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Abstract: Accurate specification of hurricane inner-core structure is critical to predicting the evolution
of a hurricane. However, observations over hurricane inner cores are generally lacking. Previous
studies have emphasized Tail Doppler radar (TDR) data assimilation to improve hurricane inner-core
representation. Recently, Doppler wind lidar (DWL) has been used as an observing system to sample
hurricane inner-core and environmental conditions. The NOAA P3 Hurricane Hunter aircraft has
DWL installed and can obtain wind data over a hurricane’s inner core when the aircraft passes
through the hurricane. In this study, we examine the impact of assimilating DWL winds and TDR
radial winds on the prediction of Hurricane Earl (2016) with the NCEP operational Hurricane Weather
Research and Forecasting (HWRF) system. A series of data assimilation experiments are conducted
with the Gridpoint Statistical Interpolation (GSI)-based ensemble-3DVAR hybrid system to identify
the best way to assimilate TDR and DWL data into the HWRF forecast system. The results show a
positive impact of DWL data on hurricane analysis and prediction. Compared with the assimilation
of u and v components, assimilation of DWL wind speed provides better hurricane track and intensity
forecasts. Proper choices of data thinning distances (e.g., 5 km horizontal thinning and 70 hPa vertical
thinning for DWL) can help achieve better analysis in terms of hurricane vortex representation
and forecasts. In the analysis and forecast cycles, the combined TDR and DWL assimilation (DWL
wind speed and TDR radial wind, along with other conventional data, e.g., NCEP Automated Data
Processing (ADP) data) offsets the downgrade analysis from the absence of DWL observations in
an analysis cycle and outperforms assimilation of a single type of data (either TDR or DWL) and
leads to improved forecasts of hurricane track, intensity, and structure. Overall, assimilation of DWL
observations has been beneficial for analysis and forecasts in most cases. The outcomes from this
study demonstrate the great potential of including DWL wind profiles in the operational HWRF
system for hurricane forecast improvement.

Keywords: Doppler wind lidar (DWL); tail Doppler radar (TDR); data assimilation; hurricanes;
numerical weather prediction

1. Introduction

Along with rapid coastal development and population growth, the United States has
become more vulnerable to the impact of hurricanes than at any time in the recent past [1,2].
Extreme examples in recent years are Hurricanes Katrina (2005), Sandy (2012), Harvey
(2017), and Ida (2021), which caused tremendous damage to society. Owing to the great
social and economic impact of hurricanes, accurate forecasting of hurricane track, intensity,
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and structure changes near and after landfall is of great importance for effectively warning
the public and reducing economic damage and loss of life.

Over the last decade, following the lead of the NOAA Hurricane Forecast and Im-
provement Project (HFIP), significant progress has been made toward improved operational
hurricane track and intensity forecasts [3–8]. Fundamentally, the complexity of predicting
hurricane landfalls is due mainly to inaccurate initial conditions and uncertainties in repre-
senting sub-grid scale processes in numerical weather prediction (NWP) models. Many
previous studies have shown that data assimilation, such as the assimilation of satellite,
Doppler radar, and surface observations, can have positive impacts on the prediction and
simulation of landfalling hurricanes [9–14].

Since observations are usually sparse over the ocean, the NOAA Hurricane Research
Division (HRD) has conducted aircraft missions to collect observational data to help with
operational analyses and forecasts. Over many years, the airborne NOAA P3 Hurri-
cane Hunter aircraft has measured hurricane inner-core structures using Tail Doppler
radar (TDR). Studies have shown that TDR data can significantly improve hurricane fore-
casts [15,16].

In addition to TDR, new observations such as wind profiles from Doppler wind lidar
(DWL) have been tested for operational purposes on the NOAA P3 Hurricane Hunter
aircraft since 2014. These DWL-measured wind data complement the existing P3 TDR in
that the DWL wind data are collected in rain-free and low-rain regions where TDR is limited
for wind observations [17]. The DWL wind data also complement dropsonde measurements
by significantly enlarging the sample size and spatial coverage of the boundary layer winds.
Moreover, they enable forecasters to determine real-time hurricane intensity because of the
measurement of near-surface winds. Recent studies [17–21] have demonstrated that the
assimilation of DWL wind profiles leads to improved forecasts of tropical cyclones and
mesoscale convective systems using research models. However, NOAA’s P3 DWL has not
yet been assimilated into operational hurricane forecast models such as HWRF until now.

