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Abstract: An increase in the frequency and severity of droughts associated with global warming
has resulted in deleterious impacts on forest productivity in Southwest China. Despite attempts to
explore the response of vegetation to drought, less is known about forest’s resilience in response to
drought in Southwest China. Here, the reduced resilience of the forest was found based on remotely
sensed optical and microwave vegetation products. The spatial distribution and temporal variation
of resilience-reduced forest were assessed using the standardized precipitation evapotranspiration
index (SPEI) and vegetation optical depth (VOD). Our findings showed that 40–50% of the forest
appeared to have abnormally low resilience approximately 6 months after the severe drought. The
spatial distributions of abnormally low resilience had a good agreement with the regions affected
by the 2009–2011 drought events. In particular, our results indicated that areas of afforestation were
more susceptible to drought than natural forest, maybe due to the different water uptake strategy of
the diverse root systems. Our findings highlight the vulnerability of afforestation areas to climate
change, and recommend giving more attention to soil water availability.

Keywords: reduced resilience; forest; drought events; Southwest China

1. Introduction

Southwest China is a crucial region in the subtropics. This hotspot is home to more
than 30 percent of China’s higher plants, which support the delivery of ecosystem services
of high economic value. However, the hotspot has experienced intensive land-use changes,
and is now one of the most variable areas of managed forest all over the world [1]. The
agricultural area on marginal sloping lands have been partly converted to afforestation and
reforestation areas, to expand the forest areas in China’s ecological restoration projects [2].
These projects managed to improve the forest coverage, and reshaped ecosystems in
Southwest China; however, they may also contribute to the significant decline in soil
moisture in this region [1]. The forestation-induced decrease in soil moisture, in turn,
restricts plant growth—especially for trees in afforestation areas.

The increased frequency and severity of droughts associated with global warming,
combined with poor environmental conditions, especially over karst regions where rainfall
quickly infiltrates the subsurface of the ground through sinkholes, influence the forest
productivity and the ecosystem services [3,4]. Quantifying and understanding the resilience
of forests to climate change is of major interest in this area [3–6], where vegetation has
experienced greening, and enhanced drought events. The resilience (recovery rate) of
the forest is commonly reduced near the transition point, which has been introduced by
climate perturbations [7]. The transition point refers to a rapid transition from forest state
to non-forest state. This reduced resilience can reduce the stability of the current forested

Remote Sens. 2022, 14, 32. https://doi.org/10.3390/rs14010032 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14010032
https://doi.org/10.3390/rs14010032
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-2669-1909
https://orcid.org/0000-0002-3783-8363
https://orcid.org/0000-0002-1834-5088
https://doi.org/10.3390/rs14010032
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14010032?type=check_update&version=1


Remote Sens. 2022, 14, 32 2 of 16

state, and the forest ecosystem could easily shift into a contrasting state which refers to
‘critical slowing down’ [8]. However, the rate at which the forest ecosystem might move
into a degraded dynamic regime is variable, due to various tree species conferring different
levels of resistance to drought. Therefore, critical reduced-resilience detection largely
depends on whether the regime shift could be catastrophic, and is therefore approached
gradually [9]. Consequently, neighboring points in forest timeline can be similar to each
other, and have a high temporal autocorrelation. This concept was used to evaluate the
spatio-temporal pattern of forest’s reduced resilience [10], and predict tree mortality by
tracking the temporal variation of forest resilience [7]. The current approach to quantifying
forest’s resilience to drought, on both a regional and global scale, mainly uses remote
sensing imagery, which can provide spatio-temporal information on ground–forest primary
productivity. The temporal autocorrelation in satellite data-based vegetation indices has
been analyzed over tropical forest to detect the rate of spatial patterns [10]. Long-term data
are required to infer the critical slowness over time in the broader range of systems.

In Southwest China, due to Chinese ecological engineering projects, greening and
biomass increases have been monitored in conservation areas located in most karst re-
gions [1,2]. Large afforestation and reforestation projects in these tropical regions can
gradually improve the forest coverage, and result in an intensively managed forest [11].
This increased forest cover can also introduce an adverse impact on the ecosystem, due
to the consequent decreased soil-moisture content [1]. This could potentially result in a
deficit of available soil water, constraining plant growth—especially for the afforested
trees of the widely distributed karst regions in Southwest China. Moreover, vegetation
growth restrictions have been observed over large areas of Southwest China caused by
droughts [5], thus leading to a reduction in carbon uptake. This is partly due to the limited
resilience of the managed forest, and the low water-hold capacity of the thin soil layer.
Therefore, detecting the reduced resilience of the forest is beneficial in understanding the
forest ecosystem change; it can be used to better manage afforestation areas in abominable
environment conditions, with thin soil layers and low water-retention capacities.

