool was used for training and prediction
of stream boundaries in Taylor Valley [47]. This code was implemented with fastai and
PyTorch version 1.1.0 and uses a pre-trained ResNet-18 encoder model within the U-Net
semantic segmentation framework. The various features and feature combinations with their
corresponding ground truth were input into U-Net. A 50/20/30 split of the 217 samples
was chosen for training, validation, and testing respectively and were used throughout the
training. This split was chosen because the test set had to be large enough to decipher any
trends in stream boundary segmentation accuracy (accuracy trends spatially and for stream
geometry type), while not compromising the number of training data. The test set was
manually selected to fairly represent the accuracies of each stream geometry and to get the
right class balance. The training data was augmented with three 90◦ rotations. Prediction and
fitting were carried out using the freely available Graphics Processing Units (GPUs) within
Google Colaboratory (Nvidia K80s, T4s, P4s, and P100s) [48]. Depending on the available
GPUs in Google Colaboratory, the total runtime for training and testing the algorithm was
between four and six hours. The final tuned hyper-parameters included an epoch of 200,
a batch size of 16, a learning rate of 1 × 10−5, and weight decay of 1 × 10−4. These parameters
were found empirically based on the observed desirable loss curve characteristics and the
speed of training, which include a smoothly decreasing loss as a function of epoch towards
a low plateau. The top four performing models were saved for segmentation of the entire
valley. A performance assessment of stream boundary segmentation was carried out on
various combinations of the input features. Prediction performance was measured based on
the proportion of correctly classified pixels. Performance metrics include recall, precision,
and F1 score as they are commonly used metrics for evaluating a binary segmentation [49,50].

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

F1 = 2
PR

P + R
(3)

where: TP represents true positives, FP represents false positives, FN represents false
negatives, P is the precision, R is the recall and F1 is the F1 score.

The precision is representative of stream segmentation performance, while the recall
represents the segmentation performance of non-stream regions. Performance was analyzed
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based on spatial location within Taylor Valley and by stream geometry (straight, sinuous,
meandering, and those with braided or intersecting streams).

3.4. Prediction

Following model training, the full valley was broken up into 852 1500 × 1500 m2

overlapping tiles for prediction using the models with the four highest performing feature
combinations: elevation, slope, intensity, and flow accumulation. Tiles were overlapped
because pixels near the edges are susceptible to more error and may not include enough
information to accurately predict stream boundaries. Tile sizes smaller than 1500 × 1500 m2

often classified the outer boundaries as “stream areas” and misclassified stream bottoms
as “non-stream”. This resulted due to tiles only including a section of a stream and
therefore did not provide enough information for the algorithm to accurately predict.
Increasing the tile size from 300 × 300 m2 to 1500 × 1500 m2 provided a larger picture
for the model so it could predict bankfull boundaries with very little noise across the full
valley. Normalization across a larger area may cause a larger deviation in pixel values,
which could cause misclassification of less active streams as ground because a larger tile
will exhibit more gentle gradient changes with normalization compared to a smaller tile.
The total runtime for prediction across the full valley after the model is trained was ∼15 min.
A subset of the data was selected and digitized for a visual comparison of the predictions
from the top two performing models.

4. Results

Here, we discuss the U-Net segmentation performance of stream boundaries on a
valley-wide scale in Taylor Valley. Performance results from the different feature combina-
tions are shown in Table 1. Training each of the models with single features outperformed
the models that had two or more features. All four of these features were found to perform
well on the test set with the precision, recall, and F1 score ranging from 0.88 ± 0.09 to
0.96 ± 0.03, 0.93 ± 0.07 to 0.95 ± 0.04, and 0.93 ± 0.07 to 0.94 ± 0.04, respectively (Table 1).
Elevation and slope had the highest performances in stream boundary prediction over the
test set and had similar accuracy metrics.

Table 1. Prediction performance of stream boundary detection for the different features: elevation
(E), slope (S), intensity (I), and flow accumulation (A) within one standard deviation.

