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Abstract: Radar network configuration and power allocation are of great importance in military appli-
cations, where the entire surveillance area needs to be searched under resource budget constraints. To
pursue the joint antenna placement and power allocation (JAPPA) optimization, this paper develops
a JAPPA strategy to improve target detection performance in a widely distributed multiple-input and
multiple-output (MIMO) radar network. First, the three variables of the problem are incorporated into
the Neyman–Pearson (NP) detector by using the antenna placement optimization and the Lagrange
power allocation method. Further, an improved iterative greedy dropping heuristic method based
on a two-stage local search is proposed to solve the NP-hard issues of high-dimensional non-linear
integer programming. Then, the sum of the weighted logarithmic likelihood ratio test (LRT) function
is constructed as optimization criteria for the JAPPA approach. Numerical simulations and the
theoretical analysis confirm the superiority of the proposed algorithm in terms of achieving effective
overall detection performance.

Keywords: antennas placement; convex optimization; distributed MIMO radar; mixed-integer
non-linear programming; power allocation; target detection

1. Introduction
1.1. Background and Related Studies

The detection theory development and system optimization utilization of distributed
MIMO radars is one of the most important directions in metrology for radar. Multi-Input
Multi-Output (MIMO) radar networks have recently received significant attention due to
their superior detection and tracking performance compared to traditional monostatic radar
systems [1–3]. They also possess superior anti-stealth, anti-destroy, and anti-interference
performance by cooperating multiple subarrays with transmitting independent and or-
thogonal waveforms [4,5]. As an important category of the MIMO radar network [6], the
distributed MIMO radar has enhanced detection and high localization precision because its
multiple transmitters and multiple receivers are sufficiently far from each other [7–10].

Among the research topics of MIMO radars, radar resource allocation is an important
pot in the military field. It plays a great promotion role in the rapid deployment of self-
propelled radar equipment and air defense planning in key areas, which are critical military
needs with significant applications. In particular, it is utilized in air defense operations to
enhance combat efficiency within the restrictions of complex battle characteristics, such as
electromagnetics, topography, and hostile situations [11,12].

Antenna position deployment and transmitting power allocation are two factors
concerned by the radar resource allocation, and they determine the performance of MIMO
radars. However, it is a vital challenge to maximize resource consumption efficiency and
radar network performance. Various research has been devoted to them. According to the
focus of the method, the related studies can be classified into three categories: the system
configurations [13–15], the transmitting power allocation [16–18], and the integration of
the former two [19–22].
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The first category is to optimize the system configuration to enhance the performance
of the radar system. Considering that the antenna placement problem is NP hard [23], tra-
ditional methods for the solution are the exhaustive search and heuristic search algorithms.
However, they are either computationally intensive or only performed at a local–optimal
level. As a result, the greedy algorithm [13] and intelligent algorithm [14,15] are often
adopted to solve the problem. Specifically, ref. [24] proposes simulation-based discrete
stochastic optimization algorithms to adaptively select a better receiving antenna subset us-
ing target tracking resolution. The effects of optimizing the remaining antennas’ placement
on the radar performance are studied when fixing receiving antennas and transmitting
antennas separately. When optimization is extended to consider both transmitting and
receiving antennas, ref. [25] investigates the target velocity estimation performance of
the distributed MIMO radar using the Cramér–Rao bound and finds that increasing the
number of antennas and better placement can lead to better speed estimation performance.
A combinatorial optimization model for the joint placement of transmitters and receivers
is established in [13], and the proposed algorithm utilizes convex relaxation to obtain
the approximation of the original optimal solution. Further, [26] proposes an antenna
placement scheme for compressed-sensing-based collocated MIMO radars to improve the
target detection performance by minimizing the sensing matrix’s coherence. An optimiza-
tion algorithm is proposed for iterative placement between transmitters and receivers to
obtain better detection performance. Therefore, geometry configuration is crucial to the
optimization on distributed MIMO radar systems that achieves a superior performance.

The second category is to adaptively optimize the transmitting power allocation. In
principle, the optimal power allocation strategy is to obtain a solution based on the convex
optimization theory. For example, an alternating global search algorithm is designed in
ref. [16] to minimize the non-convex Cramér–Rao low bound (CRLB) of target position
estimation through power allocation, and ultimately, enhance the power utilization of
the distributed radar systems. Similarly, ref. [17] presents a deterministic convex power
allocation scheme and transforms it into a non-linear quality model with the Karush–
Kuhn–Tucker conditions. Ref. [18] proposes a novel low probability of intercept power
resource allocation (LPI-PRA) scheme that delivers superior low probability of intercept
(LPI) performance in terms of minimizing the total power consumption by exploiting the
semi-definite programming (SDP) and Karush–Kuhn–Tucker (KKT) conditions. Further,
ref. [27] studies the robust power allocation problem for multi-target tracking in the quality
of service framework and proposes an iterative parallel search algorithm to solve such
a non-convex optimization problem. Hence, the flexibility and excellent performance of
power allocation are shown in the superior performance of the improved radar network.