In light of the hurricane forecast problems and available DWL observations addressed
above, this study examines the impact of assimilating DWL-observed hurricane inner-core
winds on the prediction of Hurricane Earl (2016) near its landfall with the NCEP operational
Hurricane Weather Research and Forecasting (HWRF) system (version 2020, referred to as
H220 hereafter). A series of data assimilation experiments are conducted with the Gridpoint
Statistical Interpolation (GSI)-based ensemble-3DVAR hybrid (3DEnVar) system. Different
data thinning configurations for the assimilation of wind speed, direction, and components
are compared. Additionally, numerical experiments that assimilate DWL and TDR are
also explored to combine these two data types in the data assimilation system for optimal
hurricane analyses and forecasts.

The model, data assimilation system, and observations are described in Section 2.
Sections 3 and 4 provide the data assimilation experiment results and discussions, respec-
tively. A conclusion is given in Section 4.

2. Materials and Methods
2.1. HWRF Model and Data Assimilation System

HWRF is the current NCEP/NOAA operational regional hurricane model. In this
study. we use HWRF version H220, which is equivalent to the operational version updated
in late 2020. The HWRF model is composed of the WRF (Weather Research and Forecasting)
non-hydrostatic mesoscale model on an E-grid dynamic core [22], the Message Passing In-
terface Princeton Ocean Model for Tropical Cyclones (MPIPOM-TC) [23], the NCEP coupler,
and the GSI assimilation platform [24]. The H220 version of the HWRF model domains
is configured with a parent domain (resolution of ~13.5 km) and two storm-following
moving nested domains (resolutions of ~4.5 and ~1.5 km). The Ferrier–Aligo microphysics
scheme [25,26], the simplified Arakawa–Schubert (SAS) deep convection scheme [27,28],
the Geophysical Fluid Dynamics Laboratory (GFDL) longwave and shortwave radiation
schemes [29,30], the GFDL surface layer scheme [31,32], the Noah land surface model [33],
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and the hybrid NCEP GFS PBL parameterization scheme [34–37] are employed in the
atmospheric model in the HWRF system for TC applications.

The GSI-based ensemble-3DVAR (3DEnVar), namely, a 3-dimensional ensemble-
variational hybrid system, is used as the data assimilation system for HWRF forecasts. In
this study, we use the GSI 3DEnVAR system to assimilate DWL and TDR data along with
all the conventional data (e.g., NCEP ADP) that are assimilated in the operational HWRF
system. Following the operational HWRF initialization procedure, a vortex relocation and
intensity correction were used before the data assimilation. The background error covari-
ance of hybrid 3DEnVar is composed of a combination of flow-dependent background
error covariances from the NCEP global forecast system (GFS), 80 ensemble members
within the global ensemble Kalman filter data assimilation system, and a static background
error covariance is obtained using the National Meteorological Center (NMC) method.
The current weight applied to the static background error covariance and the ensemble
covariance is 0.2 and 0.8, respectively, which offers more weight to the flow-dependent
background error covariance (See [38] for details).

2.2. DWL and TDR Observation Data

As an experimental instrument, the DWL aboard the NOAA P3 aircraft is a coherent
system that depends on atmospheric aerosols for its return signal. The DWL measurements
can be used to derive the wind profiles associated with TCs from the flight level down to
the ocean surface. The DWL-retrieved wind profiles have a horizontal resolution of about
20 m [17]. Besides DWL wind profiles, TDR has also been aboard the NOAA P3 aircraft
since 1993 and measures radial wind when the aircraft crosses TCs.

Before Hurricane Earl’s landfall, there were intense observing periods to sample
the wind fields in Earl’s inner-core region with both DWL and TDR. Figure 1 shows the
horizontal (Figure 1a–g) and vertical (Figure 1h) distributions of DWL and TDR data
for Hurricane Earl from 1200 UTC 2 to 00 UTC 4 August 2016. The data are divided
according to the assimilation time, with a time window of ±3 h. Despite the omission of
observations aligning at the flight level, there are DWL samples of the wind profile from
a height of approximately 7 km down to the surface. In comparison, TDR can observe
radial wind as high as 14 km. Both TDR and DWL measure hurricane wind information in
the hurricane’s inner-core region. While TDR is capable of measuring radial winds over
cloud and precipitation regions, DWL can sample wind profiles only in clear-sky regions.
Considering the lack of TC inner-core wind observations, these DWL and TDR wind data
could benefit TC analysis and forecasts. Specifically, we can assimilate the DWL and TDR
wind data into the numerical weather prediction model.
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Figure 1. The (a–g) horizontal and (h) vertical distributions of DWL and TDR data for Hurricane Earl
at (a) 12 UTC 2, (b) 18 UTC 2, (c) 00 UTC 3, (d) 06 UTC 3, (e) 12 UTC 3, (f) 18 UTC 3, and (g) 00 UTC
4 August 2016.

