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Abstract: The noise radiated from ships can be used for their identification and classification using
passive sonar systems. Several techniques have been proposed for military ship classification based
on acoustic signatures, which can be acquired through controlled experiments performed in an
acoustic lane. The cost for such data acquisition is a significant issue since the ship and crew have to
be dislocated from the fleet. In addition, the experiments have to be repeated for different operational
conditions, taking a considerable amount of time. Even with this massive effort, the scarce amount of
data produced by these controlled experiments may limit further detailed analyses. In this paper,
deep learning models are used for full exploitation of such acquired data, envisaging passive sonar
signal classification. A drawback of such models is the large number of parameters, which requires
extensive data volumes for parameter tuning along the training phase. Thus, generative adversarial
networks (GANs) are used to synthesize data so that a larger data volume can be produced for
training convolutional neural networks (CNNs), which are used for the classification task. Different
GAN design approaches were evaluated and both maximum probability and class-expert strategies
were exploited for signal classification. Special attention was paid to how the expert knowledge might
give a handle on analyzing the performance of the various deep learning models through tests that
mirrored actual deployment. An accuracy as high as 99.0± 0.4% was achieved using experimental
data, which improves upon previous machine learning designs in the field.

Keywords: passive sonar system; LOFAR analysis; deep learning; convolutional neural networks;
generative adversarial networks; quadrant analysis

1. Introduction

Sonar systems find applications in both civilian and military fields [1]. In the context of
military operations, passive sonar systems (PSS) are essential, for instance, for submarines
as the primary tool used to detect, classify, and identify underwater and surface targets,
not to mention navigation itself, which relies heavily on sonars [2].

The passive sonar signal classification is usually carried out in the frequency domain.
The underwater signals suffer from environmental noise, which, in many cases, occupies
the same frequency band as the radiated noise from vessels [3] and, thus, may hamper
the signal analysis. Additionally, the radiated signal may also be corrupted (in phase,
amplitude, and frequency) while propagating towards the receiver ending [4–6]. Another
critical factor to consider is that new technologies have been developed to make ships
as quiet as possible, to avoid detection by passive sonars [7,8]. For the particular case
of submarines, especially the nuclear ones, the detection problem becomes even more
challenging as these submarines travel at great depths, making the sound they emit harder
to capture and consequently harder to process.

Albeit these important issues, additional constraints in the passive sonar signal clas-
sification arise from the amount of data usually available for model developments. This
is especially true for military data since they are usually classified. It is highly difficult
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and almost impractical (in some cases just unfeasible) to gather more data since the Navy
would have to track a large number of targets in a variety of conditions, which would
require data acquisition along prolonged periods. One possibility is to perform experi-
ments in a controlled environment such as an acoustic lane. However, the cost for such
data acquisition is a significant issue since ships have to be displaced from the fleet to
the experiment location together with their crews. In addition, the experiments have to
be repeated a number of times for each ship in order to acquire data at different machine
operating conditions. Different ocean and weather conditions should also be considered to
make the acquisition more truthful.

Despite such an effort, in the end, the data acquisition task might cover only a fraction
of target classes and from those, only limited statistics would be obtained. This lack of
statistics is highly problematic when developing machine-learning-based automatic classi-
fication systems, especially in the deep learning approach, where models usually have a
large number of parameters to be tuned and, as such, require large amounts of data to be
trained [9]. In actuality, deep learning has received much attention from researchers in re-
cent years [10], as the various deep neural network models have demonstrated exceptional
training ability and, thus, have become the state of the art in several fields of applica-
tion [11], especially in image processing tasks. This fact motivates the use of deep learning
in sonars, where the classification problem can be framed as an image problem [12].

This paper aims to develop deep learning models that are able to better exploit the
available military passive sonar data, which concern beamformed signals with complex
structure. For such classified data, sensible decision-taking procedures are required and rely
on the support of automatic systems. However, the scarcity of data for such developments
has been restricting the potential benefits of deep learning in the field. Therefore, the
possibility of using generative adversarial networks (GAN) models [13] arises as a way
to overcome such restrictions and, thus, increase the number of samples available for the
training cycle. Results on such GAN applications have been reported (see Section 3). Here,
we employed different strategies for probing deeper on how the synthetic data generated by
the GAN models might be included in the classifier training phase. The research hypothesis
we follow refers to a design evaluation focused on class-expert GAN models, motivated
by the results from [14], which showed that the class-expert solution was efficient in PSS
context. Signal classification from the developed models takes into consideration the error
bars coming from the data sample available. This concern with uncertainties is especially
valuable in military applications, for which small differences in classification efficiency may
be crucial. Targeting practical applications, further tests analyze how these models react to
different interference noise sources and acquisition failures that may arise in passive sonar
operation.

The proposed method comprises a two-step approach. In the first step, GANs are
trained to generate synthetic samples to support efficient classifier training performed in
the second step. The proposed method advocates for the use of expert GANs for each
class, i.e., a single GAN is trained to reproduce a given class. The motivation for this is to
avoid retraining the whole system when another class needs to be included in the system.
Instead, a single GAN would be added for the classifier development update. Nonetheless,
this approach was confronted with a solution in which a single GAN generates data for all
classes. For the classifier designs, two approaches were carried out; namely, the maximum
probability, where each classifier output node was assigned to a given class, and class-
expert, where several classifiers were trained in an one-against-all manner [15]. In this
case, the class-expert outputs were combined for the final decision. Note that, again, these
designs confront the expert vs. the general solution.

Three different ways of exploiting the synthetic data production for classifier training
were tested. First, to train the classifiers solely on synthetic samples (synthetic training),
second, train the classifiers on synthetic samples, and, then, finetune the resulting classifiers
by means of employing samples of experimental data (fine-tuned). Finally, third, the
classifiers were trained with synthetic and experimental data together (all together).



Remote Sens. 2022, 14, 2648 3 of 36

Considering the importance for military decisions when a given class is assigned to a
ship in different operating scenarios, the data analysis paid particular attention to which
kind of data the GAN model was generating and from where the differences in passive
sonar signal classification from the different models being developed came. For probing
deeper into such analyses, signal classification was evaluated not only from standard
windowing signal partitions from a given run in the acoustic lane, but also using run-based
developments, in which data from a full run were taken into consideration, and a leave-
one-run-out (LORO) [16] evaluation was pursued. This last analysis addressed a closer
to practice condition, as military ship classification is to be performed on beamformed
signals from a given run of the target ship as soon as it has been detected. For assessing
the final classification efficiencies and their corresponding uncertainties, cross-validation
methods [17] were employed.

The paper is organized as follows. In Section 2, the low-frequency analyzer and
recorder (LOFAR) analysis is briefly explained. Relevant related works are presented in
Section 3, where the main contributions of this paper are highlighted. Section 4 focuses on
GAN’s main characteristics. In Section 5, the dataset and the corresponding preprocessing
scheme are both explained, and in Section 6, the proposed signal classification method is
detailed. Section 7 presents achieved results, which are discussed in Section 8. Conclusions
are derived in Section 9.

2. Passive Sonar Signal Analysis

A PSS has as its foremost objectives [18] the estimation of the direction of arrival (DoA),
and the detection, identification, classification, and monitoring of targets. Usually, this
analysis is split into three stages: detection, tracking, and classification. When the signal
is detected, it may be monitored through time for classification, determining whether the
corresponding target is of interest.

The LOFAR broadband spectral analysis [18] is often used for characterizing the
passive sonar signals from the beamforming processing. The LOFAR processing chain used
here is summarized in Figure 1.

Figure 1. Block diagram of the LOFAR analysis.

The tracked signal was submitted to a Hanning window, and subsequently to the short-
time Fourier transform (STFT) in order to acquire its spectral representation. Following
the discard of the phase information, the signal’s magnitude underwent a two-pass split
window algorithm (TPSW) [18], in order to smooth the background noise while normalizing
the signal. The result of this analysis can be displayed in a LOFARGRAM, as shown in
Figure 2, in which the processed frequency information is displayed on the x-axis, while
the y-axis represents time. The tuning of the LOFAR analysis hyperparameters followed
the advice of Brazilian Navy experts [19].
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Figure 2. The LOFARGRAM. This waterfall display shows the frequency information of a given
target across time.

3. Related Works

The majority of the research carried out in the field of machine learning applied to
passive sonar signal classification can be summarized as a feature extractor followed by a
nonlinear classifier. The most common features used are the frequency power spectrum
(usually extracted from the fast Fourier transform (FFT)) [19,20], time–frequency infor-
mation extracted from wavelet features [21–23], and features extracted directly from the
audio waveform (such as zero-crossing or peak-to-peak features) [24,25]. Some works have
explored other domains, such as, for example, tonal and spectral characteristics [26,27] (cou-
pled with neural networks for classification) and the Hilbert–Huang transform (HHT) [28].

Here, we explore deep learning techniques for synthesizing samples with GAN [13]
and their use for the training of convolutional neural network (CNN)-based classifiers.
The GAN formulation is used to generate sub-LOFARGRAMs in order to augment the
available dataset and properly train deep learning models. This is an attempt to face the
usually limited availability of military data and fully exploit the rightful information that
can be assessed from acoustic lane acquisitions, so that deep learning modeling can be
realistically developed for practical usage in defense technology. Apart from trying to
create realistic passive sonar signals (which may be used by Navies in several contexts,
including sonar operator training), these synthetic signals may be used for hyperparameter
tuning, envisaging high efficiency classification.