The last category is joint optimization of the former two items. The research on the
joint antenna placement and power allocation in MIMO radars also yielded fruitful results.
For instance, ref. [28] proposes a suboptimal, but computationally efficient, method for
scheduling and power allocation based on greedy programming in multi-target tracking. It
improves tracking accuracy by adopting the suitable subset of antennas to be employed
in each tracking interval, as well as the power transmitted by these antennas. In addi-
tion, ref. [19] establishes the SNR criteria for the antenna placement and power allocation
optimization. It discretizes the radar placement area into small grids, and then a sequen-
tial exhaustive enumeration geometric method and the water-filling power distribution
algorithm are used to optimize variables, respectively. Different from [19], ref. [20] mini-
mizes the total transmit power by the Lagrangian method and domain decompositions.
Refs. [19,20] enhance the detection performance of the radar system; however, the antenna
placement and power allocation in optimization processes are often optimized separately
according to different objective functions, resulting in deviations from the global optimum.

For this reason, some collaborative methods may be suitable for solving such joint
optimization problems. For instance, the combination of distributed MIMO radar nodes
selection and power allocation based on target localization accuracy is investigated in
ref. [21]. It utilizes the performance matrix as the single criterion for a two-step optimiza-



Remote Sens. 2022, 14, 2650 3 of 24

tion method and converts it into a second-order cone problem to solve. Further, ref. [22]
studies the joint optimization problem of tracking multiple targets and it uses predicted con-
ditional Cramér–Rao lower bound (PC-CRLB) as an optimization criterion for a two-step
semidefinite-programming-based solution to solve this problem. Apart from the previous
works, ref. [29] formulates the cost function by minimizing the sum of weighted PC-CRLB,
integrating the subarray selection with power allocation optimization by a two-stage lo-
cal search-based algorithm. More recently, ref. [30] develops a collaborative radar node
selection and transmitter resource allocation algorithm for target tracking applications in
multiple radar architectures. An efficient two-stage-based solution methodology that incor-
porates the interior point method and cyclic minimization framework makes it converge to
the optimal solution.

1.2. Contributions

In light of the aforementioned literature, joint optimization has outstanding effectiveness
in improving the radar system performance. However, few studies that concentrate on the
problem of joint radar antenna placement and transmitter resource allocation (JAPPA) with
the objective of target detection have been investigated. This gap promotes this research.

In the current paper, the JAPPA under a collaboratively unified objective function
is investigated by considering radar detection performance optimization. Our primary
contributions are summarized as follows.

1. We formulate the joint power allocation and antenna placement problem as an op-
timization model subject to the resource budget and area priority level. In the pro-
posed JAPPA model, binary composite hypothesis testing is established to design
the Neyman–Pearson (NP) detector for the whole surveillance area with the targets
Radar Cross Section (RCS) obeying Rayleigh distribution. Compared to previous
oversimplified works [19,20], the weighted NP-based logarithm likelihood ratio test
(LRT) function is specified as the utility function that combines all optimization factors
into a single objective function. In addition, we evaluate the average utility function
values after changing the single stationary target’s position in the whole region to
describe the global target detection performance of the radar network.

2. We propose an efficient JAPPA strategy that incorporates antenna placement with
power allocation to optimize the target detection performance in the radar network.
Different from the 0–1 programming in [21,31], we choose suitable antenna deployment
positions in the regional grid points to establish the non-linear mixed integer program-
ming problem. To devise computationally feasible methods for practical applications, a
two-stage local-search-based algorithm is proposed to split the coupled joint optimiza-
tion. Herein, it isolates integer programming from continuous variable optimization
and provides equivalent performance while requiring less computing effort.

3. We develop a joint optimization closed-loop scheme for the joint antenna placement
and power allocation optimization [30]. In our scheme, the optimal position results in
the current cycle are used for guiding the power allocation. The detection performance
will be further improved through this link, which renders a closed-loop scheme to
repeat the iteration of transmitting and receiving antenna placement using the optimal
power allocation scheme.