In this study, forest resilience is defined as a recovery rate from a disturbed state,
which is dominated by forest physiological functions under drought. When resilience is
reduced approaching the transition point, abnormally low resilience (ALR) is defined to
macroscopically explore and measure the impaired physiological functions of the forest, and
compare the magnitude of afforestation forest resilience with natural forest resilience under
drought. The ALR of forest in Southwest China was detected according to the abnormally
high lag-1 autocorrelation in forest variations over a long period of time. The normalized
difference vegetation index (NDVI), as a proxy of coverage and biomass to vegetation, and
the enhanced vegetation index (EVI) as a proxy of greenness and productivity to vegetation,
were used to detect the ALR induced by the drought. The fraction of areas with ALR and
abnormally low vegetation indices were counted, and their dynamics were then evaluated
along with the computed drought index, and compared with the estimated changes of
the vegetation optical depth (VOD) during the drought. Furthermore, this study also
assessed the consistency of the spatial patterns of the low resilience in forested areas, and
the drought severity distributions.

2. Methods and Materials
2.1. Study Region

The study region, Southwest China, includes five provinces (Chongqing, Sichuan,
Guizhou, Yunnan and Guangxi) spanning from 97◦ E to 113◦ E, and from 21◦ N to 35◦ N
(Figure 1). In this region, the climate is mainly controlled by the subtropical monsoon
climate zone, which is characterized by cold–dry winters, and warm–wet summers. The
annual mean precipitation is unevenly distributed in the seasons, with most falling in
summer and autumn, and varying in total from 1000 to 1300 mm [3]. This region has
already become the largest terrestrial carbon sink of China in the past 30 years, owing to its
rich forest with strong carbon sequestration ability [12]. The forest in this region includes
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both natural forest and afforestation forest. Afforestation forest has increased in the past
years due to ecological afforestation and reforestation projects, such as returning farmland
to the forest, implemented to combat desertification and soil erosion and fundamentally
improve the ecological environment in Southwest China. However, the forest is easily
affected by high frequency drought disturbance in this region, especially due to its extensive
karst landscape, which makes it difficult to hold water in the soil [13].
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Figure 1. Geographical location of study region and distribution of karst landscape (the geographic
coordinate system with WGS84 and projection with Lambert adopted in the map, same for all the
maps below).

2.2. Dataset
2.2.1. Satellite-Derived Data

Two satellite-derived vegetation indices, including NDVI and EVI, were used for
detecting the abnormally low resilience of the forest. The two gridded indices were both
from the Moderate Resolution Imaging Spectrometer (MODIS) product (MODIS13A3, V006
version) (https://lpdaac.usgs.gov/products/mod13a3v006/, accessed date: 18 February
2021). The MODIS datasets are monthly data at a spatial resolution of 1 km, from 2000 to
2018. The first month of the MODIS monthly data was the February 2000. We synthesized
the data of January 2000 to ensure continuity, by averaging all the data of Januarys from
2001 to 2018. VOD derived from passive microwave remote sensing observations was
used for comparative analysis with the abnormally low resilience of the forest. This is a
dimensionless quantity, ranging from 0 to 3, and had the capacity to characterize vegetation
water content and aboveground biomass [14]. The daily VOD data with a spatial resolution
of 0.25◦ were derived from the Advanced Microwave Scanning Radiometer for Earth Ob-
serving System (AMSR-E) onboard the Aqua satellite, using the Land Parameter Retrieval

https://lpdaac.usgs.gov/products/mod13a3v006/
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Model (LPRM) algorithm (https://hydro1.gesdisc.eosdis.nasa.gov/data/, accessed date:
10 May 2021) [15]. VOD data has been released since 2002. There is a gap from October
2011 to July 2012, between a failure in the AMSR-E sensor and the launch of AMSR-2.
VOD from the AMSR-E sensor and AMSR-2 is defective, due to an incomplete matching of
accuracy and scale. In order to ensure the coherence and consistency of data, the datasets
in this study were selected from June 2002 to September 2011. The daily datasets were
averaged into monthly products, aiming to match the temporal resolution with vegetation
indices. Besides, the statistics of the monthly anomalies can reflect directly variations of
VOD associated with extreme climate events.

2.2.2. Climate Data

The meteorological data selected in our study included monthly and daily air tempera-
ture, precipitation, and downward shortwave radiation from 2000 to 2018. These data were
gridded reanalysis datasets, at a spatial resolution of 0.1◦ developed by the Hydrometeoro-
logical Research Group in the Institute of Tibetan Plateau Research, Chinese Academy of
Sciences [16,17], and were obtained from the China Meteorological Forcing Dataset (CFMD)
(http://data.tpdc.ac.cn/, accessed date: 12 January 2021). Here, these meteorological
data, including air temperature, precipitation and downward shortwave radiation, were
resampled by the bilinear interpolation method to 1 km, for achieving consistent spatial
resolution with MODIS vegetation indices. Besides, the multiple-year daily average values
of these meteorological data from 2000 to 2018, along with the monthly climate data and
vegetation indices, were used as inputs of the Bayesian dynamic linear model to detect the
reduced resilience of the forest. Meanwhile, the monthly temperature and precipitation
were used for calculating the standardized precipitation evapotranspiration index (SPEI),
which were used to identify the drought events in Southwest China.