In the present work, the passive sonar signal classification was developed in the
context of the Brazilian Navy, which provided the classified experimental data. A variety of
works has been developed with similar data, such as [14,19]. In [19], several preprocessing
strategies were tested to improve the classification performance of a multi-layer perceptron
multi-layer perceptron (MLP) operating on the ship’s irradiated noise power spectrum.
Several preprocessing configurations achieved good results, whereas, for the model fed
with a single spectrum information, the classification efficiency achieved 91.0%. It is worth
mentioning that the classification accuracy was observed to increase when averaged FFT
spectra fed the MLP input nodes, achieving 97.0% of overall efficiency. This motivates the
use of models that can treat multiple spectra at a time, such as CNN, for instance. Another
important consideration made in [19] is the fact that sonar signal classifiers may be affected
by the loss of stationarity arising from both the sea conditions and the ship operating
characteristics, thus highlighting the importance to consider how many FFT spectra the
system should work on.

In [14], a class-modular approach was developed where each class had an expert MLP
model, and the final decision was taken by all networks together in a data fusion committee.
Using such an ensemble approach, the overall accuracy was 84.4%. This work also dealt
with the problem of class imbalance, especially important when one class has far fewer
samples than others, using several different strategies. The best for the application was
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the nowadays common one of weighting the gradient by the number of samples, while
training the models using gradient descent. This work pointed out that each passive sonar
signal class may deserve an expert model. Both of these works [14,19] used shallow neural
networks and did not exploit more complex models. Thus, such approaches did not suffer
much from the lack of statistics. However, deep learning models have been providing
higher classification efficiencies in various domains, which motivates their exploitation for
military data.

Regarding deep learning approaches, several strategies have been proposed for dif-
ferent types of sonars. As in the aforementioned cases, different domains were used with
the deep neural networks, such as, for example, the constant-Q transform (CQT) [12],
which was used to achieve a better representation when compared to the FFT, in terms
of frequency resolution, at the low-frequency band. Coupled with a CNN, this approach
addressed the target signal classification. The impact of several types of pooling and the
amount of layers in the CNN was studied, but the model uncertainties were not estimated,
nor the resilience of these models in real operational scenarios.

In [29], a CNN was used to recognize tonal frequencies in a LOFARGRAM, which
was broken up into several small patches. Then, a CNN was used to predict whether the
patches came from a given tonal frequency or not. A precision of 92.5% coupled with a
99.8% recall was obtained. A CNN with 11 layers was used with a 3 × 1 kernel for the first
layer, but for the last layer, a kernel of the same size as the input was used. The activation
function was the sigmoid. In [30], a stacked autoencoder (SAE) [9] was devised to work
as a novelty detection system identifying unknown patterns on LOFARGRAM data. A
novelty detection accuracy of 87.0% was obtained but the classification accuracy suffered
considerably. In [31], a CNN was applied to perform semantic segmentation for side scan
sonars. The network was constructed as an autoencoder. The encoding network comprised
four sub-encoders made up of residual and convolutional blocks. Likewise, the decoding
phase was performed by four sub-decoders. The proposed method was compared against
other architectures (U-Net, SegNet, and LinkNet). The final network was faster and more
compact, proving to be a good trade-off between task efficiency and model complexity.

Another CNN application was developed on World War II data in [32]. Sixteen
different classes, such as cruiser and submarines, were considered in this study. Deep
belief networks [33] were also applied to the same signals and obtained an accuracy up
to 96.96%, while the overall accuracy of CNN models was 94.75%. Hong et al. [34] used
the ShipsEar acoustic database in order to train and classify underwater targets using an
18-layer residual network (ResNet18) combined with a feature extraction method based
upon the use of the mel-frequency cepstral coefficients (MFCC) and log mel methods. The
work achieved 94.3% in class accuracy. As it happened with other works, such complex and
large networks were developed to solve the problem at hand, but without any attention to
the uncertainties that arise when using such deep models. The work proposed in the present
paper aims to develop deep learning models for such a complex problem (sonar systems
analyses of beamformed military data), but also envisages verifying their usefulness in
experimental conditions.

Moving on to the generative side of the related works, we notice that GANs have
already been applied in several other fields to generate new samples (also in underwater
environments [35–37]) with varied objectives. For example, Ref. [35] used GANs to change
the domain of images, making them look like they were taken underwater. On the other hand,
in [36], GANs were used as a data augmentation technique in order to enlarge a dataset of
underwater images (such as pictures of submarines, divers, sunken ships, . . . ), which is then
used to train a classifier. In [38], a conditional GAN (cGAN) was successfully proposed to
transform low-resolution sonar images into higher resolution versions using the image-to-
image framework ([37] also has the same objective). In [39], a Markov conditional pix2pix
(MC-pix2pix) algorithm was proposed to produce authentic side-scan sonar data images.
One interesting result was that the data produced were of high quality, as measured by
specialists. These results further motivate the use of generative models in specialized
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data such as in military applications. The MSTAR (US air force) [40] radar data were
used to train a cGAN, which was later used to generate synthetic samples to train a CNN
classifier [41]. A recognition rate of 52.8% was achieved by a baseline model that operated
on raw data, while accuracies of 75.7% (training in a mixed combination of real + synthetic
data − cGAN generated) and 89.3% (training and evaluating in real+synthetic data) were
achieved with the CNN classifiers fed with LOFAR data. Yang et al. [42] trained a modified
information GAN (InfoGAN) [43] on LOFAR data, coming from the ShipsEar [44] and the
San Francisco National Park Association (data recorded on WWII) datasets, to generate
data and subsequently train a CNN-based model. The results pointed out a recognition
rate of 77.3% for models trained with real data and evaluated with real data, 85.4% for
models trained with real data and validated with synthetic data, and 92.9% for models
trained and validated with real and synthetic data.

Considering PSS, in general, it is worth citing [45], where the authors employed a
cGAN to produce synthetic samples of LOFARGRAMs, aiming to use them to enlarge the
training dataset of a CNN classifier. The synthetic samples were integrated into training
in two manners: adding the data to the training set and adding the synthetic samples
to the validation set. A visual analysis of the generated samples pointed out that they
were coherent with the training data used. The obtained classification result, on a mixed
sample of real and synthetic data, was 91.3%. It is worthwhile to note that these works
trained and evaluated efficiencies on a mixture of real and synthetic data. However, for
military applications, performance evaluation had better avoid quoting from such mixed
data computations, as defense decisions require high confidence levels, and efficiencies
may be biased by including synthetic data in the final evaluation.

Considering GAN designs based on multiples GAN approaches, in [46], the several
GAN (SGAN) was proposed. Several adversarial pairs of generator–discriminator were
trained independently and, in parallel, a global discriminator and generator networks were
trained. The global discriminator model was optimized to detect samples generated by any
of the local generators and the global generator model was optimized to fool all the local
discriminators at once, preserving the gaming idea applied in Vanilla GAN but now with
multiple players. However, they all employ the same GAN “variant”, different from our
“boosted” approach (see Section 4), which evaluates a blend of GAN topologies.

From the literature review, consistent performance uncertainty evaluation and a deep
dive into expert analysis can contribute to the application of deep learning modeling
in passive sonar signal classification. These are among the main contributions of this
paper, indeed.

4. Deep Learning Models

The proposed method comprises a CNN classifier to perform the classification task
and a GAN to provide further sampling distribution details for each target class through
synthetic data generation. Two different training paradigms were tried in this work. In the
first, called maximum probability (MaxPro), a single classifier handles the classification of
all classes simultaneously. Meanwhile, in the second, the class-expert (ClaExp) approach,
each class has a dedicated classifier (the expert), and the final decision is taken by combining
the result of all expert classifiers together.

The advantage of ClaExp paradigm is that when a new class needs to be added to
the classification system, we only need to train another ClaExp module and add it to the
pool instead of developing the entire system again, as would be the case in the MaxPro
classifiers. This scalability is an important factor given the plethora of different types of
ships (and classes of ship) that exists even within a single country’s Navy. However, the
MaxPro approach would still be useful for final ship classification, performed when the
system had issued a trigger for a given class and the specific ship must be identified within
that class.
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4.1. CNN

In CNN, the unit connections in the convolutional layers are restricted to only a few
regions of the input data. By sharing the connection parameters between different units, the
model can extract the same pattern, regardless of its position at the entrance. The elements
obtained from this process feed a layer of fully connected neurons [9]. Such a configuration
gives rise to layers capable of extracting elementary characteristics, which can be combined
into deeper layers to obtain complex data representations. In the context of passive sonar
signal classification, this topology could be applied directly upon the LOFARGRAM, which
was assessed through images containing spectral maps (see Section 5).

4.2. GAN

In [13], GAN were introduced as unsupervised models that try to generate synthetic
data following the sampling distribution of the data presented to them. For this, two feed-
forward networks, namely, the generator and the discriminator, play a min–max zero-sum
two-player game, where the generator’s objective is to synthesize samples realistic enough
to fool the discriminator. At the same time, the discriminator’s objective is to differentiate
between real and synthetic samples. Figure 3 displays a schematic of the GAN framework.