1.3. Organization

The remainder of the paper is organized as follows: Section 2 establishes the system
model and NP-based detection model. Section 3 develops the optimization model and
proposes an efficient solver. Based on the solver, a two-stage closed-loop method for
resource allocation is built. Simulation results and contrast test data are presented in
Section 4 to verify the effectiveness and superiority of the proposed method. Finally,
Section 5 concludes the paper’s results and achievements.

Notations: For clarity, some notations used in this paper are listed as follows, and
others will be explained when they first appear: The boldface is used for vectors s (lower
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case) and matrices A (upper case). Superscript (·)T denotes the transpose operators. N (a, b)
represents the Gaussian normal distribution where the mean is a, and the variance is b. Pm

T,k
indicates the allocated power to the m-th transmitting antenna in the k-th iteration loop.
Moreover, LT,k and LR,k denote the transmitting antenna and receiving antenna locations
in the k-th iteration loop, respectively.

2. System Model and Detection Formulation
2.1. Signal Model

Note that the detection performance of a distributed MIMO radar is an essential
indicator for evaluating radar network surveillance performance. This paper discusses
the joint antenna placement and optimal power allocation method in a two-dimensional
Cartesian coordinate system. We consider a distributed MIMO radar network with M
transmitters and N receivers. The m-th transmitter is positioned at the coordinate

(
xm

T , ym
T
)

for m = 1, . . . , M, the n-th receiver is positioned at the coordinate
(
xn

R, yn
R
)

for n = 1, . . . , N,
respectively. Besides, the position of the target is (xt, yt). Figure 1 illustrates the considered
distributed MIMO radar network configuration sketch with M = N = 3.
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The MIMO radar transmitting array elements simultaneously transmit a set of normal-
ized orthogonal signals to the far-field target, and the precoding waveform vector satisfies

∫ ∞

−∞
sm(t)sH

m′(t− τ)dt =

{
1 for m = m′, τ = 0
0 for otherwise

(1)

where sm(t) denotes the corresponding baseband signal, fc is the signal carrier frequency,
and τm is the duration time of the m-th signal.

As such, the baseband signal transmitted from the m-th transmitting antenna to the
n-th receiving antenna can be expressed as:

rnm =
√

PTmLnm ·Cnm · sm(t− τnm) · ej2π fd,nmt + nn(t) (2)
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√
PTmLnm =


√

PT1L11
√

PT2L12 · · ·
√

PTML1M
...

...
...

...√
PTN LN1

√
PT2LN2 · · ·

√
PTMLNM


N×M

(3)

Cnm =

 c11 c12 · · · c1N
...

...
...

...
cM1 cM2 · · · cMN


M×N

(4)

where Lnm is the propagation that includes antenna gains, PTm is the radar transmit power,
Cnm is scattering amplitude that includes any unknown oscillator phase terms, sm is the
signal transmitted by the m-th transmitting antenna, τnm is the time-delay, fd,nm is the
Doppler shift caused by target movement. Moreover, nn(t) presents the additive complex
white Gaussian noise vector at the receiver.

With the assumptions above, the baseband signal received by the n-th receiving
antenna of the distributed MIMO radar can be written as:

rn(t) =
M

∑
m=1

rmn(t) =
M

∑
m=1

Enm · cnm · sm(t− τnm) · ej2π fd,nmt + nn(t) (5)

where nn(t) is the zero-mean white complex noise at n-th receiver, and

Enm ∈ En =
[√

PT1Ln1,
√

PT2Ln2, . . . ,
√

PTMLnM

]
1×M

(6)

cnm ∈ Cn = [cn1, cn2, . . . , cnM]1×M (7)

2.2. Neyman–Pearson Detection Model

The decision of target existence in a distributed MIMO radar network is made without
any prior probability. Therefore, the NP criterion is suitable for radar detection [31]. Herein,
we develop the NP detector for a distributed MIMO radar network in this section, seeking
the optimal antenna position and power allocation scheme.

The NP detector establishes the LRT and compares it with the threshold η specified
by the Pf a. It yields two likelihood hypotheses, as shown in (8): the null hypothesis
(signal-absence) H0 and the alternative hypothesis (signal-presence) H1. It is noticeable
that distributed MIMO radar network detection hypotheses are given for each receiver.

H0 : rn = nn(t)

H1 : rn =
M
∑

m=1
Enm · cnm · sm(t− τnm)ej2π fd,nmt + nn(t)

, n = 1, . . . , N (8)

In this paper, the target comprises multiple randomly distributed independent scatter-
ers of roughly equal areas. Hence, the target RCS is assumed under the Rayleigh scattering
model, and the Swerling I model is defined as [32]:

fσt =
x

σ2
0

e
− x2

2σ2
0 (9)

where σ2
0 is the average RCS of the object. According to the free space propagation loss

equation analysis, the amplitude of the signal received by the n-th receiver can be cast as
(10) [32].