3. Results
3.1. Configurations of Data Assimilation Experiments

With TDR and DWL data available simultaneously for Hurricane Earl (2016), we
examine the respective and combined impacts of assimilating DWL and TDR on forecasts
of Earl. Conventional observations (e.g., ADP data) available for NCEP operational analyses
and forecasts were assimilated into HWRF analysis and forecast cycles for all experiments.
We first conducted a 24 h spin-up of the HWRF analysis and forecast cycles with the
assimilation of ADP data from 12 UTC 1 to 12 UTC 2 August 2016. Then, the DWL
and/or TDR data, when available, were assimilated along with the ADP data into the
HWRF model analysis and forecast cycles from 12 UTC 2 to 00 UTC 4 August 2016. The
Control experiment assimilates only NCEP ADP data. To examine the relative impact of
different wind information from DWL and to explore the best way to assimilate DWL data,
the impacts of assimilating DWL wind speed and wind components on the analysis and
forecasts are compared.

Meanwhile, previous studies with high-density information from observations have
indicated that the assimilation of these data into numerical forecast models can lead to a
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degraded analysis [39–41]. Therefore, we also evaluate different data thinning distances to
identify the best configuration for the assimilation of DWL and TDR data. The horizontal
thinning distances for DWL data varied from 2 (which is close to the finest model domain
grid spacing) to 10 km (which only keeps the minimum amount of data for data assimilation
in the GSI system). Similarly, the vertical thinning distances for DWL data varied from 10
to 100 hPa. There is a default horizontal thinning distance (9 km) for TDR data in the GSI
for the HWRF model. In this study, we also test the horizontal thinning distance for TDR
data varying from 5 to 50 km. Moreover, the gross error parameter, which is the ratio of O-B
(observations minus background) and observation errors and reflects the threshold of data
rejection in the GSI system, is tested in the multiple-data-type assimilation experiments
with the best single data type assimilation configurations. The gross error varies from 2, the
default value, to 0.5, which keeps a minimum number of observations for data assimilation.
The configurations of the data assimilation experiments are shown in Table 1.

Table 1. Configurations for all assimilation experiments. “ADP” represents ADP conventional data.
DWL observed wind speed u and v components is represented by “u” and “v” in the table. The data
assimilated in the experiment is marked with “X” in the table.

Experiments
DWL

ADP
TDR

u v Wind
Speed

Horizontal Thinning
Distance

Vertical Thinning
Distance

Radial
Wind

Horizontal
Thinning

Gross
Error

Control X
LUV X X X

LUVH2V10 X X 2 km 10 hPa X
LUVH5V70 X X 5 km 70 hPa X
LSH5V10 X 5 km 10 hPa X
LSH5V50 X 5 km 50 hPa X
LSH5V60 X 5 km 60 hPa X
LSH5V70 X 5 km 70 hPa X
LSH5V80 X 5 km 80 hPa X

LSH5V100 X 5 km 100 hPa X
LSH2V70 X 2 km 70 hPa X

LSH10V70 X 10 km 70 hPa X
RH5 X X 5 km 2.0
RH9 X X 9 km 2.0
RH20 X X 20 km 2.0
RH50 X X 50 km 2.0

LSH5V70 + RH9 X 5 km 70 hPa X X 9 km 2.0
LSH5V70 + RH9G10 X 5 km 70 hPa X X 9 km 1.0
LSH5V70 + RH9G08 X 5 km 70 hPa X X 9 km 0.8
LSH5V70 + RH9G05 X 5 km 70 hPa X X 9 km 0.5

3.2. Impacts of DWL on Hurricane Analysis and Forecast
3.2.1. Wind Speed vs. Wind Components

Figure 2 shows the forecast track from the DWL wind speed and wind component
assimilation experiments at 12 UTC 2 (Figure 2a), 18 UTC 2 (Figure 2b), and 00 UTC 3
August 2016 (Figure 2c). Table 2 shows the mean 36 h forecast errors from the experiments.
With different data thinning strategies in the assimilation of u and v components of DWL
data, LUV, LUVH2V10, and LUVH5V70 (see details about the names of experiments in
Table 1) resulting in a track forecast with a significant departure from the best track, with
mean 36 h track errors of 76.0 km for LUV, 81.1 km for LUVH2V10, and 72.4 km for
LUVH5V70. In contrast, the Control has a 36 h track error of 45.1 km. LSH5V70 produces
a slightly better track forecast with a 36 h track error of 40.6 km. The poor TC track
from LUV, LUVH2V10, and LUVH5V70 indicate poor storm simulation with DWL wind
component assimilation.
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Table 2. Mean 36 h forecast errors from lidar wind speed and wind component data assimila-
tion experiments.