Figure 3. Overview of the GAN framework, consisting of two models, the generator (G) and
discriminator (D). The training of both models happens simultaneously. The G network receives
noise as input and generates synthetic data samples. These synthetic samples are used, together with
actual samples, to train D, which in turn provides the feedback necessary to train G. The idea is that
the training will stop when D cannot differentiate between real and synthetic samples anymore. Note
that G never sees any actual samples whatsoever and is trained only through the feedback it receives
from D.

The training can be mathematically described as follows: Defining pd ∈ X as the
true underlying sampling distribution that is to be modeled and defining pz ∈ Z (usually
sampled from N (0, 1) or U (0, 1) distributions) as the input distribution of the generator,
the generator and discriminator can be, then, defined as two mapping functions. The
generator is a function G(.; θg) : Z 7→ X, i.e., maps a noise vector onto a sample following
the true underlying probability. To define the discriminator, we need to further define
pG as the probability distribution obtained by G(z) when z ∼ pz. Thus, we can define
the discriminator as a function D(.; θd) : {X, G(z)} 7→ [0, 1], i.e, a classifier that maps real
samples to 1 and synthetic samples to 0. Here, θg and θd are the parametrization of the
generator and the discriminator, respectively.

Unfortunately, the GAN’s original formulation is unstable and hard to train [47]. For
that reason, several techniques and other formulations have been proposed to stabilize the
training. One of these formulations was proposed by Arjovsky et al. in [47,48] using the
optimal transport theory [49]. Arjovsky proposed the use of the Wasserstein distance, which
can also be called Wasserstein metric [50], Earth mover distance, or Kantorovich–Rubinstein
metric. The Wasserstein distance can be written as
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W(pd, pG) = inf
γ∈Π(pd ,pG)

E(x,y)∼γ[||x− y||] (1)

where ||.|| is a distance measured between two points (e.g., Euclidean distance).
The Wasserstein distance is defined over the set Π(pd, pG) of all possible joint distribu-

tions γ whose marginal distributions are equal to the underlying real distribution pd and
the synthetic distribution pG (the distribution defined by the synthetic samples g such that
g ∼ pG) and, as such, it is computationally intractable. However, the Wasserstein distance
has another formulation called the Kantorovich–Rubinstein distance:

W(pd, pG) = sup
|| f ||L≤1

Ex∼pd [ f (x)]− Ex∼pG [ f (x)] (2)

where the supremum is taken over all 1-Lipschitz functions [51] (and f in our context
represents the discriminator).

It is clear that the supremum is still intractable, but it is easier to approximate or
enforce. One way to deal with the Lipschitz constraints [48] is by adding a regularization
term on the objective function in order to penalize it if the gradients of the discriminator
stray from 1, thus, making sure that the Lipschitz constraints are enforced. The objective
function with the proposed regularizer constant becomes

Ex∼pd D(x)− Ez∼pz D(G(z)) + λEx̂∼px̂ [||∇D(x̂)|| − 1]2 (3)

where x̂ represents interpolated points between real data x and generated samples from
G, and λ is a regularization coefficient. Given a good enough λ, the optimal discriminator
under this objective function will be optimal under the Wasserstein distance. This method
is known as Wasserstein GAN with gradient penalty (WGAN-GP) [48] and is the one
employed in this paper.

Another motivation for the use of the Wasserstein GAN (WGAN) formulation is the
fact that the original GAN formulation suffers from the mode collapse problem (i.e., some
modes present in the real data are not learned by the generator and thus are not replicated).
In contrast, the WGAN does not seem to suffer from it [48].

4.2.1. Different GAN Implementations

Several variants of GANs were proposed in order to improve upon early results or
develop new desirable properties. Depending on the desired property, the architecture of
the generator/discriminator has to be changed to introduce extra information.

One relevant aspect was to control the signal class of the synthesized samples. One
way to do so is to condition the generative model to the desired class. This can be achieved
by adding class label information to the training phase, and the most common way is to
add the class label to the input of the networks. In the generator, the one-hot-encoded
class label is concatenated to the input random vector; meanwhile, in the discriminator, the
input is also concatenated with the one-hot-encoded class label; but, since it receives, in our
case, an image as input, the one-hot labels are concatenated channel-wise with one channel
per class and the “hot channel” marked as one. This model is known as the cGAN [52].
Instead of training an expert GAN for each class, as we propose here, it is possible to use a
single cGAN for data generation for all classes. Thus, this cGAN variant was also tested
for evaluating such a one-fits-all approach. One advantage resulting from the proposed
class-expert GAN is synthetic data generation scalability with each new acquired class, as
it does not require retraining every time a new class is added to the system.

Going further in the cGAN approach, the discriminator may also act as the final
classifier. To ensure that, minor changes are required. Firstly, the class label is removed from
the discriminator’s input, while the generator is kept unchanged. Secondly, a new output is
added to the discriminator to predict the desired class. Finally, the loss function is modified
to take into account the classification problem. This is known as auxiliary conditional GAN
(AC-GAN) [53], which can be interpreted as two different models (the discriminator and
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auxiliary classifier) sharing weights. However, this distinction is purely theoretical; since, in
practice, this model is implemented by making the discriminator having two outputs: the
first indicating the veracity of the sample, and the second classifying it. Thus, the AC-GAN
architecture dispenses the use of a secondary model for classification.

Another possible variant was introduced in [54], the packing GAN (PACGAN). Now,
the discriminator is modified to take as inputs multiple samples (either real or synthetic) of
a single class and make decisions on these concatenated samples (i.e., the packing). In [54],
the authors have shown that packing acts as a penalizer for generators with mode collapse.
In our model, this adversarial training approach was coupled to the proposed class-expert
WGAN.

All these GAN variants were tested either to see whether a general solution would
be advantageous with respect to the proposed expert solution or variants could introduce
additional diversity for synthetic data. On top of such comparisons, we used all the trained
generators to synthesize samples for the final classifier design. The amount of synthetic
samples to be produced by each generator was kept fixed and equal to all the other tests
conducted with synthetic data. This was performed to avoid introducing a new source
of variation (more samples) except for the fact that several generators would be used.
This combined synthetic data production can be understood as a “boosted” approach
to data generation. It is important to notice that although all these exposed variations
have introduced alternative adversarial training concepts, their differences are structural.
These structure changes boil down to these networks having different inputs/outputs in the
generator and/or the discriminator (with the only exception being the AC-GAN, which also
modifies the loss function slightly, as explained before). However, the adversarial objective
can still be expressed through the use of the Wasserstein distance as a cost function.

Tests were conducted with cGAN, AC-GAN, PACGAN, and the one proposed in
Section 4.2, which will be referred to henceforth as ExpertWGAN. For the “boosted” pro-
duction tests, where multiple generators were employed for synthetic data generation, the
AC-GAN was the only exception, since this variation already has an embedded classifier.

5. Dataset and Preprocessing

The data used in this work are composed of recordings of irradiated noise coming
from ships belonging to four different classes, which will be identified as A, B, C, and D, as
they come from classified military data. The recordings were made in a controlled setting,
an acoustic lane of the Brazilian Navy, and employed a single hydrophone placed at a
depth of 45 m with a sampling rate of 22,050 Hz and an 8-bit resolution. The acquisition
system started recording when the ship was located 1000 m away from it and terminated
the recording when the vessel had passed 500 m by it.

The recordings were made on different operating conditions, considering both the
engine and the sea conditions. All classes have ten recordings each, henceforth called runs,
with the only exception being Class A, which has only five runs. Each run is, on average,
two minutes long, producing a total of 1 h and 10 min of recordings, which are not, by any
measure, plentiful data.

5.1. Preprocessing

The first step of the preprocessing chain is to make each recording undergo the LOFAR
analysis, as explained in Section 2. The STFT step utilized a 1024 sample acquisition
window with each frequency bin representing approximately 21.5 Hz and each processed
spectrum corresponding to 47 ms in time. All the first 400 bins up to the cutoff frequency
were kept for further processing, and the rest was discarded [19]. After the completion of
the LOFAR analysis, the normalization step takes place. For every spectrum produced by
the LOFAR analysis, a normalized version is produced by dividing the spectrum by its `2
norm. Mathematically, each bin in the normalized spectrum can be expressed as a function
of the un-normalized spectrum, as such:
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ŝij =
sij√

∑j |sij|2
(4)

where ŝij is the frequency bin j in the i-th normalized spectrum, while sij is the un-
normalized one.

5.2. LOFAR Imaging

After the LOFAR analysis was performed, sub-images were taken directly from the
generated LOFARGRAMs. To achieve that, for each LOFARGRAM, beginning at the run
start, consecutive sub-images of size L× 400 were taken at everyR rows, as it can be seen
in Figure 4. Thus, L controlled how many LOFARGRAM rows (number of spectra in the
waterfall sub-image) will be used for building an image, and R controlled the number
of rows that would be superimposed from one image to another. In the end, a dataset
consisting of sub-images (i.e., sub-LOFARGRAMs) was obtained. It was this set of sub-
LOFARGRAMs that were fed into the input nodes of all neural networks developed in
this paper.

Figure 4. An overview of the sub-imaging process. For each LOFARGRAM, sub-images of size
L× 400 were taken at everyR rows.