2.2.3. Drought Metrics

The monthly SPEI in this research, with 1 km spatial resolution, was calculated to
determine the spatio-temporal extent and severity of the drought events. These gridded
SPEI datasets are standardized variables, relative to the long-term climatic balance. They
are developed based on the difference between precipitation and potential evapotran-
spiration [18,19]. Therefore, SPEI is an ideal measurement of drought by the impact of
precipitation and temperature. SPEI could represent the cumulative water status in the
past 1–48 months, and it is suitable for characterizing diverse types of drought events [20].
In this study, the SPEI rates over the preceding 3 months (abbreviated as SPEI3) were used
to identify drought events during the study period; they have been proven to consistently
capture short-term changes in soil moisture conditions [6,21].

2.2.4. Forest Types Map

In this study, natural forest and afforestation were obtained from the dataset of
Hansen Global Forest Change V1.8 (https://earthenginepartners.appspot.com/science-20
13-global-forest, accessed date: 28 November 2021) [22]. Natural forest was extracted from
the tree cover in 2000 with a threshold of a 20% canopy closure for all vegetation taller than
5 m in height. The afforestation was defined as aggregated gain from 2000 to 2012. The
forest distributions, at a spatial resolution of 1 km, were extracted from China land use and
land cover change database (CNLUCC, https://www.resdc.cn/, accessed date: 20 June
2021) to take into consideration the land cover changes during the study period. All the
spatial and temporal resolutions and source information of the datasets used in this study
are listed in Table 1. The bilinear interpolation was used to resample the spatial resolution
of all other data to be consistent with MODIS products.

https://hydro1.gesdisc.eosdis.nasa.gov/data/
http://data.tpdc.ac.cn/
https://earthenginepartners.appspot.com/science-2013-global-forest
https://earthenginepartners.appspot.com/science-2013-global-forest
https://www.resdc.cn/
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Table 1. Spatial and temporal resolutions, and sources of datasets.

Product Spatial Resolution Temporal Resolution Source

MODIS NDVI 1 km Monthly
https:

//lpdaac.usgs.gov/products/mod13a3v006/,
accessed date: 18 February 2021

MODIS EVI 1 km Monthly
https:

//lpdaac.usgs.gov/products/mod13a3v006/,
accessed date: 18 February 2021

LPRM VOD 0.25◦ Daily https://hydro1.gesdisc.eosdis.nasa.gov/data/,
accessed date: 10 May 2021

Air temperature 0.1◦ Monthly and daily CFMD (http://data.tpdc.ac.cn/)
accessed date: 12 January 2021

Precipitation 0.1◦ Monthly and daily CFMD (http://data.tpdc.ac.cn/)
accessed date: 12 January 2021

Shortwave radiation 0.1◦ Monthly and daily CFMD (http://data.tpdc.ac.cn/)
accessed date: 12 January 2021

SPEI 0.1◦ Monthly
Derived from the method proposed by

Vicente-Serrano [18] and using the monthly air
temperature and precipitation above

Natural forest 30 m Single
https://earthenginepartners.appspot.com/

science-2013-global-forest/, accessed date: 28
November 2021

Afforestation 30 m Single
https://earthenginepartners.appspot.com/

science-2013-global-forest/, accessed date: 28
November 2021

Forest distributions 1 km Four periods CNLUCC (https://www.resdc.cn/)
accessed date: 20 June 2021

2.3. Methods
2.3.1. Bayesian Dynamic Linear Model

The Bayesian dynamic linear model (BDLM) in this study was used to track the
high autocorrelation that represents the ALR of forests. Under ideal conditions, the forest
will experience normal growth, development and decline during one entire year, showing
seasonal fluctuations. However, when subjected to extreme weather events such as drought,
the forest will suffer abnormally slow growth, decline or even death. When resilience is
reduced as approaching the transition point, one indicator of ALR is the critical slowing
down (another indicator is the basin of attraction shrinks) under drought [23]. This critical
slowing down is characterized by a high autocorrelation; this means the state at the next
observation being highly similar that of the previous moment. Autocorrelation is regarded
as the simplest way to measure the critical slowing down, because the rise in autocorrelation
at lag-1 means that the state of the forest ecosystem becomes increasingly alike in successive
observations [24]. Similar to existing research [25,26], the Kalman filter is used by BDLM
to estimate time-variant autocorrelation. Then, ALR serves as a macroscopic measure
of the impaired physiological functions of the ecosystem due to extreme drought stress.
This model has been successfully used to predict the reduced resilience leading to forest
mortality in California [7]. BDLM is composed of two equations, as follows [7]:

yt = FT
t θt + vt, (1)