36 h Errors Control LUV LUVH2V10 LUVH5V70 LSH5V70

Track errors (km) 45.1 76.0 81.1 72.4 40.6
MSW errors (knot) −10.2 −11.9 −7.9 −10.0 −1.9

SLP errors (hPa) 7.2 10.4 6.0 8.1 2.2

To compare the hurricane analyses and forecasts in the experiments with the assimila-
tion of DWL u and v components and the assimilation of the wind speed, Figure 3 shows
the wind analysis after data assimilation at 12 UTC 2 August 2016. All of the simulations
that assimilate lidar u and v components enhance the northwest part of Hurricane Earl,
destroying the vortex structure and resulting in a poor simulation. In contrast, the simu-
lation that assimilates only lidar wind speed generates wind structure and maintains the
organized vortex, similar to Control. These results indicated that the assimilation of DWL
u and v components induces significant disturbances to the inner-core wind structure, thus
negatively influencing the inner-core vortex structure, which harms hurricane forecast.
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The forecast maximum surface wind (MSW) and minimum sea-level pressure (SLP)
from the DWL wind speed and wind component data assimilation experiments against
Control and best track are shown in Figure 4. Similar to the track forecast, the assimilation
of DWL wind components (LUV, LUVH2V10, and LUVH5V70) provide a poor intensity
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forecast, especially at 12 UTC 2 with MSW of less than 40 kt and SLP greater than 1000 hPa.
The results imply a degraded simulation of Hurricane Earl with DWL wind component
assimilation. Even when data thinning is applied in LUVH2V10 and LUVH5V70, the
strong negative impact (shown in Table 2) from the assimilation of u and v components is
evident. Assimilation of only DWL wind speed, i.e., LSH5V70, often positively impacts
the TC simulation, improving the track and intensity forecast against Control, while the
DWL u and v component assimilation usually provides a poor TC simulation. Considering
the ±3 h time window for DWL data assimilation, the observed data are usually not
measured at the same time as the data are assimilated (Figure 1h). Therefore, the wind
direction information from the u and v components, even with a large data thinning
distance, often contradicts the initial TC vortex in the HWRF model and finally leads to a
poor TC simulation (Figure 3b–d). Assimilating only wind speed information can remove
the time window impact and add the wind profile information to the model to improve the
TC simulation. The complicated influences from vector winds and wind speeds imply the
complex interactions between HWRF vortex initialization and data assimilation [16].
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and (e,f) 00 UTC 3 August 2016.
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3.2.2. The Impact of Data Thinning

To further examine the best configuration of DWL wind speed assimilation, Figure 5
compares the forecast tracks of Hurricane Earl from different data thinning experiments
and Control at 12 UTC 2 August 2016. Table 3 shows the mean 36 h forecast errors of these
experiments. All experiments indicate a similar track forecast that slightly diverges from
the best track. Compared to Control, which has a 36 h track error of 34.8 km, the DWL data
thinning experiments almost all have a track error reduction of ±5 km. LSH5V70 gives a
slightly better track forecast, with a 36 h error of 29.8 km. This result implies the positive
impact of assimilating DWL wind speed with horizontal thinning of 5 km and vertical
thinning of 70 hPa on the track forecast of Hurricane Earl. Data thinning reduces the data
density to be consistent with the background and results in better analysis.

For the hurricane SLP and MSW forecasts, Figure 6 shows the different data thinning
experiments and Control against the best track at 12 UTC 2 August 2016. Compared to
Control, all the DWL data thinning experiments show improved SLP and MSW forecasts,
with a 36 h error reduction of 0.5–3.6 hPa and 0.3–3.0 kt. Meanwhile, compared to other
data thinning experiments, LSH5V70 generates an MSW maximum of 73 kt and an SLP
minimum of 980 hPa, which is close to the best-track record. Horizontal thinning of 5 km
and vertical thinning of 70 hPa in DWL wind speed assimilation can reduce track and
intensity forecast errors and provide the best maximum hurricane intensity simulation,
which is important for a hurricane forecast. Therefore, this set of data thinning is used to
assimilate DWL wind speed in the following combined data assimilation experiments.
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Table 3. The 36 h forecast errors from data thinning experiments with lidar wind-speed data assimi-
lation at 12 UTC 2 August 2016.