The image construction parameters, L and R, impact the design and operation of
PSS. Choosing L, for instance, intrinsically dictates the amount of dead time for an online
response, since the system will have to wait until L rows are collected before it can classify
the incoming signal. Table 1 shows that the amount of dead time may reach up a few
seconds, which may be prohibitive in some situations (for example, combat scenario).
However, in other applications, such as coast monitoring, such dead time values may
be negligible. Another consequence arising from this sub-image construction process is
the amount of data left at its end. Table 2 shows that there is a considerable impact on
the remaining statistics available for classifier development, depending on the chosen
configuration.

Table 1. The dead time in data acquisition, when the number of acquisition windows required for
forming the sub-images is varied.

L 1 20 40 60 80 100 150

Dead Time 0.047 s 0.94 s 1.88 s 2.82 s 3.76 s 4.70 s 7.05 s
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Table 2. Amount of images that remain after the sub-imaging construction, taking all runs in Class A
as an example, for several possible configurations of sub-image parameters.

R
L

1 5 10 20 30 40 50 100

5 2588 2584 2579 2569 2559 2549 2539 2489
10 1295 1294 1290 1285 1280 1275 1270 1245
20 649 648 646 644 641 639 636 624
30 434 433 431 430 429 426 425 416
40 325 325 325 324 321 320 320 314
50 260 260 260 260 259 256 255 250
100 130 130 130 130 130 130 130 125

It is also important to notice that the larger the sub-image, the higher the input data
dimensionality is and, consequently, the higher the number of parameters that need to be
tuned in a given model. This point becomes even more crucial when the size of the image
(parameterized by L) is directly linked to the amount of data available (even though theR
parameter is more impactful in this respect), since the larger the number of parameters in
a model, the more data are needed for proper modeling. One valid concern that may be
raised on the choice ofR is that when choosing a smallR value, sub-image diversity will
be reduced, as several images in the dataset will end up being practically copies of each
other since they will differ by just a few rows in the LOFARGRAM. Meanwhile, a large
value of R will result in a tiny training dataset (i.e., with R > 20, there will be less than
one thousand images for training in which Class A is concerned). It is also important to
notice that we must haveR ≤ L in order to not lose rows in the dataset creation process.

Another point that is worth mentioning is the signal stationarity, at least in the wide
sense [19,55,56]. This is especially important for the choice ofR, since in case a large value
is chosen, the sub-images created from the LOFARGRAM would lead to a possible loss
of stationarity. Stationarity issues were pointed out in [19], whereas that paper discusses
how many consecutive spectra could be averaged in order to raise the signal-to-noise ratio,
which would also be affected by the loss of stationarity. This gives another handle on how
to select the R value. However, the real problem in our case would be the number of
samples left for training, since choosing anR capable of causing stationarity issues would
leave few samples for training. In this work we used L = 20 and R = 5. To reach these
values, several different configurations were tried out and their results will be presented in
Section 7.

6. Proposed Method

The outline of the proposed method can be seen in Figure 5. The proposed method
is split into three steps. Firstly, the WGAN models (generators and discriminators) are
trained in a ClaExp manner following the study conducted in [14], i.e., for each class (A,
B, C, D), a dedicated network is trained (see Figure 5a). Secondly, after the training of the
generative models is completed, the discriminator is discarded and the ClaExp generator is
used to synthesize sub-LOFARGRAMs for each class. The synthetic dataset is composed of
all the synthetic images gathered together. Finally, the synthetic data are used to train the
CNN classifiers (see Figure 5b).

This proposed approach was confronted with the one-for-all approach, which, in this
paper, was represented by the cGAN and AC-GAN strategies. Thus, the first step above
needed to be modified, since a single model would generate samples for all classes. It is
also important to notice that for the case of AC-GAN, the third step was unnecessary, since
such topology also includes the classifier.

Concerning the final CNN classifier, two training paradigms were devised. The
first was the MaxPro strategy, while the second relied on expert modules, as depicted in
Figure 6. In the second case, each module was specialized into a single class. Such ClaExp
design approach was built in two steps. The first one consisted of training each expert
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module individually. The training of each module was performed in the one-against-all
manner. Each module was a standalone CNN classifier that received as input a sub-
LOFARGRAM and provided two outputs, one for the specialized class (i.e., if the ClaExp
module on the class A received as input an image of Class A then this neuron would
activate) and another for all other classes. Once all individual modules finished training,
the last layers of the expert modules were removed, so that we could profit from the features
extracted by each expert module to create another integrated classifier, which would in turn
make the final decision. Thus, the expert features were concatenated and fed into a fully-
connected single-hidden layer network (fusion MLP module) for final classification in a
MaxPro manner.

Two things are worthy of note about this last classification layer: (1) the expert modules
were frozen and only the fusion MLP module was trained, and (2) the added classification
layer was trained with the same kind of data (synthetic, experimental, or mixed) that
were used for training each expert module. Notice that this second paradigm was not
explored for the conditional GANs (cGAN, AC-GAN), since these solutions are meant to
represent the one-for-all approaches. Tests were also conducted with the PACGAN and a
conglomerate of all generative models trained (except the AC-GAN), the “boosted” GAN
production, where each trained GAN generates a portion of the synthetic data to train
the classifiers.

(a)

(b)

Figure 5. Proposed CNN-based classifier development: (a) synthetic data generation step through
class-expert training of the adversarial models (expert WGANs) and (b) classification step by em-
ploying CNNs, which were trained on both synthetic and experimental data by using either a mixed
data training procedure or fine-tuning the synthetic data-based classifier with experimental data for a
final classification.
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In order to exploit both synthetic and experimental data, three training approaches
were considered for the classifier designs (for both the ClaExp and MaxPro designs). This
is sketched in Figure 5b. For the first, the classifier was trained solely on synthetic samples
(first row represented in Figure 5b). Second, the synthetic samples were combined with
the experimental data that were used to train the generative models. Henceforth, this is
referred to as the all together design strategy (second row in Figure 5b). Third, the classifier
was trained on synthetic samples first and, in the sequence, fine-tuned on the experimental
data used to train the generative models (third row in Figure 5b). The comparison with
a deep learning baseline model was carried out with a classifier trained solely on the
experimental training samples. In the case of the AC-GAN classifier, these approaches were
not implemented since the AC-GAN also acts as the final classifier.

(a)

(b)

Figure 6. The classification system based on class-expert modules. In step one (a), the expert modules
were trained. In step two (b), the trained expert models were frozen up to their classification layers,
which were then all removed. In the sequence, a new classification layer was added to fuse the expert
contributions obtained from the frozen models. The number of output nodes in this last layer equals
the number of target classes. See text.
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6.1. Network Topologies and Training

In this subsection, the network topologies and the applied training methods are de-
scribed. Concerning adversarial models, the proposed expert WGAN design is explained
in detail. To design the other variants, as discussed in Section 4.2.1, simple changes were
applied, while maintaining all other hyperparameters rigorously the same (number of lay-
ers, number of neurons, training algorithm). For the expert WGAN, the generator network
took input vectors z ∈ R100 (see Equation (3)) drawn from an uniform distribution over
[0, 1] and outputted a sub-LOFARGRAM image of size L× 400. The network architecture
was inspired by the deep convolutional generative adversarial network (DCGAN) [57]
architecture and can be seen in Table 3. The upsampling layers were used to enlarge the
image size. The reason for this was to keep the number of parameters from exploding
since if we took as input a random vector with the same size as the output, the number
of parameters would become too large. Rectified linear unit activation rectified linear
unit activation function (ReLU) [9] functions were used as the activation functions in all
layers except for the last layer, which employed the hyperbolic tangent. All parameters,
for the networks trained in this paper, were initialized following the initialization method
presented in [58], which initializes the weights with values drawn from a truncated normal

distribution centered on 0 with standard deviation equal to
√

2
h , where h represents the

number of inputs of the layer.

Table 3. Generative model topologies.

Model Layer Type Number of Neurons Kernel Size Activation Stride Padding

Generator

1 Dense 500 - ReLU - -
2 Reshape 5 × 100 - - - -
3 Up-Sampling - - - 2 -
4 Convolutional 128 5 ReLU 1 SAME
5 Up-Sampling - - - 2 -
6 Convolutional 64 5 ReLU 1 SAME
7 Convolutional 1 5 Tanh 1 SAME

Discriminator

1 Convolutional 16 5 ReLU 1 SAME
2 Convolutional 32 5 ReLU 2 SAME
3 Convolutional 64 5 ReLU 2 SAME
4 Flatten - - - - -
5 Dense 50 - ReLU - -
6 Dense 1 - Linear - -

The discriminator was also inspired by [57]. Upon being fed from images of size
L × 400, the discriminator model produced a scalar with positive values meaning that
the image comes from the experimental dataset and negative values for synthetic images.
Target values were 1 for experimental samples and −1 for synthetic ones. The network
architecture is depicted in Table 3. The choice of a linear activation function instead of the
more common sigmoid or hyperbolic tangent activation function was due to the fact that
the Wasserstein distance requires linear outputs. This means that instead of just classifying
the samples into real or synthetic, the discriminator acts more as a critic measuring the
“realness” of the sample.