θt = Gθt−1 + wt, (2)

where yt as the observed variable represents the NDVI/EVI anomaly (the observed subtract-
ing the long-term mean) from 2000 to 2018 for each pixel at a time, t. Ft is a p-dimensional
array of regressors array or initial constants at the time, t, and includes the lag-1 NDVI/EVI
and climate variables which calculate the anomaly within 1-month intervals to remove
seasonality. θt as a p-dimensional state array contains the coefficients which represent
the influence of sensitivity to climatic conditions, seasonality, local mean and trend on

https://lpdaac.usgs.gov/products/mod13a3v006/
https://lpdaac.usgs.gov/products/mod13a3v006/
https://lpdaac.usgs.gov/products/mod13a3v006/
https://lpdaac.usgs.gov/products/mod13a3v006/
https://hydro1.gesdisc.eosdis.nasa.gov/data/
http://data.tpdc.ac.cn/
http://data.tpdc.ac.cn/
http://data.tpdc.ac.cn/
https://earthenginepartners.appspot.com/science-2013-global-forest/
https://earthenginepartners.appspot.com/science-2013-global-forest/
https://earthenginepartners.appspot.com/science-2013-global-forest/
https://earthenginepartners.appspot.com/science-2013-global-forest/
https://www.resdc.cn/
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the observable at the time, t, and the observed variable at the last step (yt−1). vt, as the
observation noise follows a Gaussian distribution with zero mean; G, as a known p × p
state evolution matrix, is 1 or 2 harmonic components with 1 year or half year adopted
in this study, and is defined to be unchanging. wt, as the state evolution noise follows a
multivariate Gaussian distribution with mean zero at time, t, and is separate from vt. Using
forward filtering at each time, t [27,28], by associating the prior information (y0, y1, . . . ,
yt−1), the posterior distribution of θt was estimated. It was likely from currently observed
variable of yt to lead to a time-variant posterior distribution of θt. It is worth noting that
the temporal variation of the item in θt quantifies the correlations between yt and yt−1. The
item in θt, corresponding to yt−1, is the autocorrelation which is defined as a time-variant
measurement of resilience (further details of this model can be obtained from [7]). When
the forest ecosystem is near the transition point, it could turn to critical slowing down as an
indicator of ALR. The ALR can be characterized by a high autocorrelation, which means
that the state at the next observation is highly like the one at the previous moment. In this
study, using the corresponding climate data and BDLM, the time-variant autocorrelation
of NDVI/EVI was estimated at each pixel in all forested areas of Southwest China. A
probability distribution of autocorrelation was acquired from the BDLM for each time
interval from 2000 to 2018.

There is an example application of the BDLM using NDVI data at a pixel in Southwest
China (Figure 2). This pixel is at the location (105.293◦ E, 28.433◦ N) and observed 67%
tree coverage in 2000. ALR, showing the high autocorrelation of the NDVI time series,
had been detected for a long period of time during the droughts (Figure 2b). The ALR
was identified in the case of the mean autocorrelation (blue line) exceeding the threshold
(grey dashed line), exceeding zero, and lasting for at least for 3 months. The threshold was
calculated as the long-term average value of the upper bound (the 80th percentile) of the
indetermination range (not including a four-year prewarming period) and was unchanging,
providing a measurement for establishing the ALR anomaly range. Abnormally low NDVI
(ALN) (and the same for abnormally low EVI (ALE)) was defined as the circumstance of
NDVI/EVI values being below the threshold, and lasting for at least the next 3 months.
The threshold is calculated as the value lower than 20% of all observed NDVI for each pixel.
The sensitivity analysis with different thresholds suggests that the selected thresholds here
are reliable [7]. ALN that may represent the drop in greenness was detected in 2006, 2012
and 2014 (graphed as red dots in Figure 2b) when the monthly precipitation was lower
than that of the previous year (Figure 2a). ALR was detected more than ALN between 2008
and 2014 (graphed as red triangles in Figure 2c). For instance, before ALN was detected
in March 2014, ALR was detected much earlier in May 2013, lasting for about 6 months.
Moreover, ALR, as a typical feature of the critical slowing down of the forest ecosystem,
was detected at multiple points during the period of frequent droughts from 2008 to 2013.

Theoretically, high autocorrelation could not necessarily assure a critical upcoming
transition and the emergence of slowing down [29], which means that it is necessary, but not
sufficient. However, to further inspect the typicality of ALR for the critical slowing down of
the forest ecosystem, a separate analysis within the forest dynamics with two stable states,
representing an existing forest cover and a non-forest cover state, was conducted [7,24].
The analysis showed that the basin of attraction shriveled, and the forest ecosystem slowed
down during the period when an ALR was identified. The two shifts represent the reduced
resilience of the forest, and indicate a higher possibility of a transition to a no-forest cover
state under random perturbations. This analysis additionally supports the use of BDLM to
detect the reduced resilience of forest ecosystems. This means that ALR could be identified
due to climate stress, by tracking the high autocorrelation of vegetation indices.
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Figure 2. An example of ALR detected using the Bayesian dynamic linear model. (a) Time series
changes of monthly precipitation at a pixel; (b) time series changes of NDVI at a pixel; (c) the time-
variant autocorrelation and the ALR estimated by the BDLM at a pixel. The ALR were identified in
the case of the mean autocorrelation (blue line) exceeding the threshold (grey dashed line) and the
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the upper bound of the indetermination range (not including a four-year prewarming period). The
orange time range represents the droughts by the SPEI. Each tick on the x axis represents the January
of each year.