36 h Errors Control LSH5V10 LSH5V50 LSH5V60 LSH5V70

Track errors (km) 34.8 44.7 35.2 31.6 29.8
MSW errors (knot) −3.5 −2.1 −1.0 −3.2 1.6

SLP errors (hPa) 4.8 4.2 3.1 4.4 1.5

LSH5V80 LSH5V100 LSH2V70 LSH10V70 LS

Track errors (km) 32.7 28.2 33.9 23.5 40.0
MSW errors (knot) −1.0 −0.8 0.5 2.3 −4.9

SLP errors (hPa) 2.7 3.7 1.3 1.1 4.9
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3.3. TDR Radial Wind Assimilation: Impact of Data Thinning

Since the TDR radial wind data have already been assimilated into the current oper-
ational HWRF model, there is a default horizontal data thinning of 9 km in the system.
To optimize TDR data assimilation, in this study, we used data from Hurricane Earl to
conduct different TDR data thinning experiments to find the best configuration for TDR
data assimilation. Figure 7 shows the track forecast from these experiments and Control
against the best track at 18 UTC 2 August 2016. Experiments RH5, RH9, and RH20 use
horizontal thinning distances of 5, 9, and 20 km, respectively. The 36 h forecast errors from
these data thinning experiments, shown in Table 4, indicate similar track forecasts, with
a 36 h track error reduction of 7–10 km relative to Control. Only RH50 slightly increases
the track error, with a 36 h error of 46.3 km against the 42.7 km of Control. Figure 8 shows
the MSW and SLP forecasts from the four TDR data thinning experiments and Control
against the best track at 18 UTC 2 August 2016. RH9 and RH20 obviously provide a better
intensity forecast, with respective 36 h MSW errors of −9.6 and −9.5 kt and respective 36 h
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SLP errors of 6.8 and 7.1 hPa, while Control has a 36 h MSW error of −13.9 kt and SLP
error of 9.4 hPa. The forecast results indicate a similar improvement for the hurricane track
and intensity forecast with TDR assimilation of 9 and 20 km horizontal thinning. These
experiments demonstrate that the default thinning for TDR data assimilation is optimal in
the current operational HWRF system.
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Table 4. The 36 h forecast errors from data thinning experiments with radar radial wind assimilation
at 18 UTC 2 August 2016.

36 h Errors Control RH5 RH9 RH20 RH50

Track errors (km) 42.7 34.3 35.6 32.2 46.3
MSW errors (knot) −13.9 −12.6 −9.6 −9.5 −10.8

SLP errors (hPa) 9.4 8.6 6.8 7.1 8.4
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3.4. Combined Assimilation of DWL Wind Speed and TDR Radial Wind

Following the best configuration for DWL and TDR assimilation, combined TDR and
DWL data assimilation were conducted to evaluate the impact on hurricane forecasts.

3.4.1. Initial Data Impact Evaluation

Figure 9 shows forecast tracks of Hurricane Earl from Control, LSH5V70, RH9, and
LSH5V70 + RH9 at 18 UTC 2 (Figure 9a), 00 UTC 3 (Figure 9b), 06 UTC 3 (Figure 9c), 12 UTC
3 (Figure 9d), 18 UTC 3 (Figure 9e), and 00 UTC 4 August 2016 (Figure 9f). Table 5 shows the
mean 36 h forecast errors from these experiments. The simulated storm in all experiments
moves straight toward land. All experiments with data assimilation provide better track
forecasts against the Control with reduced track errors (Table 5). TDR data assimilation
shows a larger positive impact on the track forecast compared to DWL assimilation; thus,
the combined assimilation of TDR and DWL also leads to great improvement in the track
forecast. However, the corresponding MSW forecast from these experiments, shown in
Figure 10, indicates that RH9 underestimates the MSW of Hurricane Earl at certain times,
especially at 06–12 UTC 3 August. LSH5V70 provides the best MSW forecast that always
captures the MSW maximum, with a mean 36 h MSW error of −4.2 kt against −9.1 kt from
Control. Due to the lack of DWL data at 12 UTC 3, the continuous assimilation gap makes
LSH5V70 produce a slightly poor MSW at 18 UTC 03. LSH5V70 + RH9 usually provides
a better MSW forecast compared to Control, with a mean 36 h MSW error of −7.1 kt. At
06–12 UTC 3 August, the negative impact from the TDR radial wind caused LSH5V70 +
RH9 to produce a poor MSW forecast compared to Control.
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Figure 9. Comparison of the forecast track for Hurricane Earl from Control, LSH5V70, RH9, and
LSH5V70 + RH9 at (a) 18 UTC 2, (b) 00 UTC 3, (c) 06 UTC 3, (d) 12 UTC 3, (e) 18 UTC 3, and (f) 00
UTC 4 August 2016.
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Table 5. The mean 36 h forecast errors from lidar wind speed and/or radar data and combined data
assimilation with different gross errors of radar radial wind.

