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Abstract: In many parts of the world, apple trees suffer from severe foliar damage each year due
to infection of Alternaria blotch (Alternaria alternata f. sp. Mali), resulting in serious economic
losses to growers. Traditional methods for disease detection and severity classification mostly rely
on manual labor, which is slow, labor-intensive and highly subjective. There is an urgent need
to develop an effective protocol to rapidly and accurately evaluate disease severity. In this study,
DeeplabV3+, PSPNet and UNet were used to assess the severity of apple Alternaria leaf blotch. For
identifications of leaves and disease areas, the dataset with a total of 5382 samples was randomly
split into 74% (4004 samples) for model training, 9% (494 samples) for validation, 8% (444 samples)
for testing and 8% (440 samples) for overall testing. Apple leaves were first segmented from complex
backgrounds using the deep-learning algorithms with different backbones. Then, the recognition of
disease areas was performed on the segmented leaves. The results showed that the PSPNet model
with MobileNetV2 backbone exhibited the highest performance in leaf segmentation, with precision,
recall and MIoU values of 99.15%, 99.26% and 98.42%, respectively. The UNet model with VGG
backbone performed the best in disease-area prediction, with a precision of 95.84%, a recall of 95.54%
and a MIoU value of 92.05%. The ratio of disease area to leaf area was calculated to assess the
disease severity. The results showed that the average accuracy for severity classification was 96.41%.
Moreover, both the correlation coefficient and the consistency correlation coefficient were 0.992,
indicating a high agreement between the reference values and the value that the research predicted.
This study proves the feasibility of rapid estimation of the severity of apple Alternaria leaf blotch,
which will provide technical support for precise application of pesticides.

Keywords: apple disease; deep learning; Alternaria leaf blotch; severity classification; computer
vision; image segmentation

1. Introduction

Apples are one of the most productive fruits worldwide, with high nutritional and
medicinal values [1]. In recent years, apple trees have been increasingly attacked by fungal
diseases [2–4]. Alternaria alternata apple pathotype generates toxins and causes Alternaria
blotch on apple leaves, severely affecting apple orchards in Europe, North America and
East Asia [5,6]. Alternaria blotch disease was first reported in the USA in 1924 [7]. This
disease is characterized by the appearance of small round brown or black lesions that
gradually enlarge with a brownish-purple border on leaves in late spring or early summer,
resulting in reduction in photosynthesis, severe defoliation and deterioration of fruit
quality [8,9]. Currently, management of the Alternaria leaf blotch is mainly carried out by
traditional chemical control agents [10]. However, the long-term heavy use of chemicals
could lead to numerous hazards, such as soil and water pollution [11], the resistance of tree
pathogens [12] and pesticide residues in fruits [13]. Precision spraying [14] and disease-
resistance breeding [15] are alternative ways to achieve green and efficient control of apple
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diseases. As apple cultivars vary in their level of susceptibility to Alternaria blotch, the
selection of resistance phenotypes of apple cultivars is of great significance for effective
control of this disease. Alternaria leaf blotch is traditionally inspected by experienced
experts [16], which means that experts need to carry out sampling inspections of apple
leaves carefully [1]. Nevertheless, there is a risk of error owing to subjective perception [17].
A rough assessment of the disease may lead to incorrect conclusions drawn from the data,
which in turn is likely to lead to incorrect actions taken in decision making in disease
management [18]. Failure to detect and prevent apple diseases in time has a great impact
on apple yield and quality, resulting in great economic losses. Thus, reliable and accurate
estimations of disease severity are critical for predicting yield losses and epidemics, and for
evaluating disease resistance in crop germplasm [18,19].