The BDLM was used for each NDVI and EVI pixel in Southwest China to detect
ALR. The detected ALRNDVI or ALREVI were compared with ALN or ALE in spatio-
temporal variations since July 2004. ALN and ALE may be associated with forest slowing
growth, decline, or even death [30,31], and have the same spatio-temporal resolutions
as ALR. A comparison of the ALR, ALN and ALE were also performed with VOD in
temporal variations, because VOD can characterize aboveground biomass and vegetation
water content.

2.3.2. Identification of the Drought Event

A monthly SPEI3 (the time scale of the SPEI is 3 months) was adopted in this research
to capture the characteristics of drought events, including their severity and the spatio-
temporal extent, from 2000 to 2018. Furthermore, the standardized anomaly of SPEI3
(SASPEI3 ) was computed to characterize the deviation from the multi-year average of SPEI3
during the whole period [5]. For each pixel, the SASPEI3 was computed as follows:

SASPEI3 =
SPEIi,t

3 − SPEIi,t
3

δ
(

SPEIi,t
3

) (t = 1, 2, · · · , 12), (3)
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where SPEIi,t
3 is the value, SPEIi,t

3 is the mean value and δ
(

SPEIi,t
3

)
is the standard devia-

tion of SPEI3 at the i th pixel for the t th month from 2000 to 2018. Note that SASPEI3 is a
dimensionless value, and it is characterized as a drought with SASPEI3 below the threshold
of −0.5 [5].

A flow chart of the data processing and results generation can be seen in Figure 3.
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3. Results
3.1. Fraction of the Area Showing the ALR Dynamics

Abnormally low resilience and abnormally low vegetation indices of the forest can
indicate a drop in the vitality and greenness of the forest. The fraction of forest areas
with abnormally low resilience and abnormally low vegetation index values were counted
in Southwest China. The forest appeared to have a large proportion of abnormally low
resilience areas, including abnormally low values about 6 months after two extreme drought
events (the 2009/2010 winter–spring drought, and the 2011 summer–autumn drought)
(Figure 4). This hysteresis may be that the forest has a certain resistance to drought, and
can still maintain a short period of growth and greenness. For the forest area in Southwest
China, the fraction of the area showing the abnormally low resilience and abnormally low
values of EVI and NDVI exhibited little increases in May 2010 (Figure 4b,c). More obviously,
the fraction of the area with detected ALREVI and ALE rapidly increased to above 30%, and
above 20%, respectively, in March 2012 (Figure 4b). The fractions of ALRNDVI and ALN
areas showed similar temporal variations, which increased to a high value of around 30%
and 20%, respectively, in March 2012 (Figure 4c). During this period, the SPEI captured
two major extreme droughts, including the 2009/2010 winter–spring drought and the 2011
summer–autumn drought, with below-average 36% and 31% precipitation, respectively
(Figure 4a, SA of SPEI < −0.5). Notably, the average SPEI values during these two drought
events dropped to less than −1.0 over the whole forest area. However, 6 months after
the droughts, the forest showed a wide distribution of low resilience and abnormally
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low vegetation values, indicating that the impact of the drought events on forest growth
and development had a lag effect. As for the gradual increase in ALRNDVI area before
the severe 2009/2010 winter–spring drought, this may have been caused by the frequent
occurrence of less-severe droughts in Southwest China during 2008 to 2009. Moreover, the
computed ALREVI or ALRNDVI area proportions were generally higher than the ALE or
ALN areas, indicating that abnormally low resilience was more sensitive than abnormally
low vegetation indices values. The areas exhibiting ALRNDVI or ALN followed similar
temporal trajectories to ALREVI or ALE during the drought events frequently occurring
from 2009 to 2013 in Southwest China. Such obvious temporal correspondence highlights
the possibility of using abnormally low resilience and abnormally low vegetation indices
to detect temporal variations in forest slowness recovery stressed by drought events. One
thing to note is that EVI could be more sensitive than NDVI in reflecting forest growth
information, but the above results do not reflect this characteristic, perhaps because of the
monthly vegetation indices with coarse time resolution.
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Furthermore, temporal comparative analysis was used for low resilience, low vege-
tation index values, and the anomaly changes of VOD representing vegetation water con-
tent and aboveground biomass. The fraction of the areas showing ALE, ALN, ALREVI and 
ALRNDVI exhibited small increases in May 2010; at the same time, the VOD anomaly 

Figure 4. Temporal series of drought severity, the areas of ALE and ALREVI, the area of ALN and
ALRNDVI, and VOD anomaly. (a) The monthly standardized anomaly of SPEI3 for the Southwest
China; (b) proportion of the area showing ALE (red) and ALREVI (blue); (c) proportion of the area
showing ALN (dark red) and ALRNDVI (dark blue); (d) the monthly VOD anomaly for Southwest
China. The blue vertical dotted line represents the most severe moment of the two drought events
and the red vertical dotted line represents the moment of the sharp increase in ALE, ALREVI, ALN
and ALRNDVI. Each tick on the x axis represents January of each year.