The training process was performed iteratively for the generator and the discrimina-
tor following the gradient penalties discussed in Section 4 (WGAN-GP). Mini-batches of
m = 64 for both LOFARGRAM sub-images and noise samples were applied combined with
stochastic gradient descent and the Adam optimizer [9] with β1 = 0.5 and β2 = 0.9. A learn-
ing rate of 0.0001 was used for 5000 epochs. Before the training started, the normalization
step was performed.

Except for the number of output neurons, the classifier designs employed the same
architecture (see Table 4). A dropout layer [59] with a dropout rate of 0.25 was used after
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each convolutional layer (except for the first). Every convolutional layer used a stride
equal to 2 to reduce the image’s size. All activation functions were of ReLU type except for
the last one, for which a softmax function was employed. The last layer had two or four
neurons, for the ClaExp and MaxPro, respectively.

Table 4. Topology for the CNN classifiers.

Layer Type Number of Neurons Kernel Size Activation Stride Padding

1 Convolutional 16 5 ReLU 2 SAME
2 Convolutional 32 5 ReLU 2 SAME
3 Dropout - - - - -
4 Convolutional 64 5 ReLU 2 SAME
5 Dropout - - - - -
6 Convolutional 128 5 ReLU 2 SAME
7 Dropout - - - - -
8 Flatten - - - - -
9 Dense 100 - ReLU - -

10 Dense 50 - ReLU - -
11 Dense 4 - ReLU - -

For the synthetic data generation, each designed GAN produced 30,000 samples; this
value was selected in order to fit the data in the graphics processing unit (GPU) device
memory, in which this work was performed. The Adam training algorithm was employed,
with β1 = 0.9 and β2 = 0.999, together with the categorical cross-entropy loss function for
a total of 1000 epochs. An early stopping strategy was applied, whereas the training would
stop if no improvement (as measured from the validation set) was observed in 30 epochs.
Mini-batches with 1024 samples were used during training.

6.2. Cross-Validation

Cross-validation [60,61] was applied to assess the statistical fluctuations on the classifi-
cation efficiencies of the developed classifiers. Two different cross-validation methods were
considered. In the first, the experimental data were partitioned into n equally sized disjoints
subsets (folds), which were, subsequently, used for training and testing a given model. The
entire process was repeated n times, once for each fold; here, ten-folds were used (80% of
data were used for training while 10% were kept for validation and the remaining 10%
were kept as the test set). This method is referred to henceforth as the window-based
cross-validation. It is worthwhile to mention that each experimental run was, thus, divided
into ten folds and then separated into training/validation and test sets.

The second cross-validation method was an adaptation of the leave-one-out cross-
validation method, where in each fold an entire run of each class was selected to compose
the test set, while all other runs composed the training and the validation sets. This LORO
cross-validation method aimed at estimating the statistical fluctuations in a condition that
is closer to the practical operation. In such cases, when a target signal is detected, the
classification of the signal is made for the entire run. The LORO cross-validation also
employed 10 folds. It is important to notice that since class A has only five runs instead
of 10, as per all others, we needed to repeat the runs used in the first five folds of the
LORO cross-validation in the five last runs for this class. In both methods, the training
set was used to adjust the model’s parameters, the validation set was applied for an early
stop of the training phase, in order to avoid overtraining, and the test set was employed
for performance evaluation. For each fold, the generative models and the classification
networks employed the same data partition into training/validation/test sets.

6.3. Evaluation

Starting from the GANs trainings, two important aspects should be addressed. The
first refers to the overfitting of the generator: Did the generator produce new samples



Remote Sens. 2022, 14, 2648 16 of 36

or just reproduce the experimental ones that were used during training? One simple,
straightforward way to check for it is to compute the `1 and `2 pixel-wise errors between
real and synthetic sub-LOFARGRAMs. The intuition here is that if the generator was
merely memorizing and reproducing the samples presented to it at the training phase, there
would be some errors near zero between the experimental samples and the corresponding
synthetic production. The `1 and the `2 errors between experimental images were also
computed to evaluate whether the errors between experimental and synthetic images were
within the data fluctuations of the experimental images.

The second training aspect: were these newly generated samples following the same
probability density function (PDF) as the original data? This question was tackled in two
different ways. The first was the generator’s training error itself, since the Wasserstein
distance, in our case, is a measurement of how close the PDFs of the experimental and
synthetic samples are. The second was by using the Kullback–Leibler (KL) divergence [62].
The LOFARGRAMs (and the sub-LOFARGRAMs) comprised several FFT spectrums com-
posed themselves of 400 frequency bins. The PDF of each of these frequency bins was
estimated for both experimental and synthetic images, and then the KL divergence was
computed between the corresponding bins. Since the KL divergence bears no absolute
scale to measure whether the results were sufficiently good, we proposed a process to
create a ruler by which the results might be measured against each other. To perform this,
the KL divergence within each class was computed, i.e., the KL divergences between all
training runs of the same class were evaluated. For example, class A has five runs, so the
KL divergence between the first run and the second one was calculated for every single
bin, and then this same process was repeated until all possible run pairs ((1,2),(1,3),(1,4). . . )
had been processed. In the end, the average values along with their root-mean-square
(RMS) estimates were plotted. The idea is that these measurements would give a sense of
how much the runs vary within classes (A, B, C, D) and provide a way to check whether
the KL divergences between the real and synthetic data were within the KL divergence
fluctuations within classes, which would mean that the synthetic samples were generated
as desired.

The KL divergences between experimental and synthetic samples were computed for
each cross-validation fold to gauge the statistical fluctuations of the generator task. The
KL’s average values, along with their RMS deviation values, were plotted along the ruler,
creating thus a visual comparison. This analysis was performed using the training sets. One
may ask why not calculate the KL divergence between all bins and condense the results
down to a single number instead of bin by bin ? To achieve that, a 400-dimensional PDF
had to be estimated, which is a complex task. In addition, LOFAR bins refer to different
received signal characteristics, as some contain target sonar signal information and others
background noise and self-noise from the sonar platform and by adding them together,
the results would lose the ability to show which bins our GANs were having more trouble
replicating.

To evaluate the passive sonar signal classification performance, some usual measures
were computed (accuracy, recall, F1-score and precision) [9]. Additionally, the sum-product
(SP) index [63] was also used. Mathematically, the SP index is defined as

SP(ε) =

√√√√√ 1
K
K
∑
i=1

Ei(ε)
K

√√√√ K
∏
i=1

Ei(ε) (5)

where Ei(ε) is the detection probability for Class i in a given classification threshold
ε ∈ [0, 1]. Here, the ε value is chosen for SP maximization, which favors balanced
classifier designs with respect to class efficiencies, as the geometrical mean forces the index
to drop substantially when an efficiency for a given class is significantly reduced.

Another important aspect is how the system reacts to interference, since in a military
application, it is paramount to assure that ambient noise and data acquisition issues will
not hit the system substantially. Thus, the influence of eventual rain and the sea conditions
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were analyzed. Note that the experimental data considered here already carry additive
noise from the ambient and these analyses reinforce how sensitive the developed deep
learning models would be in terms of changes of conditions in a practical operation.

The rain noise is generated by the impact of the raindrop on the surface of the sea,
followed by the surface oscillation caused by the initial impact of the drop and the oscillation
caused by the air dragged under the surface. Such a noise has been classified into four
levels: light, medium, strong, and very strong (see Figure 7a). Each level is associated
with a precipitation rate. On the other hand, the sea condition noise may be categorized
into seven levels, which are associated with the wave height (see Figure 7b). These are
generated by the waves and the wind affecting the surface of the ocean [64].

In order to evaluate the impact from such ambient noise sources on the classification
efficiencies, finite impulse response (FIR) filters were designed for synthesizing the different
noise levels from white Gaussian noise inputs. Once the corresponding noise level was
produced, it was added to the ship recordings at a given level of signal-to-noise ratio
(SNR) (chosen as 10), and subsequently the entire image processing chain was applied as
previously described.

(a) (b)

Figure 7. Spectral behavior for the rain (a) and sea (b) noises.

For evaluating the classifier resilience to data acquisition issues, firstly, dropped signals
were considered. This was emulated by simply zeroing an entire acquisition window; in
our case, comprising 1024 samples. This translated into zeroing an entire row in the
LOFARGRAM. The assumed probability of each window being dropped was set to 10%,
which is in itself an extreme case, but the idea was to see how the system would react
under such a condition. Secondly, frequency occlusion was taken into account. This type
of interference was simulated by using a fifth-order Butterworth filter with a frequency
rejection band of 121 Hz. Starting from 121 Hz, continuous frequency bands of 121 Hz were
occluded until the end of the spectrum range. For all these cases, the obtained results were
compared to the original data acquisition condition in the acoustic lane.

7. Results

The first step that needs to be addressed is the choice of L andR, which will dictate
the dead time and the amount of data available to train the system. This is discussed in
Section 7.1. The following Section 7.2 describes the synthetic data generation from the
expert WGAN and evaluates whether copying experimental data was avoided. Subse-
quently, still in this subsection, the synthetic data production is analyzed for the alternative
adversarial models under consideration and a general discussion is carried out on such
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processing step. Section 7.3 analyzes signal classification, and its resilience against noisy
conditions is evaluated in Section 7.4. The different designs are compared, and a general
discussion concerning the classification results is provided, in Section 7.5.