Computer vision and machine learning have been widely used in agriculture, espe-
cially for plant identification and disease evaluation [20–27]. For instance, Gargade and
Khandekar [28] proposed a leaf parameter-measurement system that applied k-nearest
neighbor (k-NN) and support vector machine (SVM) algorithms to classify apple leaf
defects with an accuracy of 99.5%. A multilayer perceptron (MLP) pattern classifier us-
ing 11 apple leaf image features was successfully utilized for predicting apple Alternaria
leaf blotch [29]. With the development of deep learning (DL), Liu et al. [30] designed an
architecture based on the convolutional neural network (CNN) using AlexNet for leaf
blotch detection, yielding an accuracy of 91.87%. Later, the accuracy was improved to
95.81% using the single-shot multibox detector (SSD) with Inception module and Rain-
bow concatenation (INAR-SSD) [16]. Compared to the above models, the XDNet model
showed the best performance, with an accuracy of 96.36% in disease identification [31].
Furthermore, CNN-based deep learning has been effectively used for assessments of leaf
disease severity. A multiclassification CNN model was developed for severity detection
of corn gray leaf spot (CGLS) in maize plants, with the accuracy of 95.33% [32]. Ozguven
and Adem [33] developed a system for automatic detection and identification of three
levels (mild, moderate and severe) of leaf spot disease of sugar beet. The developed Faster
R-CNN achieved an accuracy of 95.48%. However, CNNs have not been employed in the
diagnosing of leaf disease severities in apples, especially Alternaria leaf blotch.

In recent years, DL-based image segmentation algorithms have been integrated with
agriculture to promote the development of smart agriculture. Esgario et al. [34] used
different CNN architectures to estimate the severity of the biotic stress on coffee leaves. The
trained network of residual network (ResNet)-50 obtained the best results with an accuracy
of 97.07%. Later, three CNN models, namely AlexNet, SqueezeNet and Inception V3, were
used to evaluate disease severity of tomato late blight disease [35]. Results showed that
AlexNet demonstrated the highest performance, with an accuracy of 93.4%. Based on binary
relevance (BR) multiple-label learning algorithms and deep CNN, Ji et al. [6] proposed a BR-
CNN algorithm using ResNet-50 to detect crop leaves with three disease severities (normal,
fair and severe), yielding the best accuracy of 86.70%. In a recent study, Su et al. [36] used a
dual mask-RCNN framework to automatically assess the resistance of wheat to Fusarium
head blight. The protocol achieved a prediction accuracy of 77.19%, but the accuracy should
be further improved. In another study, a two-stage framework incorporating DeepLabV3+
and UNet was proposed for severity classification of cucumber leaf disease and reached the
classification accuracy of 92.85% [37], but other effective methods, including pyramid scene
parsing network (PSPNet). and the analysis of confusion matrix and the Lin’s correlation
coefficient, were not considered in their study.

The novelty of this research lies in the development of an integrated CNN-based
method for estimating the severity of apple Alternaria leaf blotch in complex field con-
ditions. The main objectives are as follows: (1) propose a two-stage CNN protocol for
segmentation of feature images with complex backgrounds; (2) annotate apple leaves and
disease areas in the images; (3) develop an optimal model that works well in detecting and
segmenting apple leaves under complex backgrounds; (4) build another optimal model
that is effective for segmenting disease regions of sub-images; (5) evaluate the disease level
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of apple Alternaria leaf blotch based on the ratio of disease areas to leaves; (6) assess the
performance of the two-stage framework based on Lin’s correlation coefficient analysis and
confusion matrix.

2. Materials and Methods

The main steps and methodology involved in this study are described below. The
leaves in the dataset were manually annotated first. Then, different CNN models were
trained based on the annotated images. The most accurate model for leaf segmentation was
selected. Similarly, the diseased areas in the segmented leaves were manually annotated.
Then, an optimal model for disease segmentation was determined based on the evaluation
of the performance of different models. Afterwards, the disease degree of the leaves was
obtained based on the calculation of the ratio of the disease area to the leaf area. The
accuracy of disease grades was assessed using confusion matrix and the Lin’s correlation
coefficient, eventually.

2.1. Data Annotation and Examination

The dataset consists of 5382 images of healthy leaves and disease cases, with 4942 orig-
inal images noted as dataset I and the other 440 images for overall validation. Among
them, 3587 images were taken in the orchard, while the remaining 1795 were acquired in
the lab. The dataset is publicly available for noncommercial use (https://aistudio.baidu.
com/aistudio/datasetdetail/11591, accessed on 29 October 2021). All images used in this
study are 512 × 512 pixels in size. All image annotations were performed by using manual
image-annotation software (Labelme, https://github.com/wkentaro/labelme, accessed on
3 November 2021). Image annotation consisted of three steps. In the first step, the apple
leaves in dataset I were annotated. The JSON files annotated using Labelme were converted
to PNG tags and the leaves were separated from the background by image fusion. A single
image containing multiple leaves was saved as a single-leaf image (only one leaf contained in
each image). The set of all single-leaf images was regarded as dataset II, which had the same
number of images as dataset I. In the second step, the leaf lesions on dataset II were annotated.
For detections of the apple leaf and disease area, the number of 4004, 494 and 444 images
in both dataset I and II were randomly selected for model training, validation and testing,
respectively. The results of labeling of leaves and disease spots were shown in Figure 1.
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2.2. Deep-Learning Algorithms