Furthermore, temporal comparative analysis was used for low resilience, low veg-
etation index values, and the anomaly changes of VOD representing vegetation water
content and aboveground biomass. The fraction of the areas showing ALE, ALN, ALREVI
and ALRNDVI exhibited small increases in May 2010; at the same time, the VOD anomaly
showed a negative value, meaning the aboveground biomass and vegetation water content
were in a declining state (Figure 4d). Such a match indicates that ALR, in combination with
the abnormally low vegetation index values, can detect the abnormally low recovery rate,
and macroscopically explore and measure the impaired physiological functions of a forest
after drought.

3.2. Spatial Patterns of the ALR Variations

The previous statistics can only exhibit inter-annual dynamics, but not the spatial con-
sistency among drought, ALE, ALN, ALREVI and ALRNDVI. Therefore, we also evaluated
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the spatial patterns of ALE, ALN, ALREVI and ALRNDVI along with the drought severity
distributions. The 2009/2010 drought event (SPEI < −0.5) hit most of the Southwest China
area; it was especially severe in eastern Yunnan, nearly the entirety of Guizhou, southern
Sichuan and western Guangxi (Figure 5f,g). About 6 months later (as seen from Figure 4),
the forest showed widely distributed ALE, ALN, ALREVI and ALRNDVI areas in southern
Sichuan, most of Yunnan and eastern Guangxi, as well as scattered areas in Guizhou and
Chongqing in 2010 (Figure 5a–d). ALE, ALN, ALREVI and ALRNDVI can be captured in
most areas where drought occurred; however, severe drought occurred in western Guizhou
and ALE and ALN hardly appear in this area (Figure 5a,b). This may be due to the forest in
this region being more drought-resistant, and having deeper and stronger roots that can
easily draw water from deeper soil layers [32]. Notably, a large area of ALE signal appeared
in northeastern Guangxi (Figure 5a), where the drought was not particularly serious. The
reason for this phenomenon may be the large-scale planted forest and harvest that occurred
in Guangxi province in 2010 [1].
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Figure 5. Spatial pattern of the ALE in 2010 (a), ALN in 2010 (b), ALREVI in 2010 (c), ALRNDVI in 2010
(d), the 2009 autumn drought (e), the 2009 winter drought (f), the 2010 spring drought (g) and the
2010 summer drought (h) across Southwest China. The abbreviation: CQ (Chongqing), SC (Sichuan),
GZ (Guizhou), YN (Yunnan) and GX (Guangxi).

The 2011 drought event also attacked Southwest China severely, with the borders of
Yunnan, Guizhou, Sichuan and Chongqing being particularly affected in the summer and
autumn (Figure 6f,g). Most areas of Guangxi, especially northeastern Guangxi, suffered
the drought event from spring to autumn (Figure 6e–g). Around 6 months later, ALE and
ALN followed a similar spatial distribution with the 2011 drought, which was mainly
concentrated on Guangxi, the junction of Yunnan, Guizhou, Sichuan and Chongqing,
and the Hengduan Mountains in central Sichuan (Figure 6a,b). There are existing karst
landforms in Central and North Sichuan (Figure 1), which make it difficult to contain water
in the soil [33]. Even if the SPEI3 of Central and North Sichuan were not very low, the
forest here was still facing abnormally slow growth, decline, and even death, due to the
poor water retention of the karst landforms. ALREVI and ALRNDVI were mostly detected
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in Guangxi and the Hengduan Mountains in central Sichuan (Figure 6c,d). They were
relatively sparsely distributed in Yunnan, Guizhou and Chongqing, perhaps because of the
stronger drought resistance of the forest. The signals of ALE, ALN, ALREVI and ALRNDVI,
whether calculated by NDVI or EVI, can be captured in areas affected by the 2011 drought.
Overall, the spatial patterns of these three indicators have impressive spatial consistency,
whether in 2012 or in 2010.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 17 
 

 

the drought event from spring to autumn (Figure 6e–g). Around 6 months later, ALE and 
ALN followed a similar spatial distribution with the 2011 drought, which was mainly 
concentrated on Guangxi, the junction of Yunnan, Guizhou, Sichuan and Chongqing, and 
the Hengduan Mountains in central Sichuan (Figure 6a,b). There are existing karst land-
forms in Central and North Sichuan (Figure 1), which make it difficult to contain water in 
the soil [33]. Even if the SPEIs of Central and North Sichuan were not very low, the forest 
here was still facing abnormally slow growth, decline, and even death, due to the poor 
water retention of the karst landforms. ALREVI and ALRNDVI were mostly detected in 
Guangxi and the Hengduan Mountains in central Sichuan (Figure 6c,d). They were rela-
tively sparsely distributed in Yunnan, Guizhou and Chongqing, perhaps because of the 
stronger drought resistance of the forest. The signals of ALE, ALN, ALREVI and ALRNDVI, 
whether calculated by NDVI or EVI, can be captured in areas affected by the 2011 drought. 
Overall, the spatial patterns of these three indicators have impressive spatial consistency, 
whether in 2012 or in 2010. 