αnm =
σt

RmtRtn

√
PTmGtGr Ipλ2

(4π)3LcLr
(10)

where PTm is the transmitted power, σt is RCS of the target, Gt and Gr are the transmitter and
receiver gains, respectively, Ip is the receiving processing gain, λ is radar signal wavelength,
Lc and Lr are the scattering loss and receiving loss, respectively. Rmt and Rtn are the
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distance between the m-th transmitter to target and target to the n-th receiver. Due to
the widely separated antennas, different αnms are regarded as independent and the echo
amplitude is proportional to the RCS, resulting in a Rayleigh distribution for amplitude
αnm. Substituting (10) in (9), it can be deduced that

fαnm =
x

σ2
nm

e
− x2

2σ2
nm (11)

where

σ2
nm =

PTmGrGt Ipσ2
0 λ2

(4π)3R2
mtR

2
tnLcLr

(12)

Therefore, we have
αnm = Enm · cnm · ej2π fd,nmt (13)

The received signal rn can be redefined as

rn =
M

∑
m=1

αnm · sm(t− τnm)ej2π fd,nmt + nn(t) (14)

Then, a likelihood ratio detection session is performed after the echo signal passes
through the filter bank and sampler. Thus, a binary hypothesis can be expressed as follows:

yn =


M
∑

m=1
anm · sm(t− τnm) + nn, H1

nn, H0

(15)

where yn = [y1, y1, . . . , yn]
T represents the received signal test data vector, sm is the sample

version signal to be detected, nn is the noise in the test. In addition, we assume the
noise model is a Gaussian distributed model that satisfies nn ∼ N

(
0, σ2), then the joint

probability density function (PDF) of the test data yn is defined as{
fYn(yn | H0) ∼ N

(
0, σ2IN

)
fYn(yn | H1, αnm) ∼ N

(
r0n, σ2IN

) (16)

In the above equation, r0n ,
M
∑

m=1
anm · sm(t− τnm), and σ2IN denotes the noise variance

and identity matrix IN = diag(1, . . . , 1)1×N . Then, the LRT for the NP detector is usually
given as follows [33]

L(yn) =
fYn(yn|H1 )

fYn(yn|H0 )

H1
>
<
H0

η (17)

where η is a threshold determined by Pf a. Based on this derivation, hypothesisH0 andH1
probability density function models are, respectively, defined as:

fYn(yn|H0 ) =
N

∏
n=1

1√
2πσ2

exp

{
−1

2

(
‖yn‖

2

σ2

)}
(18)

fYn(yn|H1 , αmn) =
N

∏
n=1

1√
2πσ2

exp

{
−1

2

(
‖yn − r0n‖2

σ2

)}
(19)

According to the specific PDF in (16) and substituting from (11), (19) can be derived as:
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fYn(yn|H1 ) =
∞∫
0
· · ·}

(M×N−2)

∞∫
0

fYn(yn|H1 , αnm)
M
∏

m=1

N
∏

N=1
fαnm(αnm) dαnm

=
∞∫
0
· · ·}

(M×N−2)

∞∫
0

{
1

(t−τnm)N/2 exp
N
∑

n=1

{
− 1

2

(
‖yn‖

2−2yT
n ·r0n+‖r0n‖2

σ2

)}}
M
∏

m=1

N
∏

N=1
fαnm(αnm) dαnm

(20)

Based on the previous Formulas (1) and (10)–(14), we can make a substitution due to
the orthogonality of the distributed radar signals that

‖r0n‖2 = rT
0n · r0n =

M

∑
m=1

M

∑
m′=1

αnm · sT(t− τnm) · αmn · s(t− τnm) =
M

∑
m=1

α2
mn (21)

and

‖yn‖
2 = yT

n · yn =
1
M

M

∑
m=1
‖yn‖

2 (22)

2yT
n · r0n = 2αmn

M

∑
m=1

yT
n · sm(t− τnm) (23)

Substituting (21)–(23) into (20), it is easy to find that

fYn(yn|H1 ) =
∞∫
0
· · ·}

(M×N−2)

∞∫
0

 1
(2πσ2)

N/2 exp

− 1
2

 1
M

N
∑

n=1

M
∑

m=1
‖yn‖

2−2αmnyT
n ·sm(t−τnm)+α2

mn

σ2



× M

∏
m=1

N
∏

n=1
fαmn(αmn) dαmn

= 1
(2πσ2)