PSPNet [38] is a deep-learning model released in 2017 dedicated to semantic segmenta-
tion on scene understanding [39]. The core structure contains the pyramid pool module and
a backbone feature network [40]. The structure is shown in Figure 2a. Given an input image,
the CNN is first used to obtain the feature map of the final convolutional layer. A pyramid
parsing module is then employed to obtain different subregion representations, proceeded
by upsampling and concatenation layers to form the final feature representation, containing
both local and global information in pyramid pooling module. Eventually, this representa-
tion is sent to the convolutional layer to obtain the final per-pixel prediction. The backbones
of the study used in PSPNet are MobileNetV2 [41] and ResNet [42]. MobileNetV2 is a
new mobile architecture providing improved state-of-the-art capabilities of mobile models
across multiple tasks and benchmarks and across a range of model sizes, while ResNet is
able to improve accuracy by adding considerable depth. The residual blocks within it use
jump connections, which alleviate the problem of gradient disappearance associated with
increasing depth in deep neural networks.
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UNet is a semantic segmentation network built based on fully convolutional networks
(FCN) with a typical encoder–decoder architecture. The encoder part consists of repeating
convolutional layers with a kernel size of 3 × 3. Each convolutional layer is followed by
a 2 × 2 maximum pooling with a step size of 2, which gradually reduces the patch size.
The part of the decoder contains up sampling operations for the 2 × 2 convolution, which
halves the number of feature channels. The overall structure of the UNet used in this study
is shown in Figure 2b, and the reason for choosing UNet is that the original images are plain
RGB images, which can achieve a satisfying segmentation result without using complex
models such as Mask RCNN or V-Net [43]. Although UNet can segment pixels accurately,
the detection process for each pixel-centered region is required. In addition, the overlap
of some central regions can lead to redundant operations, causing slow and inefficient
operation. ResNet is also used as the backbone in UNet. Another one is visual geometry
group (VGG) [44], a deep convolutional neural network instrumented by researchers at
Oxford University’s Computer Vision Group and Google DeepMind, which takes previous
models (e.g., AlexNet) and deepens them so that they can have better model generalization
and ultimately achieve a smaller classification error rate.

DeepLabV3+ [45] is a semantic segmentation network based on DeepLabV3 [46],
adding a simple and efficient Decoder to refine the segmentation results, especially along
the target object boundaries, as well as a two-in-one implementation using a spatial pyra-
mid pooling module or a codec structure. DeepLabV3+ network consists of two parts:
encoding and decoding module. The coding module consists of a backbone and an Atrous
Spatial Pyramid Pool (ASPP). In the study, MobileNetV2 and Xception [47] are used as the
backbones. Xception is an improved model of InceptionV3 [48] proposed by Google after
Inception, whose main improvement is to use depthwise separable convolution to replace
the multisize convolutional kernel feature-response operation in the original Inception V3.
While the accuracy is slightly higher than that of Inception V3, the number of parameters
has been reduced.

2.3. Evaluation Metrics

A few factors were used to evaluate the performance of the CNN-based segmentation
model. The false negative (FN), false positive (FP) and true positive (TP) were calculated
and used to generate metrics including Recall and Precision. Recall (also known as sensi-
tivity) is the proportion of TP instances out of the total number of positive instances that
actually belong to the positive category, whereas Precision (also known as positive predic-
tive value) is the proportion of real positive instances out of the total number of positive
instances predicted to belong to the positive category. The average intersection over union
(MIoU) is a fundamental metric for assessing picture segmentation performance [49]. MIoU
is calculated as the TP number of the sum of TP, FN and FP. The MIoU, precision and recall
can be presented in the following equations:

MIoU =
1

k + 1

k

∑
i=0

TP
FN + FP + TP

(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

where TP corresponds to the number of true positives generated (i.e., the number of pixel
points correctly detected), FP represents the number of pixel points incorrectly identified,
FN is the number of pixel points undetected but that should have been identified, k is the
number of divided categories of pixels and i is reference category of a pixel.
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2.4. Apple Alternaria Leaf Blotch Severity Classification Method

The ratio of disease area to leaf area was used for disease-severity evaluation. The
obtained ratios of disease severity were classified to five grades, namely healthy (0), early
(0–0.95%), mild (0.95–1.75%), moderate (1.75–3.00%) and severe (3.00–100%). The severity
classification of apple Alternaria leaf blotch was divided into two stages. In the first stage,
the images used for prediction were fed into various models, and the predictions were
output and fused with the original images. The leaves were segmented and the pixel areas
of the leaf images were calculated; in the second stage, the segmented image was input
to the same models as in the first stage. After selecting the best model in both stages, the
prediction result was output for calculation. The area ratio of leaf lesions was calculated
and the grade was judged according to the threshold value delineated. The calculation
formula is shown in Equation (4).

P =
SD
SL

(4)

where SL represents the area of apple leaves after segmentation; SD represents apple
Alternaria leaf blotch areas after segmentations; P represents the ratio of disease areas over
apple leaves. The whole flow of the section is shown in Figure 3.
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2.5. Equipment

The entire process of model training and validation was implemented on a personal
computer (processor: Intel® CoreTM i7-10750H CPU @ 2.60 GHz 2.59 GHz; operating
system: Windows 11 64 bits; memory: 16 Gb). The training speed was optimized in
graphics processing unit (GPU) mode (NVIDIA GeForce RTX 2060 6 Gb). Table 1 presents
the detailed modeling parameters such as input batch size, base learning rate and maximum
iterations. Moreover, the code for image processing was coded in Python.
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Table 1. Settings of modeling parameters for identifications of leaves and disease areas.

Modeling Parameters Values

Number of training samples 4004
Number of validation samples 494

Number of test samples 444
Number of overall test samples 440

Input size 512 × 512
Training number of epochs 100

Base learning rate 0.0001
Image input batch size 2

Gamma 0.1
Number of classes 2

Maximum iterations 2224

3. Results
3.1. Model Training

Six different CNN-based segmentation models were established based on the labeled
images of leaves and disease areas. Figure 4a shows the trend of loss of apple leaves
identification. It was observed that the loss curves of all models gradually stabilized with
increasing values of epochs. Specifically, the DeepLabV3+ (Xception) network converged
the fastest but exhibited the highest loss values, which gradually stabilized after 30 epochs.
The PSPNet (ResNet) network also gradually stabilized around 30 epochs, and the network
converged the second fastest in the 6 models but also ended up with the second-highest loss
values after DeepLabV3+ (Xception). The UNet converged slower overall and stabilized
after the 60th epoch with the lowest final loss value. The PSPNet (MobileNetV2) network
converged slowly at first but had the lowest loss value and eventually achieved a lower
loss value as well. However, the UNet (VGG) network demonstrated a clear advantage
for disease-area identification as shown in Figure 4b. Images with labeled disease areas
were used to train the same models. The UNet (VGG) network had the lowest loss value.
PSPNet (MobileNetV2) network reached the fastest convergence speed and the highest
loss value, which was relatively stable after the 30th epoch, whereas the rest of the models
converged at similar rates and were stable after epoch 50.