 
Figure 6. Spatial pattern of the ALE in 2012 (a), ALN in 2012 (b), ALREVI in 2012 (c), ALRNDVI in 2012 
(d), the 2011 spring drought (e), the 2011 summer drought (f), the 2011 autumn drought (g) and the 
2011 winter drought (h) across Southwest China. The abbreviation: CQ (Chongqing), SC (Sichuan), 
GZ (Guizhou), YN (Yunnan) and GX (Guangxi). 

3.3. Vulnerability of Natural Forest and Afforestation Forest 
The above results show that abnormally low resilience and abnormally low vegeta-

tion indices in Southwest China appeared in large areas of the forest, approximately 6 
months after the drought. Furthermore, we found that the response to drought was dif-
ferent from the natural forest and afforestation areas through classification statistics. Af-
forestation-type land, associated with an area rapidly varied from non-forest to forest, has 
increased by about 3.4% (about 7820 km2) in past years, due to the implementation of the 
ecological afforestation and reforestation projects [1,2]. The results showed that most of 
the recovering forest and afforestation areas were in Southwest China: about 77.8% ex-
isted in Guangxi from 2000 to 2012. For entire forest area in Guangxi, it is worth noting 
that the afforestation area accounted for about 3.5% and natural forest accounted for about 
96.5% in 2012, as counted from Hansen Global Forest Change V1.8. The forest areas with 

Figure 6. Spatial pattern of the ALE in 2012 (a), ALN in 2012 (b), ALREVI in 2012 (c), ALRNDVI in 2012
(d), the 2011 spring drought (e), the 2011 summer drought (f), the 2011 autumn drought (g) and the
2011 winter drought (h) across Southwest China. The abbreviation: CQ (Chongqing), SC (Sichuan),
GZ (Guizhou), YN (Yunnan) and GX (Guangxi).

3.3. Vulnerability of Natural Forest and Afforestation Forest

The above results show that abnormally low resilience and abnormally low vegetation
indices in Southwest China appeared in large areas of the forest, approximately 6 months
after the drought. Furthermore, we found that the response to drought was different from
the natural forest and afforestation areas through classification statistics. Afforestation-type
land, associated with an area rapidly varied from non-forest to forest, has increased by
about 3.4% (about 7820 km2) in past years, due to the implementation of the ecological
afforestation and reforestation projects [1,2]. The results showed that most of the recovering
forest and afforestation areas were in Southwest China: about 77.8% existed in Guangxi
from 2000 to 2012. For entire forest area in Guangxi, it is worth noting that the afforestation
area accounted for about 3.5% and natural forest accounted for about 96.5% in 2012, as
counted from Hansen Global Forest Change V1.8. The forest areas with ALE, ALN, ALREVI
and ALRNDVI were counted separately. It was shown that the proportion of increased
afforestation areas with ALE, ALN, ALREVI and ALRNDVI were larger than those of natural
forest in 2012 (Figure 7c). ALREVI and ALE of afforestation calculated by EVI accounted
for about 55.0% and about 55.8%, respectively, whereas natural forest accounted for 50.7%,
and 50.3 %. Furthermore, it also showed similar results when computed by NDVI data:
ALRNDVI and ALN of afforestation accounted for about 56.0% and about 67.1%, respectively,
whereas natural forest accounted for 49.6% and 64.7 %. Moreover, the spatial distribution of
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afforestation, natural forest and ALE—which were different from afforestation and natural
forest in Guangxi—are shown in Figure 7a. ALE of natural forest mainly appeared in
northeastern Guangxi (Figure 7a), where a severe drought occurred during summer and
autumn in 2011 (Figure 6f,g). However, afforestation appeared as widely distributed ALE,
which was concentrated on central Guangxi (Figure 7a), even though they only experienced
slight drought during summer and autumn in 2011 (Figure 6f,g).
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and natural forest.