36 h Errors Control LSH5V70 R9 LSH5V70 + R9 LSH5V70 + R9G10

Track errors (km) 63.3 61.8 45.7 52.8 49.9
MSW errors (knot) −9.1 −4.2 −9.3 −7.1 −7.4

SLP errors (hPa) 3.3 −1.1 3.7 2.3 1.3
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Figure 11 shows the SLP forecast from these experiments. Similar to the MSW forecast,
LSH5V70 provides the best SLP forecast and often captures the SLP minimum of Hurricane
Earl, with a mean 36 h error of −1.1 hPa against −3.3 hPa from Control. Further, due to the
DWL data gap at 12 UTC 3, the SLP forecast is slightly poor at 18 UTC 3 for LSH5V70. For
TDR radial wind assimilation, RH9 overestimates SLP at 00–12 UTC 3 August, thus causing
LSH5V70 + RH9 to produce a poor SLP forecast. These results indicate that DWL wind
speed data assimilation can usually provide the best hurricane intensity forecast, while
TDR data assimilation can correct some of the negative impacts of DWL data and create a
better hurricane simulation, as shown in Figure 10e,f and Figure 11e,f. However, RH9 often
negatively impacts the forecast and worsens the combined data assimilation. Therefore,
factors other than the data thinning method (e.g., data quality control) should be modified
for TDR radial data in the combined data assimilation.
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LSH5V70 + RH9 at (a) 18 UTC 2, (b) 00 UTC 3, (c) 06 UTC 3, (d) 12 UTC 3, (e) 18 UTC 3, and (f) 00
UTC 4 August 2016.
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3.4.2. Influence of TDR Data Quality Control

Besides the data thinning method, data quantity control is another way to control the
data input in the GSI system, as the TDR background error and observation error have
already been tested in the system. Specifically, more TDR data rejections were applied
to the current data assimilation system, which should account for the poor forecast from
TDR data assimilation. Thus, a lower gross error, which reflects the threshold ratio of
O-B and observation errors, should be set in the GSI system. Therefore, data assimilation
experiments were conducted with TDR gross errors of 1.0, 0.8, and 0.5, compared with the
assimilation experiment using the default gross error of 2.0. Figure 12 shows the number
profile of accepted TDR data in the data assimilation cycle with different gross errors at 18
UTC 2 August 2016. The decreased gross error reduces the number of accepted TDR data
at 200–1000 hPa. Any TDR data with a ratio of O-B and maximum observation error larger
than the gross error is rejected in the GSI system.
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Figure 13 shows the forecast tracks of Hurricane Earl from Control, LSH5V70 +
RH9, LSH5V70 + RH9G10, LSH5V70 + RH9G08, and LSH5V70 + RH9G05 at 18 UTC
2 (Figure 13a), 00 UTC 3 (Figure 13b), 06 UTC 3 (Figure 13c), 12 UTC 3 (Figure 13d), 18
UTC 3 (Figure 13e), and 00 UTC 4 August 2016 (Figure 13f). The different gross errors for
TDR data slightly modify the simulated storm, with a mean 36 h track error of 49.9 km
for LSH5V70 + RH9G10, 48.9 km for LSH5V70 + RH9G08, and 59.8 km for LSH5V70 +
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RH9G05. The simulation with a TDR gross error of 0.8 leads to a better track forecast with
the combined data assimilation against LSH5V70 + RH9, which has a mean 36 h track error
of 52.8 km.
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Figure 13. Comparison of the forecast track for Hurricane Earl for Control, LSH5V70 + RH9, LSH5V70
+ RH9G10, LSH5V70 + RH9G08, and LSH5V70 + RH9G05 at (a) 18 UTC 2, (b) 00 UTC 3, (c) 06 UTC 3,
(d) 12 UTC 3, (e) 18 UTC 3, and (f) 00 UTC 4 August 2016.