7.1. Image Processing Parameters Choice

In order to determine the values of L andR for building the sub-LOFARGRAMs (see
Section 5.2), the expert WGAN was used and the determined parameter values were used
for all other GAN variations. The values of L were iterated over the set {20,40} andR over
the set {5,10,20}. Values of L above 40 were not considered in this study since [19] pointed
out that time windows of ≈3 s could give rise to stationarity issues and a window of L = 60
would hit that mark. Values ofR above 20 were not taken into account since Table 2 shows
that the amount of training data would be minimal over this threshold. For L = 40, the
generator presented in Table 3 had to be slightly modified in order to generate an image
with L = 40 rows. Therefore, another upsampling layer was added (used specifically to
upsample 20 to 40 in the first dimension) and another trainable layer of 32 convolutional
filters was also included.

In Table 5, the accuracy and the SP index values for a variety of configurations for
the MaxPro training regime are displayed. There seems to be a tendency of growing
uncertainties with the increase ofR, which is comprehensible as a largerR implies fewer
images for training and, thus, the same amount of parameters have to be adjusted with
fewer data. The mean accuracy also seems to become smaller asR becomes higher. With
these considerations, we chose to useR = 5. The case for L is less straightforward, since
the mean values for L = 20 and L = 40 do not seem to differ that much from each other.
However, there is a slight increase in the associated uncertainties when moving from L = 20
to L = 40. Therefore, L = 20 was applied.

Table 5. Maximum SP index and accuracy computed for several values of the L and R parameters
applied to the different strategies tested.

Strategy L
R

5 10 20

SP Baseline 20 97.7 ± 1.3 97.5 ± 2.7 96.6 ± 3.3
Synthetic 96.0 ± 1.2 92.4 ± 2.5 87.4 ± 5.1
Fine-tuned 98.8 ± 0.6 98.4 ± 1.2 97.4 ± 2.0
All together 98.6 ± 0.5 98.0 ± 1.4 97.6 ± 1.8

Baseline 40 97.4 ± 3.5 97.4 ± 3.3 96.3 ± 3.9
Synthetic 96.9 ± 1.7 95.3 ± 1.5 92.7 ± 2.2
Fine-tuned 99.0 ± 1.3 98.7 ± 0.9 98.0 ± 2.1
All together 98.7 ± 1.2 98.3 ± 1.4 97.4 ± 1.5

Acc Baseline 20 98.2 ± 1.0 97.6 ± 2.7 96.9 ± 2.8
Synthetic 96.8 ± 0.8 94.3 ± 1.4 90.2 ± 3.7
Fine-tuned 99.0 ± 0.4 98.7 ± 0.7 97.7 ± 1.7
All together 98.8 ± 0.4 98.5 ± 1.0 98.0 ± 1.2

Baseline 40 97.3 ± 3.5 97.6 ± 3.3 96.4 ± 3.6
Synthetic 97.8 ± 1.1 96.5 ± 1.0 94.7 ± 1.2
Fine-tuned 99.1 ± 1.0 98.9 ± 0.7 98.2 ± 1.2
All together 99.1 ± 0.8 98.7 ± 1.0 97.8 ± 1.2

For the chosen configuration, each sub-LOFARGRAM spans 1 s of the signal. Addition-
ally, such a configuration provides some sort of diversity to the set of sub-LOFARGRAMs,
since there is a 25% change in each subsequent image.

7.2. Synthetic Data Production

This subsection is composed of two parts. First, the proposed expert WGAN approach
is analyzed and then the alternative GAN designs are evaluated, so that the relevant
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differences might be pointed out. Results from the “boosted” GAN production are also
detailed. Results emphasize the LORO cross-validation method, since this is closer to
practical sonar system operation.

7.2.1. Proposed Expert GAN Approach

In Figure 8, the training curves for the expert WGAN are shown, for every fold
and every class. It can be seen that the Wasserstein distance did not converge to null,
but to a value close to 0.5 for every single class. Similar behavior was achieved for the
window-based cross-validation scheme.

This training curve pointed out that the original signal class PDFs and the ones resulted
from synthetic data were similar enough but not identical. Thus, the classification task
might benefit from such diversity brought by synthetic data production.

In Figure 9, the mean KL divergence values between runs of the same class (Class
A and Class B in Figure 9a,b, respectively) are shown in blue for each frequency bin.
Additionally, the mean KL divergence values between real and GAN-synthesized data are
in red. As it can be seen, even in spots with great variability, such as between bins 0–50,
75–100, and 125–150 for Figure 9a and 0–25 and 75–125 for Figure 9b, the GAN generators
seem to reproduce the modes encountered in real data, as KL values were close to zero. It
is worth noticing that the regions of interest (low-frequency information usually contained
in the range 0–3 KHz), as pointed out by experts and located up to bin 150, were correctly
recreated according to the KL signal’s characterization. In the case of classes C and D,
such KL divergences between synthetic and experimental data pointed out that synthetic
samples were even more adherent for every bin. The same behavior happened in the
windowed-based cross-validation method, which was expected since the training data did
not change significantly with respect to run data analyses (in contrast to the testing sets).

Figures 10 and 11 show the histograms of the `1 and `2, respectively, for a given fold,
which repeated itself consistently throughout all folds and for both cross-validation meth-
ods. The plots complement what was shown in Figure 9 by pointing out that the generator
did not replicate experimental images seen during training; otherwise, there would be some
histogram entries at zero values. Another observation that can be highlighted is that the
differences between the experimental and synthetic images were generally higher than the
differences computed among real images, which may indicate two things: there was some
sort of generation variability in the synthetic images, and the generator was not merely
generating copies of the training images with minor changes. This variability created by the
GAN generator might be the key point of the proposed strategy for enlarging the classifier
training sample examples and reducing the uncertainties of the deep learning model due
to the original limited experimental target class run statistics.

Figure 8. Training curves for the expert WGANs in LORO cross-validation regime. All classes
converged to a similar value, implying that all networks were capable of creating valuable images.
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Figure 9. Comparison between the KL divergences within classes and the KL divergence between synthetic and real samples of classes A (a) and B (b) for the
LORO-based cross-validation.
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Figure 10. The `1 errors between real-real images and real-synthetic images. Real images were taken
from the training set for the LORO-based cross-validation.
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Figure 11. The `2 errors between real-real images and real-synthetic images. Real images were taken
from the training set for the LORO-based cross-validation.

7.2.2. Alternative Approaches

Figure 12 shows the class-expert training curves (Classes A and B) for every fold, con-
cerning the PACGAN in contrast with our reference networks (Expert WGANs). Similarly,
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Figure 13 refers to the general approach (all classes), involving both cGAN and AC-GAN
networks. Even though these results are not strictly comparable, since the general approach
handles more classes, it can be observed that all trained models converged to a value close
to 0.5, such as for the reference case, showing that they all arrived at a similar solution. The
same pattern repeated itself for all other classes and the behavior was analogous for the
window cross-validation scheme for all classes and folds.

(a)

(b)
Figure 12. Training curves for classes A (a) and B (b) for the LORO-based cross-validation, when
expert WGAN and PACGAN were considered.

Figure 14 shows the histograms of the `1 and `2 errors for a given fold and all GAN
variants under test. As it can be seen, all models produced similar error profiles. This
behavior repeated itself consistently throughout all folds and for both cross-validation
methods. Despite the different GAN models, the loss function used for training was the
same, which may explain the similarity and consistency in the synthetic data production.
Both class-expert models (expert GAN and PACGAN) achieved slightly smaller error
values with respect to the conditional models. The KL divergence analysis (Figure 15) also
shows such an agreement among GAN models on Class A data.
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Figure 13. Training curves for the general approach for the LORO-based cross-validation. As it is
depicted, not only the training phases converged for every fold but it converged to values close to the
ones found by the expert WGAN approach.

(a)

(b)

Figure 14. The `1 (a) and `2 (b) errors between real-real images and real-synthetic images considering
the different GAN models. Real images were taken from the training set for Fold 0 from the LORO-
based cross-validation.
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Figure 15. The KL comparison from class A data for the GAN models under test.

7.3. Classifier Developments

Tables 6 and 7 show the achieved results for the window-based and LORO cross-
validations, respectively, for every design. Firstly, note that all of these results, even the
ones trained solely on synthetic data, surpassed the previous results found by past works
utilizing MLPs for the MaxPro and ClaExp designs in similar datasets [14] (91.0%) [19]
(84.9%). Tables 8 and 9 show the results for the general case using cGAN and AC-GAN
models.

Furthermore, the achieved results for the military data may be compared to works
using similar design approaches. The works in [41,42,45] also produced synthetic data
for better CNN training in LOFAR data and results (window-based) were quoted with
the (almost)-corresponding pairs of baseline and all together. However, they used public
datasets at different underwater applications. In addition, the error bars for their perfor-
mances measures were not quoted. In [42], the baseline accuracy was found to be 77.3%,
and a similar to ours all together training achieved 92.9%. Similar comparisons can be
made with [41], where the corresponding baseline and all together were found to be 52.8%
and 89.3%, respectively, and [45] as well, where the achieved accuracies were measured as
75.7% (baseline) and 91.2% (all together). Thus, the results found from the here-proposed
class-expert approach were considerably higher, still well above our statistical uncertainties,
as estimated from the error bars. In addition, such results were well aligned with what has
been published, as adding synthetic data to the training phase has improved the classifier’s
overall performance. However, such an improvement in classification accuracy was much
lower in our case, as the class-expert baseline performed much better with respect to what
was reported in the literature.