4. Discussion

Our results suggest that the forest’s response to drought is different for natural forest
and afforestation areas. This phenomenon is probably due to the different uptake strategies
of trees with diverse root depths disturbed by drought events [34,35]. Existing research has
shown that inferred water uptake depth is unrelated to seasonal leaf phenology patterns
(evergreen or deciduous) [36], and mean species height [37,38]. However, the mean trunk
basal diameter has the ability to provide a simple alternative measurement of deductive
water uptake depth across species [36], according to the size and depth of the roots, which
usually increase with the plant’s above-ground size [39]. In order to draw bedrock water or
groundwater, the roots need to penetrate the karst vadose zone in Southwest China. This is
generally an extremely slow course, which happens when the roots penetrate the cracks
in the weathered bedrock, or produce cracks on their own through root bioengineering.
The capability of roots to penetrate into bedrock is likely to increase with plant size and
age [40,41]. Therefore, the afforestation areas containing younger trees with smaller trunk
diameters likely have shallower root systems, at a depth of about 0–50 cm, whereas the
natural forest containing older trees with larger trunk diameters, have deeper root systems
at a depth of about 50–100 cm [42]. Shallow-root species with negative water potential
and shallower water-uptake strategies will face severe canopy defoliation, or even death,
when drought causes a shallow-soil water shortage. In contrast, tree species with deep
roots have a different water extraction strategy to resist drought conditions. Trees extracts
water mainly from shallow soils in the early stages of drought. As the drought continues
and worsens, trees will turn to draw from deep-water sources such as bedrock water or
groundwater. This deeper water uptake strategy ensures that they could survive with lower
canopy defoliation in drought conditions [43,44]. Accordingly, the afforestation areas with
shallower roots suffer severe canopy defoliation, or even death, with the widely distributed
ALE; this was seen in the slight drought during summer and autumn in 2011, while the
natural forest appeared to have relatively less distributed ALE under severer drought
conditions. These findings indicate that the afforestation areas were more susceptible
to drought than the natural forest, and this different water uptake strategy can partially
explain the incomplete spatial consistency of the low resilience, low vegetation index values
of the forest in drought.
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Moreover, the response to drought is different from ALE, ALN, ALREVI and ALRNDVI
in karst and non-karst areas through classification statistics. The karst landforms are mainly
distributed in Guizhou, eastern Yunnan, western Guangxi, central Sichuan and eastern
Chongqing (Figure 8a). The abnormally low development of forest indicated by ALE, ALN,
ALREVI and ALRNDV were detected over the karst landform areas in 2012 (Figure 6a–d).
The forest areas which appeared as signals of ALE, ALN, ALREVI and ALRNDVI were
counted separately. The results showed that the proportion of karst areas with ALE, ALN,
ALREVI and ALRNDVI was larger than that of non-karst areas in 2012 (Figure 8b). The
ALREVI and ALE of karst areas calculated by EVI accounted for about 44.9% and 46.9%
of the areas, respectively, whereas for non-karst areas these accounted for about 40.0%
and 36.0%. Furthermore, similar results were found when computed by NDVI data, for
which the ALRNDVI and ALN of the karst area accounted for about 43.2% and 56.1%,
respectively, whereas for the non-karst area this accounted for about 34.2% and 36.6%. The
karst landform areas are more susceptible to drought because of the difficulty in containing
water in the soil [6,36]. Strong evidence is provided for this by the larger proportions of
detected ALE, ALN, ALREVI and ALRNDVI in karst areas than in non-karst areas.
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The abbreviation: CQ (Chongqing), SC (Sichuan), GZ (Guizhou), YN (Yunnan) and GX (Guangxi).

The above content proves the ability of detected abnormally low resilience to macro-
scopically explore and reveal the impaired physiological functions of a forest hit by drought.
However, more indices or approaches are necessary to be applied and compared with the
results, and long-time series remote sensing data with higher accuracy are still urgent. It is
impossible to quantify forest resilience by a general index, formula or analysis method, as
this would be too generalized and vague [45,46]. Widely used forest resilience is related to
resistance (the ability of the ecosystem to persist in disturbances), recovery (the ability of
the ecosystem to restore its original state) and stability (the ability to maintain the same
structure and function) [46–49]. These methods were usually adopted to calculate the index
(fixed values) and determine high or low figures. However, the forest resilience in our
study regarded the recovery rate from a perturbed state, and was internally dominated
by forest physiological functions under drought conditions. Abnormally low resilience
means an abnormally low recovery rate, which may be represented by abnormally high
autocorrelation. The signals of reduced resilience (reduced recovery rate) in our study were
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dynamic, and can reflect the response to drought at each time interval. We did not detect
forest resilience by combining resistance and stability in this research. Besides, the accuracy
of threshold selection could be affected by the quality of the vegetation index products. The
accuracy of these optical products can also be impaired by cloud and rain, and uncertainties
are also caused by measurement errors and mixed signals of forest growth. As our research
is regards the large-scale monitoring of forest resilience using satellite-based remote sens-
ing data, we also ignored the impact of diverse species on the selection of the threshold.
There are also other indicators for assessing forest dynamics, such as tree-ring width mea-
surements [50–52]. In future research, it is necessary to comprehensively adopt different
methods and fuse different metrics to monitor the forest resilience under drought pressure,
which can better contribute to forest resource management with increasing climate change.

5. Conclusions

The BDLM was used to detect the reduced resilience of the forest in Southwest China,
and the ability to estimate the critical slowing down of forest recovery as a consequence
of drought was examined. Forest in Southwest China appeared to have large areas of
abnormally low resilience and abnormally low vegetation indices approximately 6 months
after the drought. Meanwhile, the distributions of abnormally low resilience and abnor-
mally low vegetation indices and drought events had good spatial consistency, whether
in 2010 or 2012. Moreover, we found that afforestation forest areas were more susceptible
to drought than natural forest, perhaps due to the different water uptake strategy with
diverse root systems. Furthermore, the trees over karst regions also yielded a higher sen-
sitivity to the changing climate. In the future, it will be necessary to further understand
the drought-introduced reduction in forest resilience by combining forest death data, field
measurements and finer-scaled satellite observations, because the reduction affected by
drought in forest resilience is closely related to forest ecosystem management, especially
considering the increasing extreme weather events in recent years.
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