3.2. Leaf and Disease-Area Identification

Similar to other studies of crop-severity quantification, the validation loss fluctuated a
great deal in the early training stage (20 epochs) and then slowly converged at the end of
training. It can be seen from Figure 5a that the DeepLabV3+ (Xception) network exhibited
the highest loss values, converged slowly and stabilized relatively after 20 epochs. PSPNet
(ResNet) had the fastest convergence rate and gradually stabilized around the 40th epoch.
The UNet (VGG) network converged faster than the former and eventually achieved
the second-highest loss value. The PSPNet (MobileNetV2) network and DeeplabV3+
(MobileNetV2) network exhibited similar overall convergence trends with the lowest
loss values, stabilizing after 30 epochs. Similarly, the loss values of all models were
undulating with the overall trend remaining decreasing in the second stage. As shown
in Figure 5b, the UNet (VGG) network still maintained the lowest loss value. In the early
stage, the DeeplabV3+ (Xception) network showed the fastest convergence rate and the
highest loss value. After the 30th epoch, the loss values of DeeplabV3+ (Xception), PSPNet
(MobileNetV2), and PSPNet (ResNet) networks were very close and relatively stable. The
UNet (ResNet) network maintained similar convergence speed as UNet (VGG), but the loss
values were always higher than UNet (VGG).
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The trained CNN-based segmentation models were then used to recognize apple
leaves and disease areas in the test set. The failures of the proposed approach for targeted
region identification were also evaluated. Figure 6 presented the selected examples of
incorrect segmentation of apple leaves. FP were detection failures (blue circles) caused by
various factors, such as missing annotations on slightly blurred leaves due to human error
and blurred edges due to ambient lighting, while the unpredicted areas (red circle) were
the FN due to the model error. It was clear that PSPNet with MobileNet backbone had
the least misidentification for the same original image, while DeeplabV3+ (MobileNetV2)
had the most incorrectly predicted regions. However, different results occurred when the
disease areas were predicted. As shown in Figure 7, UNet with VGG backbone showed
the least incorrectly predicted and unpredicted parts. PSPNet with MobileNet backbone,
which performed best for apple leaf prediction, had the most frequent incorrectly predicted
areas. DeeplabV3+ (MobileNetV2) still did not show excessive prediction errors, but the
unpredicted areas were more numerous. In summary, PSPNet with MobileNet backbone
performed best in leaf identification, while UNet with VGG backbone showed excellent
performance in disease-area recognition in terms of image recognition.
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and (b) disease areas.

All models were evaluated comprehensively in terms of precision, recall and MIoU.
Table 2 showed the results of apple leaf recognition by three models based on different
backbone networks. The performance of all three models in identifying leaves was excellent.
PSPNet with MobileNetV2 backbone achieved the highest precision and MIoU of 99.15%
and 98.42%, respectively, followed by UNet with ResNet backbone, having a precision
and MIoU of 99.12% and 98.41%, respectively. The result indicated that PSPNet with
MobileNetV2 backbone was the optimal model from comparison. However, in the second
stage, UNet with VGG backbone showed better performance than the best model of the first
stage. As shown in Table 3, UNet with VGG backbone achieved the highest recall and MIoU
of 95.54% and 92.05%, respectively. This indicated that the UNet (ResNet) demonstrated
strong potential in identifying disease spots.
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Figure 6. The prediction examples of DeeplabV3+ (MobileNetV2), PSPNet (MobileNetV2) and UNet
(VGG) for apple leaves: the leaf area with the blue circle has only the base truth with no predicted
results, which is a false negative (FN), and the red circled leaf area only has the predicted result with
no base fact, which is false positive (FP).

Table 2. Performance comparison of models in apple leaf identification.

Model Backbone Precision Recall MIoU

DeeplabV3+ MobileNetV2 99.00% 99.04% 98.06%
Xception 98.74% 98.86% 97.63%

PSPNet
MobileNetV2 99.15% 99.26% 98.42%

ResNet 99.10% 99.21% 98.33%

UNet
ResNet 99.12% 99.27% 98.41%
VGG 99.07% 99.24% 98.32%

Table 3. Performance comparison of models in disease spots.

Model Backbone Precision Recall MIoU

DeeplabV3+ MobileNetV2 95.04% 94.23% 90.30%
Xception 95.47% 91.51% 88.32%

PSPNet
MobileNetV2 93.53% 93.80% 88.74%

ResNet 93.99% 93.11% 88.55%

UNet
ResNet 95.92% 94.55% 91.27%
VGG 95.84% 95.54% 92.05%
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with no base fact, which is false positive (FP).

Upon comparison, the PSPNet based on MobileNetV2 and the UNet based on VGG
demonstrated a clear advantage in the two stages, respectively. For the next section,
the examination of apple Alternaria leaf blotch severity is provided based on the two
models selected.

3.3. Examination of Apple Alternaria Leaf Blotch Severity

Apple Alternaria leaf blotch severity was evaluated based on the ratio of the disease
area to the apple leaf area. After selecting the best models in the two stages, 440 images of
apple leaves were used as the total examination object. Since there were several leaves in
one image, each leaf was segmented by number, resulting in 446 individual leaf images. The
predicted severity was checked and compared with the hand-labeled severity to calculate
the classification accuracy of the model. The results of the study are shown in Table 4.