Table 6. Figures of merit for all design strategies measured from the window-based cross-validation
method. Synthetic data generated with the expert WGAN.

Training Paradigm Strategy Accuracy Precision F1 Recall SP

MaxPro

Baseline 98.2 ± 1.0 97.7 ± 1.2 97.7 ± 1.2 97.8 ± 1.3 97.7 ± 1.3
Synthetic 96.8 ± 0.8 96.3 ± 1.1 96.1 ± 1.0 96.1 ± 1.2 96.0 ± 1.2
Fine-tuned 99.0 ± 0.4 98.7 ± 0.6 98.7 ± 0.6 98.8 ± 0.6 98.8 ± 0.6
All together 98.8 ± 0.4 98.4 ± 0.6 98.5 ± 0.5 98.6 ± 0.5 98.6 ± 0.5

ClaExp

Baseline 98.8 ± 0.8 98.4 ± 1.0 98.4 ± 1.0 98.5 ± 1.1 98.5 ± 1.1
Synthetic 97.8 ± 0.5 97.4 ± 0.7 97.3 ± 0.7 97.2 ± 0.8 97.2 ± 0.8
Fine-tuned 99.0 ± 0.8 98.7 ± 1.1 98.7 ± 1.0 98.8 ± 1.0 98.8 ± 1.0
All together 99.0 ± 0.6 98.7 ± 0.7 98.6 ± 0.8 98.6 ± 1.0 98.6 ± 1.0
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Table 7. Figures of merit for all design strategies measured from the LORO cross-validation method.
Synthetic data generated with the expert WGAN.

Training Paradigm Strategy Accuracy Precision F1 Recall SP

MaxPro

Baseline 89.4 ± 11.0 89.5 ± 10.8 87.2 ± 13.8 89.4 ± 11.0 87.0 ± 14.3
Synthetic 90.2 ± 8.5 90.5 ± 8.0 88.7 ± 9.8 90.0 ± 8.0 89.0 ± 9.3
Fine-tuned 90.3 ± 9.5 90.8 ± 9.0 88.6 ± 11.5 90.3 ± 9.1 88.7 ± 11.2
All together 92.4 ± 7.3 92.7 ± 6.6 91.2 ± 8.9 92.5 ± 6.6 91.5 ± 8.3

ClaExp

Baseline 88.3 ± 11.7 89.3 ± 10.5 86.2 ± 14.0 88.0 ± 11.8 85.9 ± 14.6
Synthetic 89.9 ± 9.4 91.4 ± 7.1 88.0 ± 11.6 90.0 ± 8.1 87.8 ± 11.6
Fine-tuned 90.9 ± 9.6 91.5 ± 8.6 89.0 ± 12.4 91.0 ± 8.8 88.4 ± 13.8
All together 90.4 ± 8.4 91.7 ± 6.9 88.6 ± 9.8 89.7 ± 7.0 88.2 ± 9.4

Table 8. Figures of merit for all design strategies measured from the window-based and LORO
cross-validation methods for the MaxPro approach. Synthetic data generated with the cGAN.

Cross-Validation Method Strategy Accuracy Precision F1 Recall SP

Window

Baseline 98.2 ± 1.0 97.7 ± 1.2 97.7 ± 1.2 97.8 ± 1.3 97.7 ± 1.3
Synthetic 96.5 ± 1.3 95.9 ± 1.5 95.9 ± 1.5 96.1 ± 1.4 96.1 ± 1.5
Fine-tuned 98.7 ± 0.8 98.3 ± 1.1 98.4 ± 1.1 98.5 ± 1.1 98.4 ± 1.1
All together 98.0 ± 1.1 97.4 ± 1.5 97.6 ± 1.4 97.8 ± 1.3 97.8 ± 1.3

LORO

Baseline 89.4 ± 11.0 89.5 ± 10.8 87.2 ± 13.8 89.4 ± 11.0 87.0 ± 14.3
Synthetic 90.4 ± 9.6 90.6 ± 8.5 88.5 ± 11.9 90.2 ± 9.5 88.4 ± 12.2
Fine-tuned 91.2 ± 9.3 92.1 ± 7.8 89.6 ± 11.5 91.6 ± 8.4 89.9 ± 11.2
All together 90.6 ± 10.1 90.8 ± 9.7 88.9 ± 12.3 90.6 ± 9.3 88.8 ± 12.5

Table 9. Figures of merit measured from the window-based and LORO cross-validation methods for
the MaxPro approach. Calculated using the auxiliary classifier of the AC-GAN.

Cross-Validation Method Strategy Accuracy Recall F1 SP

Window Baseline 98.2 ± 1.0 97.8 ± 1.3 97.7 ± 1.2 97.7 ± 1.3
Auxiliary 94.6 ± 1.7 94.1 ± 1.6 93.8 ± 1.8 94.1 ± 1.6

LORO Baseline 89.4 ± 11.0 89.4 ± 11.0 87.2 ± 13.8 87.0 ± 14.3
Auxiliary 89.4 ± 11.2 89.6 ± 10.5 88.1 ± 12.9 88.5 ± 12.4

7.4. Resilience Against Noisy Conditions and Acquisition Issues

The results shown here concern the MaxPro approach, but similar results were found
for the ClaExp design. The first kind of interference noise that was submitted to the
classifiers concerns dropped signals. For this, it was assumed that each acquisition window
had a fixed probability of failure, i.e., not being acquired. To simulate this, a 10% stipulated
failure probability was forced to the data and when a particular window suffered from a
failure, the entire window was considered lost (multiplied by zero). The results are shown in
Figure 16 for the SP index, revealing that the all together and synthetic approaches suffered
small drops in average performance, but within the estimated error bars for nominal operation.
Interestingly, the fine-tuned training procedure was quite resilient to this effect, as much as
the baseline training. All error bars were kept barely unchanged, anyhow.
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Figure 16. SP index computed for both nominal and dropping signal conditions. MaxPro design over
LORO evaluation is considered and expert WGAN synthetic data production applies.

The second kind of interference studied was that provoked by the sea and rain con-
ditions (see Figure 7). All models suffered the same drop of 3.6% in the average SP index
(well within the error bars) for all scenarios, whichever the noise applied. The reason for
this result was found to be the TPSW block in the preprocessing step (see Section 2), as it
normalizes the background noise to the same level. This is illustrated in Figure 17 for the
rain noise: the LOFARGRAMs for the four noise levels are shown (only the rain noise is
used in the system’s input nodes without any passive sonar signal) before and after the
application of the TPSW block ((a) and (b), respectively). As it can be seen, the noise level
became irrelevant when the TPSW was applied. Thus, the resulting noise was introducing
white noise at an SNR of 10, which was responsible for such a drop in average efficiency. It
can also be seen by the accompanying histograms in Figure 17, as the distributions turned
out to be the same, after TPSW was applied.

(a)

Figure 17. Cont.
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(b)

Figure 17. LOFARGRAMs of the rain noise, for the four possible configurations, without (a) and with
(b) the application of the TPSW preprocessing step. The rain noise rises with its level.

Finally, analyzing the frequency occlusion effects through hiding frequency bands
(see Section 6.3) provides insights on the relevance of the frequency bands, as the larger
the efficiency drops, the more important that frequency bandwidth is. The SP index was
considered in such an analysis. As it can be seen in Figure 18, on average, all GAN-based
models kept high SP values for each hidden frequency band. It can be seen that the largest
drops happened in the region of 0–1 KHz, which agrees with the expert knowledge.

Figure 18. Efficiency considering frequency band occlusions.
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7.5. Quadrant Analysis

In the LORO evaluation scenario, the performance may also be evaluated from the
entire run (full LOFARGRAM) classification, which emulates passive sonar operation over
a beamformed signal. To this end, a simple voting mechanism was implemented: the
runs that composed the test sets along the cross-validation process were presented to the
classifier, and the most voted prediction (the mode of the sub-LOFARGRAM predictions)
became the prediction of the run. For the MaxPro design, the highest average accuracy
achieved was 98% for the fine-tuned approach, while the baseline model achieved 93%.

Such entire run signal processing also allows us to evaluate how fast the models
converge along to predictions when presented to an entire run. To achieve that, the
voting mechanism was implemented chronologically along a run, i.e., each time a new
acquisition window was presented to the models, the vote tally was computed and plotted.
Figure 19 shows an example of the mechanism. The convergence happened fast and a
correct classification was achieved when the all together model was applied, while the
baseline model failed to reach the right prediction, even when the entire run was processed.

In order to have a better understanding of how the improvements in classification
were obtained, the different classifier designs were confronted against each other using a
quadrant analysis, which is conceptually shown in Figure 20. For this, two classifiers are
considered, and their predictions are analyzed through four sets (quadrants), which take
into account whether the predictions were in agreement (both with the correct response or
both wrong) or not.