Feature Accuracy Metrics

E S I A

Precision 0.94 ± 0.05 0.96 ± 0.03 0.88 ± 0.08 0.89 ± 0.09
Recall 0.95 ± 0.04 0.93 ± 0.04 0.94 ± 0.05 0.93 ± 0.07
F1 score 0.94 ± 0.04 0.94 ± 0.04 0.94 ± 0.05 0.93 ± 0.07

Spatial prediction accuracy on the test set was nearly identical for elevation and slope,
therefore the elevation-based model is the only one depicted. The prediction of stream
boundaries on the test set across Taylor Valley show that coastal regions typically have
higher performance with F1 scores of 0.81–0.99 (Figure 6). Other regions across the valley
had mixed F1 scores of 0.70–0.98, with a decreased score approaching slightly inland.
The average for true positives was 0.71, while for true negatives it was 0.93. Figure 6a–f
show the general trend in Taylor Valley where underprediction is more common than
overprediction. Regions that did not perform as well did not have as distinct breaking
points in slope at the stream boundaries.
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Figure 6. Spatial performance of stream boundary prediction for the elevation-based model. The points
represent the F1 score from low (white) to high (blue). The F1 score was found to decrease inland.
(a–g) are examples of stream prediction with their true positive and true negative performances. These
examples are pretty indicitive of the valley where there is some underprediction, but not as much
overprediction. Underprediction and overprediction is typically situated on the smaller tributaries.
(a–g) show the prediction of stream boundaries in light blue overlain by the ground truth outlined in
dark blue with stripes. Underlain is the 2014 hillshade for reference.

When prediction accuracy was compared to the three microclimate zones (CTZ, IMZ,
and USZ), the CTZ acheived the most confident results (Figure 7). However, upon inspect-
ing outcrop geology and stream boundary prediction accuracy, there seemed to be some
correlation of high stream boundary prediction to outcrop geology. The glacial till region
near the coast received the highest prediction accuracies on average. The test regions that
had lower stream boundary prediction were typically located at or near bedrock (in grey
and green) (Figure 7).

The performance of stream boundary prediction was assessed across the four feature
classes and over different stream types (straight, sinuous, meandering, and braided or
intersecting streams) (Figure 8). The elevation and slope features received the highest
F1 scores and had a lower range of F1 scores across the different stream types (Figure 8).
Straight streams across all of the features performed the worst while meandering streams
typically performed the best followed by intersecting and sinuous streams (Figure 8).
In contrast, cross section-based methods perform better on single-channel streams in
comparison to braided or tightly meandering channels. The lidar return intensity and flow
accumulation features received the lowest precision, recall, and F1 score, therefore they are
not discussed here in length, rather elevation and slope will be our main focus.
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Figure 7. Spatial performance of stream boundary prediction in comparison to (a) microclimate zones
with the Coastal Thaw Zone (CTZ) in dark red, the Inland Mixing Zone (IMZ) in red and the Upper
Stable Zone (USZ) in light pink (b) geology. The points represent the F1 score from low (white) to
high (blue). The colors from tan to yellow represent sediment grain size types while the green, grey
and black color represent bedrock types.

ase release command

Figure 8. Boxplots of the F1 score across different stream geometries and feature classes. The different
colors represents the different features: elevation (red), slope (green), intensity (blue), and flow
accumulation (grey). The F1 score for elevation, slope, intensity, and flow accumulation ranged
from 0.7–0.98, 0.67–0.98, 0.66–0.97, and 0.55–0.97. The stream types analyzed here are straight (ST),
sinuous (SN), meandering (M), and braided or streams with junctions (I). The F1 score for straight,
sinuous, meandering, and intersecting/multi-threaded ranged from 0.55–0.98, 0.60–0.97, 0.68–0.98,
and 0.67–0.98.

The manually labeled test images and the stream boundary prediction agree with
each other (Figure 6). The prediction over Commonwealth Stream located between Com-
monwealth glacier and the Ross Sea show that elevation and slope are comparable to the
manually digitized ground truth (Figure 9). Elevation was a little less noisy and did not
over-predict the stream boundaries compared to slope (Figure 9). Tributaries were more
difficult to detect accurately than the main branch (Figure 9).
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Figure 9. Ground truth and predictions on a subset of the full-valley predictions (Commonwealth
Stream). (a) Ground truth for Commonwealth Stream (b) Predictions for the elevation-based model
(c) Predictions for the slope-based model. (d) location map of Commonwealth Stream. Red arrows
indicate the tributaries where the slope model overpredicted stream boundaries.

5. Discussion

Overall, both the elevation and slope features had the highest performance for stream
boundary segmentation. The intensity and flow accumulation features do not provide
topographic information needed to accurately identify stream boundaries as indicated by
features such as inflection points. These two features were meant to be supplementary
support features to slope and elevation, however increasing the dimensionality of attributes
with a very small test set increases the difficulty of convergence [51]. In more hydrologi-
cally active regions, models including intensity may have higher performance in stream
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boundary prediction because of the high reflectance of water. Our study area is a hyper-arid
region with typically dry or wetted soil, therefore, there may be more homogeneity in
intensity values than that of a hydrologically active one.