Figure 14 shows the corresponding MSW forecast from these experiments. After
adjusting the gross error, the mean 36 h MSW error is −7.4 kt for LSH5V70 + RH9G10,
−5.7 kt for LSH5V70 + RH9G08, and −5.8 kt for LSH5V70 + RH9G05. Compared to
LSH5V70 + RH9, LSH5V70 + RH9G08 and LSH5V70 + RH9G05 also provide a better MSW
maximum forecast except at 18 UTC 3, when LSH5V70 + RH9G05 underestimates the MSW
maximum and is too close to the LSH5V70 result. The gross error range of 0.5–0.8 strongly
reduces the negative impact of TDR data. However, a gross error of 0.5 rejects too much
TDR data, so the combined assimilation cannot correct the negative impact of the DWL
data in the combined assimilation. Therefore, for the combined data assimilation, a TDR
gross error of 0.8 is more suitable for operational forecasts, as it usually does not have a
continuous DWL data series. A TDR gross error of 0.8 does not reject much TDR data and
can correct the negative impact of unavailable DWL data in the combined data assimilation.
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Figure 14. Comparison of the forecast MSW for Hurricane Earl from Control, LSH5V70 + RH9,
LSH5V70 + RH9G10, LSH5V70 + RH9G08, and LSH5V70 + RH9G05 at (a) 18 UTC 2, (b) 00 UTC 3,
(c) 06 UTC 3, (d) 12 UTC 3, (e) 18 UTC 3, and (f) 00 UTC 4 August 2016.

Figure 15 shows the SLP forecast from these experiments. Similar to the MSW forecast,
LSH5V70 + RH9G08 and LSH5V70 + RH9G05 provide the best SLP forecast and often
capture the minimum SLP of Hurricane Earl, with a mean 36 h error of 0.1 and 0.2 hPa
against 2.3 hPa from LSH5V70 + RH9. The stable positive impact with a TDR gross error
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of 0.8 indicates the best configuration for hurricane intensity and track simulation with
combined DWL wind speed and TDR radial wind data assimilation.
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Figure 15. Comparison of the forecast SLP for Hurricane Earl from Control, LSH5V70 + RH9,
LSH5V70 + RH9G10, LSH5V70 + RH9G08, and LSH5V70 + RH9G05 at (a) 18 UTC 2, (b) 00 UTC 3,
(c) 06 UTC 3, (d) 12 UTC 3, (e) 18 UTC 3, and (f) 00 UTC 4 August 2016.

4. Discussions
4.1. Distribution of O-B and O-A

To reveal the influence of data assimilation on initial analysis, Figure 16 shows the dis-
tribution of O-B (observation minus background) and O-A (observation minus analysis) for
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DWL wind speed assimilation (Figure 16a) and TDR radial wind assimilation (Figure 16b)
from experiments LSH5V70, RH9, LSH5V70 + RH9, and LSH5V70 + RH9G08 at 18 UTC
2 August 2016. Compared to the DWL wind speed observations, the model background
fields have lower winds; thus, O-B in Figure 16a largely distributes around 8 m·s−1. After
assimilation of the DWL wind data, the wind speeds in the analysis are enhanced, while
O-A is closer (relative to O-B) to the zero line than in experiments LSH5V70, LSH5V70
+ RH9, and LSH5V70 + RH9G08. The decreased O-A relative to O-B is associated with
better hurricane forecasts in these experiments. For the TDR radial wind assimilation,
there is a slight change between O-B and O-A. In the combined data assimilation with
LSH5V70 + RH9G08, the reduced TDR gross error made the O-A for radial wind slightly
more concentrated to the 0 m·s−1, and the O-A for DWL wind speed is also slightly closer
to 0 m·s−1. Therefore, the smaller O-A against DWL wind speeds and TDR radial winds in
LSH5V70 + RH9G08 indicate smaller analysis errors. The improved analyses then lead to
better hurricane forecasts, as shown in Figures 13–15.
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Figure 16. The distribution of O-B (observation minus background) and O-A (observation minus
analysis) against (a) DWL wind speeds and (b) TDR radial winds for experiments LSH5V70, RH9,
LSH5V70 + RH9, and LSH5V70 + RH9G08 at 18 UTC 2 August 2016. The details of the black box in
(b) have been enlarged.

4.2. Impact on Hurricane Inner-Core Structure

Because TDR and DWL are assimilated in the hurricane inner-core region, in this
section, we examine the effects of DWL wind speed and TDR radial wind assimilation on
hurricane inner-core wind structure simulation. NOAA P3 Doppler radar observations are
used here to compare with the results from the data assimilation experiments.