Correct grading denotes the number of correctly categorized images; data quantity
denotes the total number of photos of this category; accuracy is equal to the ratio of these
two values.
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Table 4. Performance of overall verification.

Disease Classification Correct Grading Data Quantity Accuracy

Healthy 44 44 100%
Early 179 183 97.81%
Mild 90 98 91.54%

Moderate 70 73 95.89%
Severe 47 48 97.92%
Total 430 446 96.41%

When the disease spot area is too large, there is no need to use deep-learning methods
for classification. The very few data points at this time would bring large errors to the
fit, so a few data with relatively large areas were discarded. The relationship between
the reference value of the area ratio and the predicted values measured by the proposed
system is shown in Figure 8. For the area ratio, the predictions are in close agreement
with the reference values. Both the correlation coefficient and the consistency correlation
coefficient are 0.992 (r = 0.992, ρc = 0.992). u = −0.017, which is close to zero, indicating
no constant bias. As the median value of the sample increases, the calculated index is
increasingly underestimated. Thus, the slope of the estimated value is slightly lower than
the correlation line.
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Figure 8. Scatter plot of the relationship between predicted values calculated from the PSPNet
and UNet models at the pixel level and the reference value of the area ratio obtained by manually
annotating each pixel of the image on the same leaf. The black dashed line (45◦, where slope = 1
and intercept = 0) indicates the line of perfect agreement. The solid red line indicates the best–fit
first–order regret line. These statistics represent the Lin’s correlation coefficient analysis within the
95% confidence interval.

The two-stage model selected obtained an overall accuracy of 96.41% on the overall
test dataset. Specifically, accuracies of 100%, 97.81%, 91.54%, 95.89% and 97.92% were
obtained at five levels, respectively. As shown in Figure 9, there was a risk that mild-stage
samples were easily misclassified as the early stage. Possible reasons for this fact were
that the early and mild stages had similar area ratios. Moreover, the extremely small area
of disease spots could easily lead to misidentification. Typically, misclassified samples
were only confused with their neighboring labels. As an example, samples of mild stage
were only confused with samples of early and moderate stages. The confounding between
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adjacent labels had a significant impact on the overall error, which mainly originated from
the segmentation error, but was shown to be within the permissible limits.
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4. Discussion

The research proposed a new approach using a two-stage CNN framework for auto-
matic severity estimation of apple Alternaria leaf blotch in the field. This study addressed an
issue that consists of three main parts: leaf segmentation, disease segmentation and disease-
severity classification. The performance of three CNN algorithms, including DeeplabV3+
with MobileNetV2 or Xception backbone, PSPNet with MobileNetV2 or ResNet backbone,
and UNet with ResNet or VGG backbone, were investigated and compared in segmenta-
tions of regions of interest. The results showed that the PSPNet with MobileNetV2 was
the best model in leaf detection while the UNet with VGG obtained the highest accuracy
in disease-area assessment. Based on the selected PSPNet–UNet framework, an excellent
result in disease-severity classification was achieved. However, data annotation is labo-
rious, time-consuming and complex. In the future, more advanced algorithms should
be developed for automatic annotation of regions of interest. Although the model used
in this study was able to identify lesions effectively, there were incorrect segmentations
for small or inconspicuous lesions. Future research should focus more on improving the
segmentation performance of the algorithm for extremely small targets and detailed parts.

The two-stage PSPNet–UNet framework used in the study performed very well, yield-
ing an accuracy as high as 96.41% compared to the other studies shown in Table 5. In a
recent study, Hayit et al. [50] proposed a deep CNN-based model, Yellow-Rust-Xception,
to classify wheat leaf rust severity (i.e., percentage) with the accuracy of 91%. ResNet-101
was used to measure the severity of early wilt disease in tomato leaves [51] and achieved
an accuracy of 94.6%. Although the above studies performed well in identifying the sever-
ity of plant diseases, the accuracy was lower than the protocol proposed in the current
study. Quantitative separation and calculation of visible symptoms were used to assess
the plant disease severity. A vision system was designed for segmenting abnormal leaves
of hydroponic lettuce [52] using the DeepLabV3+ model with four backbones, including
ResNet-50, ResNet-101, Xception-65 and Xception-71. ResNet-101 showed the best segmen-
tation performance in the uniform weight (UW) assignment approach with an accuracy of
99.24% and MIoU of 0.8326. Later, Ji and Wu [53] proposed an effective automatic detection
and severity analysis method for grapevine black measles disease using the DeepLabV3 +
with ResNet-50 backbone, yielding an overall classification accuracy of 97.75%. Different
from the single-stage segmentation method described above, the proposed method in the
current study for apple Alternaria leaf blotch severity analysis used a two-stage protocol.
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The PSPNet model with MobileNetV2 backbone successfully separated apple leaves and
background, and the UNet model with VGG backbone effectively separated the disease
spots and leaves, which indicates that this protocol can achieve accurate segmentation of
leaves and lesions, enabling a more objective assessment of plant disease severity.