The elevation and slope models performed similarly overall and across different
stream geometries (Figure 8). Elevation or slope are the only features needed for prediction
of stream boundaries, reducing computational time by reducing the dimensionality of the
training data and the need to compute the other lidar derived features. Coastal regions had
the highest stream boundary prediction performances. This could be due to the warmer,
wetter climate on the coast and the higher concentration of sediments meaning more
hydrological activity and highly evolved stream channels (Figure 7). Streams across the
valley tend towards underprediction rather than overprediction (Figure 7). This is likely
because stream boundary breaks are gently sloping and therefore smaller channels or
tributaries are a lot more difficult to detect. As shown in Figure 9 (Commonwealth Stream),
the slope-based model overpredicted on its tributary boundaries, while the elevation-based
model did not.

Across all of the models, straight streams performed the worst while meandering
performed the best followed by sinuous and intersecting streams, in contrast to current
methods. This is very likely due to the shallowness of straight streams, meaning breaks
in slope that are not as distinguishable [52]. Meandering streams have had the time to
develop more distinguishable stream boundaries [52]. Intersecting or braided streams have
more stream flow at the junction due to water accumulation at the junction and therefore
also have more detectable boundaries.

Some of the limitations of this study are reliance on correctly labeled data by the
user and utilizing training data that only include streams that exhibit well-established
stream boundaries. Inflection points due to underlying strata was not accounted for in this
study due to lack of field data. Straight channels and newly formed streams are just a few
examples of streams that will likely not be identified as well as meandering streams due
to their undeveloped stream boundaries. Even to the human observer, stream boundaries
may not be apparent on shallower streams with small gradient changes at their stream
boundaries. Unlike other methods, the proposed methods are not limited to less sinuous or
non-bifurcating channels and can detect highly ephemeral streams.

While this study focuses on stream boundaries, future research of the MDVs should
attempt to identify stream boundaries of water, wetted soil, and/or snow and ice to identify
streams that are more active, entailing more rapid deglaciation. This method could also be
tested on other hyper-arid or hydraulically active regions of the world. This study has only
explored prediction performances of stream boundaries using the U-Net algorithm. Future
studies could compare different algorithms or feature classes with additional training data.
Segmentation results could be used to isolate fluvial regions for change detection within
the stream extent and to simulate fluvial processes. This new data will supplement the
global hydrography datasets as complete hydrological datasets are not yet available for the
MDVs. A more complete hydrological dataset will lead to a more complete representation
of fluvial responses to climate change over a multi-basin scale.

6. Conclusions

This study serves as a starting point for stream boundary segmentation of small
streams (∼10–150 m wide) in hyper-arid regions such as Taylor Valley where stream beds
are more difficult to detect because of their ephemeral nature. This work automates stream
boundary prediction in hyper-arid regions across a multi-basin scale (770 km2) using just
elevation or slope feature classes. Our method received a precision, recall, and F1 score
of 0.94 ± 0.05, 0.95 ± 0.04, and 0.94 ± 0.04 for elevation, respectively, and slope received
0.96 ± 0.03, 0.93 ± 0.04, and 0.94 ± 0.04, respectively. Meandering geometries performed
the best with the F1 score ranging from 0.67 to 0.98. Streams near the coast received
higher accuracies than inland. This is likely related to both microclimate and outcrop
geology. Regions near or on bedrock recieved higher inaccuracies generally. This method
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can provide a more efficient and less computationally expensive method for detection of
stream boundaries in hyper-arid regions at a multi-basin scale using very little training
data (∼1% of the study area). A more complete hydroligical dataset in the MDV will lead
to further studies on fluvial geomorphic changes related to climate change.
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Appendix A

Table A1. Prediction performance of stream boundary detection for the different feature combinations:
elevation (E), slope (S), intensity (I), and flow accumulation (A).

Feature Accuracy Metrics

Precision Recall F1 Score

E/S 0.74 ± 0.14 0.96 ± 0.06 0.83 ± 0.10
E/I 0.77 ± 0.11 0.99 ± 0.01 0.88 ± 0.09
E/A 0.79 ± 0.13 0.99 ± 0.01 0.87 ± 0.09
E/S/I 0.88 ± 0.11 0.97 ± 0.03 0.92 ± 0.07
E/S/A 0.86 ± 0.07 0.87 ± 0.06 0.86 ± 0.09
E/I/A 0.84 ± 0.11 0.93 ± 0.09 0.87 ± 0.08
S/I/A 0.88 ± 0.01 0.92 ± 0.09 0.89 ± 0.08
S/I 0.79 ± 0.13 0.99 ± 0.02 0.88 ± 0.09
S/A 0.79 ± 0.12 0.99 ± 0.01 0.88 ± 0.09
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