4.2.1. Horizontal Wind Field

Figure 17 shows the horizontal winds at 1500 m from Control, LSH5V70, RH9,
LSH5V70 + RH9, and LSH5V70 + RH9G08, which initialize at 18 UTC 03 August 2016, and
NOAA radar for Hurricane Earl at 21 UTC 03 August 2016 during landfall. All simulated
storms are stronger than radar observations. Compared to Control, LSH5V70 provides
a smaller high-wind (28 m·s−1) area and a tiny eye that is close to observations. RH9
provides a weak and excursive vortex and finally causes the storm structure in LSH5V70 +
RH9 to depart significantly from the observations. After the TDR gross error is reduced to
0.8, the negative impact from the TDR data is removed, leading to an asymmetrical pattern
similar to the radar observations.
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Figure 17. The 1500 m wind from (a) NOAA Doppler radar, (b) Control, (c) LSH5V70, (d) RH9,
(e) LSH5V70 + RH9, and (f) LSH5V70 + RH9G08 for Hurricane Earl during landfall at 21 UTC 3
August 2016. The white contour line represents winds over 28 m·s−1 for observations and simulations.

4.2.2. Vertical Wind Profile

Wind profiles at 21 UTC 03 August 2016 for Earl from NOAA P3 Doppler radar
from the southern part of the hurricane to the northern part are used to evaluate the
wind simulation from the data assimilation experiments, initialized at 18 UTC 03 August
2016, shown in Figure 18. In the southern part of Earl, only LSH5V70 + RH9G08 shows a
wind profile similar to the radar observations, while the wind from LSH5V70, RH9, and
LSH5V70 + RH9 is either too strong or too weak. In the northern part of Earl, DWL wind
speed assimilation can reduce the overestimated wind in Control and lead to better wind
vertical structure in LSH5V70, LSH5V70 + RH9, and LSH5V70 + RH9G08. However, TDR
radial wind assimilation provides a too-weak hurricane in RH9 and adjusts the horizontal
extension that causes the high wind (>36 m·s−1) in LSH5V70 + RH9 to extend too far
from the storm center. Reducing the TDR gross error to 0.8 corrects the high winds in
LSH5V70 + RH9 and generates a better wind structure against Control. For the hurricane
track, intensity, and wind structure analysis, the combined data assimilation with DWL
wind speed and selected TDR radial wind can provide better hurricane simulations than
assimilating only ADP or ADP and TDR data.
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5. Conclusions

In this study, the impacts of the respective assimilation of NOAA Doppler wind lidar
data and Tail Doppler radar data onboard the P3 aircraft and the combined assimilation
of these two data types are tested through the NCEP operational HWRF model. Com-
pared to the DWL u and v component assimilation, the simulation with DWL wind speed
data assimilation provides a better hurricane track and intensity forecast. The DWL wind
direction information from the u and v components often disturbs the inner core of the
TC vortex, producing a poor TC forecast. Assimilating only DWL wind speed positively
impacts TC structure generation, resulting in a better TC forecast. The sensitivity assimila-
tion experiments for data thinning indicate the best configuration for DWL wind speed
data assimilation, with horizontal thinning of 5 km and vertical thinning of 70 hPa. The
default horizontal thinning of 9 km in the operational HWRF model for TDR radial wind
assimilation is good enough in the case of Hurricane Earl. However, downgraded analysis
could occur in the cycled analysis and forecast procedure with DWL data assimilation when
the DWL observations are absent in some analysis cycles. Assimilating DWL wind speed,
TDR radial wind, and ADP data can offset the downgraded analysis from the absence of
DWL data and lead to a better hurricane forecast compared to assimilating a single type of
data. Usually, larger errors in TDR data can make a downgraded analysis that results in a
poor hurricane forecast. With a gross error of 0.8 for TDR data, the assimilation of combined
DWL and TDR data can reproduce a better storm than either the Control simulation with
ADP data assimilation or the operational simulation with ADP and TDR data assimilation.
Stricter selection of TDR data in the quality control could retain its positive impact and
adjust the negative influence of unavailable DWL data during the forecast cycle of the
operational model.

In summary, we evaluated the impacts of assimilating DWL data on the prediction
of a landfalling hurricane. Since the initial conditions are critical for the subsequent fore-
cast [42,43], the assimilation of new observations into the numerical model is a promising
way for forecast improvement. Moreover, due to a lack of observations over the hurricane’s
inner core region, assimilation of inner-core data could significantly improve hurricane
intensity forecasting [16,44]. The positive impacts of DWL data on numerical prediction of
hurricanes from this current work are consistent with the previous studies [18–20,45], in
which the lidar-based wind measurements are found to be useful for forecast improvements.
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Overall, the results in this study indicate the great potential of including DWL wind
speed profiles in operational systems for hurricane forecast improvement. With the increas-
ing application of DWL observations, more studies and cases could further explore the
operational assimilation of these data for improved hurricane prediction with the HWRF
model and other numerical models, such as coupled atmosphere-ocean-wave numerical
models (e.g., [46–48]), in the future.
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