Table 5. A summary of plant disease-severity evaluation based on different CNN methods.

References Plant Model Disease Levels Accuracy (%)

Hayit et al. [50] Wheat Xception 0, R, MR, MRMS, MS, S 91

Nigam et al. [54] Wheat Proposal modified CNNs Healthy stage, early stage, middle
stage and end-stage 96.42

Ramcharan et al. [55] Cassava MobileNet Mild symptoms (A–C) and
pronounced symptoms 84.70

Hu et al. [56] Tea VGG16 Mild and severe 90

Zeng et al. [57] Citrus AlexNet, InceptionV3, ResNet Early, mild, moderate, severe 92.60

Prabhakar et al. [51] Tomato AlexNet, VGGNet,
GoogleNet ResNet Healthy, mild, moderate, severe 94.60

Ji and Wu [53] Grape DeepLabV3+ (ResNet-50) Healthy, mild, medium, severe 97.75

Proposed method Apple PSPNet (MobileNetV2) and
UNet (VGG) Healthy, early, mild, moderate, severe 96.41

The results of this study show that the developed framework has great potential for
real-time assessment of apple Alternaria leaf blotch severity. Since this study is only an
initial work, most of the images contain only one leaf. Further research will be carried out
shortly using imaged with multiple leaves in a complex background. The segmentation
of one or more leaves mainly depends on whether the leaves in the image are not out of
focus and complete, which is conducive to the accurate identification of the diseased area.
A portable device is expected to be designed in the near future. Images readily captured
by the RGB camera of the device would be sent wirelessly to the microcomputer. After
model calculation, the real-time assessment result of the disease level should be seen on
the device. The developed device in future would be deployed on a mobile robot used
in the orchard. The robot is expected to apply different dosages of pesticide to the apple
trees according to their overall disease severities. Ideally the device should be lightweight
and low-cost. A remote-detection advisory system is planned to extend the potential of DL
and image segmentation for applications in agriculture. In addition, edge computing is
expected to be integrated for online use in future study. The implementation of relevant
research will significantly improve the efficiency and accuracy of pesticide spraying, which
will contribute to the green development of agriculture, environmental protection and
food safety.

5. Conclusions

A two-stage CNN framework for automatic severity estimation of apple Alternaria
leaf blotch in complex contexts was developed. Compared with DeeplabV3+ (MobileNetV2
and Xception), PSPNet (ResNet) and UNet (ResNet), the PSPNet model with MobileNetV2
backbone exhibited the highest precision, recall and MIoU values of 99.15%, 99.26% and
98.42% in leaf segmentations, respectively. The UNet model with VGG backbone showed
the best performance in disease-area detection with a precision of 95.84%, recall of 95.54%
and MIoU value of 92.05%. The model integrating PSPNet (MobileNetV2) and UNet
(VGG) demonstrated a strong capacity to identify leaf and disease areas. The classification
accuracy from healthy to severe was 100%, 97.81%, 91.54%, 95.89% and 97.92%, respectively,
and the average accuracy reached 96.41%. In addition, both the correlation coefficient and
the consistency correlation coefficient were 0.992 based on the Lin’s correlation coefficient
analysis, indicating a high agreement between the reference values and the predicted
values of the proposed system measurements. The knowledge generated from this study
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will greatly aid in the accurate classification of apple Alternaria leaf blotch severity. In
addition, the technical support will be provided for accurate application of pesticides,
which in turn will be a powerful contribution to the protection of the environment and
global food security.
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