This analysis enables us to check from which region, in the information domain (sub-
LOFARGRAMs), the classifiers agreed or disagreed, making it possible to probe deeper
into the relevant information the different classifiers were considering to better capture
the target signatures. The focus of such an analysis will be on the LORO evaluation. For a
given fold, the run that formed the test set was considered, and a moving window (with
the same size as expected by the classifier) was applied along the run. The predictions
of all classifiers for each sub-window were computed and then split into the quadrants
accordingly. Then, an image was created using the corresponding sub-LOFARGRAMS of
each prediction by first taking the mean of the sub-LOFARGRAMS and then stacking them
in order of appearance.
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Figure 19. Convergence analysis for the LORO scenario for a given fold of class B. All four classifiers
are shown, namely, synthetic, fine-tuned, all together, and baseline. Class assignment is shown by the
corresponding continuous voting process for an incoming beam formed signal.
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Figure 20. Quadrant analysis layout. Two classifiers, a baseline model and an alternative one, repre-
sented here by the red and blue boxes, respectively, are compared to each other in the four possible
situations: both in agreement (either right or wrong in the classification task) or in disagreement
(either baseline or alternative right).

Figure 21 shows the quadrant analysis for a class D run confronting the baseline and
all together classifier designs for one of the cross-validation folds in the MaxPro scheme.
Firstly, the good agreement between classifiers can be seen from the high number of average
spectra in the panel at the left. The second panel shows that the data that distinguished
the increase in correctness of the response from the all together classifier design were quite
well aligned with the bins with prominent information from the ships (the experimental
run is displayed in the fourth panel). As it can be seen, the GAN-enabled all together
classifier was able to rightly classify many more samples than the baseline by means of
mainly focusing on the relevant tones. Another interesting aspect of the analysis is that the
GAN-enabled classifier showed good resilience with respect to the well-known Lloyd’s
mirror (LM) effect, whose Lloyd’s mirror interference pattern (LMIP) [5] is prominent in
this particular run.
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Figure 21. Quadrant analysis for class D (Run # 8) confronting the baseline and all together classifiers
in the maximum probability and in the LORO regime. The first panel shows the windows whose both
classifiers were right. In the second and third panels, we see the ones where either the GAN-enabled
or the baseline classifier obtained the right outputs, respectively. In the fourth panel, the experimental
run is shown for reference.

Further analysis for the model classification behavior was performed through the t-
distributed stochastic neighbor embedding (t-SNE) visualization [65]. For this, the output of
the second to the last layer of the classifiers (See Table 4) was used as the input of the t-SNE.
Such a visualization used default parameters with the perplexity being set to 30. Figure 22
displays the result considering the LORO analysis and the all together training strategy.
As it can be seen, all classes are well separated (although there is some entanglement) and
reasonably clustered together, with the most confusion happening between classes A and
C (which has been observed with this particular dataset).
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Figure 22. t-SNE visualization of the second to last layer output for the all together classifier in the
LORO scenario for the MaxPro case.

8. Discussion

As from Figure 15, all models generated samples equally well under the kl evaluation.
This, as well as the results shown in Section 7.2.2, underlines that the proposed expert
WGAN solution is as good as the other tested solutions. Moreover, this solution needs
to be trained and validated only once for each acquired class, which is advantageous.
Considering the ever-increasing number of classes to be tackled in military applications, it
is not advisable to retrain the entire adversarial system every time a new class is added. In
this sense, the proposed solution (an expert GAN for each class) and a final classifier (also
designed from a ClaExp paradigm) should be preferred with respect to a general approach,
as the entire solution would only need to add expert modules each time new signal classes
are acquired.

Concerning the classification performance measures, focusing on the MaxPro design
for the windowed-based cross-validation method (Table 6), it can be seen that the baseline
approach achieved slightly better results than the synthetic classifiers, for all figures of
merit, albeit their uncertainties became smaller. However, in average values, the mixed
data training strategies (fine-tuned and all together) surpassed the baseline performance.
Similar results were found for the ClaExp approach. Additionally, for the MaxPro de-
sign, considerable reduction (around 60% from 1% to 0.4%, see Table 6) on the accuracy
uncertainties was also observed. These effects were less prominent for the ClaExp design.

As expected, Table 7 shows that signal classification for a full unseen run is a consider-
ably more difficult task. As the ship’s operational conditions may change from run to run,
the generalization task becomes even more challenging. However, using synthetic data in
the training phase brought benefits for both classifier designs as it allowed improving the
average performance measures up to 3 percentage points and reduced the uncertainties,
which were considerably higher with respect to the previous window-based evaluation.
The deep learning capability could be improved by profiting from the experimental data
available in the training phase and using them in conjunction with the generated synthetic
samples. For this, both approaches (all together or fine-tuned) proved to be efficient in
both (MaxPro and ClaExp) designs. Thus, the synthetic data generated in a ClaExp manner
helped the classifier to perform efficiently in a scenario that comes close to the practical
military application.

It is worth observing that training the deep learning models with synthetic data only
produced an overall performance that was better than the one obtained with the MLP
models (97.8%± 0.5% vs. 84.9%). Furthermore, such a design approach reached a similar
performance with respect to the baseline classifier (within the estimated uncertainties,
which were reduced for every figure of merit). When evaluation is from the LORO, the
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average improvements were more noticeable. This pointed out that the generator was able
to successfully create plausible data covering most of the data variability comprised by the
dataset and in the case of the LORO also produced data that helped generalize to a full
unseen run.

In terms of signal classification (Tables 8 and 9), the general approach for synthetic
data production did not surpass the expert approach in any case (neither in the LORO or
window-based validations), having as its best results the network trained with synthetic
samples generated by the cGAN (Table 8) in the fine-tuned design, from which an SP index
of 98.4± 1.1 was obtained in the window-based crossvalidation. In its turn, the AC-GAN
achieved an SP index of 94.1± 1.6. This corroborates the previous results from adversarial
training with different topologies.

When considering the alternative of a PACGAN production, efficiencies were nearly
the same as the ones obtained by the expert WGAN. The same conclusion can be drawn for
the “boosted” GAN synthetic data production. It is worth mentioning that, in this last case,
both synthetic and fine-tuned training strategies underwent a boost in their efficiencies and
reached the same level of the best all together strategy.

9. Conclusions

Passive sonar systems are essential in various areas of underwater acoustics. In
particular, military applications rely on passive sonar information for making sensible
decisions. In this paper, deep learning models were explored for signal classification,
aiming at improving the target class identification performance on military data under
practical operational conditions. The design strategy used generative models to produce
synthetic samples, which assisted the signal classifier development during the training
phase. It was shown that producing realistic synthetic samples is a viable task in a passive
sonar system of military use. Different adversarial modeling approaches obtained similar
results, which reinforces the effectiveness of such a solution. Convolutional neural net-
works were developed for target signal classification, and both adversarial and classifier
models were proposed using the class-expert approach as the baseline design. Maximum
probability classification was also considered, addressing the final target identification
within a given class. Different strategies were analyzed for incorporating the generated
synthetic samples into the classifier training phase. Both design approaches (maximum
probability and class-expert) have improved from the previously published shallow net-
work results that were achieved over similar experimental datasets. The synthetic data
helped in the overall efficiency and reduced the statistical fluctuations of the classification
tasks. Combining experimental and synthetic data samples in the training phase produced
additional performance gains, even when more realistic scenarios were considered, such
as the leave-one-run-out test performed when practical ambient noise is considered at
various levels. The result comparisons made between the proposed expert solution and the
general solution showed that the latter did not surpass the expert solution in performance
in any case. This favors such a class-expert solution, as it scales up smoothly when more
classes are required for classification, which is actually the case for military applications. In
such a design approach, new target classes would require only training additional expert
models instead of training the entire system. Detailed analyses confirmed that the obtained
classification improvements from the deep learning models came from a better capture of
the information in frequency bins that are recognized as the most important ones, according
to the literature. Classification resilience with respect to interference patterns such as the
Lloyd’s mirror effect was also observed.

As an extension of this work, coastal surveillance is being planned, which is particu-
larly important due to the long extension of the Brazilian coastline. In such an application,
there is a significant number of ship classes to be detected and monitored, and practical
restrictions on data acquisition of experimental runs are often limiting the training of more
complex automatic recognition systems.
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Abbreviations

AC-GAN Auxiliary conditional GAN
cGAN Conditional GAN
ClaExp Class-expert
CNN Convolutional neural network
CQT Constant-Q transform
DCGAN Deep convolutional generative adversarial network
DoA Direction of arrival
FFT Fast Fourier transform
FIR Finite impulse response
GAN Generative adversarial networks
GPU Graphics processing unit
HHT Hilbert–Huang transform
InfoGAN Information GAN
KL Kullback–Leibler
LM Lloyd’s mirror
LMIP Lloyd’s mirror interference pattern
LOFAR Low-frequency analyzer and recorder
LORO Leave-one-run-out
MaxPro Maximum probability
MC-pix2pix Markov conditional pix2pix
MFCC Mel-frequency cepstral coefficients
MLP Multi-layer perceptron
PACGAN Packing GAN
PDF Probability density function
PSS Passive sonar systems
ReLU Rectified linear unit activation function
RMS Root-mean-square
SAE Stacked autoencoder
SGAN Several GAN
SNR Signal-to-noise ratio
SP Sum-product
STFT Short-time fourier transform
TPSW Two-pass split window algorithm
t-SNE t-Distributed stochastic neighbor embedding
WGAN Wasserstein GAN
WGAN-GP Wasserstein GAN with gradient penalty
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