N/2

M
∏

m=1

N
∏

n=1

(
∞∫
0

exp
(

N
∑

n=1

M
∑

m=1

1
M ‖yn‖

2−2αnmyT
n ·sm(t−τnm)+α2

nm
−2σ2

)
fαnm(αnm) dαnm

)
= 1

(2πσ2)
N/2

M
∏

m=1

N
∏

n=1
Knm

(24)
where

Knm =
∞∫
0

exp
(

1
M ‖yn‖

2−2x·yT
n ·sm(t−τnm)+α2

nm
−2σ2

)
fαnm(αnm) dαnm

=
∞∫
0

exp
(

1
M ‖yn‖

2−2x·yT
n ·sm(t−τnm)+x2

−2σ2

)
x

σ2
nm

e
− x2

2σ2
nm dx

= 1
σ2

nm
exp
(
− ‖yn‖

2

2Mσ2

)∞∫
0

xexp
(

x·yT
n ·sm(t−τnm)

σ2 − x2
(

1
2σ2

nm
+ 1

2σ2

))
dx

(25)

Substituting 1
2σ2

nm
+ 1

2σ2 = b2 and yT
n ·sm(t−τnm)

σ2 = c into (25), then, Knm can be rewritten as

Knm = 1
σ2

nm
exp
(
− ‖yn‖

2

−2Mσ2

)∞∫
0

xexp
(

xc− x2b2) dx

= 1
2b2σ2

nm
exp
(
‖yn‖

2

−2Mσ2

)(
1 + c

b · exp
(

c2

4b2

)
·
∫ ∞
− c

2b
exp
(
−p2)dp

) (26)

where p = bx− c
2b . Therefore, the corresponding LRT function can be calculated as:

L(yn) =
fYn(yn|H1 )

fYn(yn|H0 )
=

M

∏
m=1

N

∏
n=1

1

1 + σ2
nm
σ2

(
1 +
√

π
c
b

exp
(

c2

4b2

)
·
∫ ∞

− c
2b

exp
(
−p2

)
dp

)
(27)
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To alleviate the detector calculation complexity, the radar network high-SNR condition,
σ2

nm � σ2, is typically utilized to simplify the formula. Thus, b2 can be redefined as:

b2 ,
1

2σ2
nm

+
1

2σ2 =
1

2σ2 (28)

Using
∫ ∞
− c

2b
exp
(
−p2)dp ≈ 1− 1√

π(c/b) · exp(−c2/4b2), σnm/σ � 1, (27) can be rewrit-
ten as

L(yn) =
M
∏

m=1

N
∏

n=1

1

1+ σ2
mn
σ2

(
1 +
√

π c
b exp

(
c2

4b2

)
·
∫ ∞
− c

2b
exp
(
−p2)dp

)
=

M
∏

m=1

N
∏

n=1

(√
π c

b ·exp
(

c2

4b2

)
1+ σ2

nm
σ2

) (29)

Herein, we have tests statistics of the NP detector,

TMIMO =
M

∏
m=1

N

∏
n=1

√π c
b · exp

(
c2

4b2

)
1 + σ2

nm
σ2

H1
>
<
H0

η (30)

where
c
b
=

yT
n ·sm(t−τnm)

σ2√
1

2σ2

=
√

2 · yT
n · sm(t− τnm)

σ
=
√

2 · Enm · cnm
σ

(31)

Since the test statistic TMIMO. is always positive, we can substitute (30) into (31) and take
the logarithm of the two ends to obtain the logarithmic LRT function (log-LRT) shown in (32).
Finally, Ln(TMIMO) can be compared with the new threshold η′ which equals Ln(η).

Ln(TMIMO) =
M

∑
m=1

N

∑
n=1

[
Ln

(
√

2π · Enm · cnm
σ

· exp

(
(Enm · cnm)

2

2σ2

))
− Ln

(
1 +

σ2
nm
σ2

)]H1
>
<
H0

η′ (32)

Remark: The simplification of expression (28) can be performed only under high-SRN
conditions. As for the case of low-SNR conditions, it will be considered in our future works,
which will further enrich the radar system application scenarios in the future.

3. Antenna Placement and Power Allocation Strategy

Aiming at solving the JAPPA problem, we proposed an efficient JAPPA strategy for
target detection by using a distributed MIMO radar system. First, the combat area needs to
be discretized into grid areas to optimize antenna placement using the numerical method.
Then, as shown in the blue dashed box, the antenna location deployment and transmitter
power allocation can be optimized by the strategy based on the NP criterion. Finally, the
jointly optimal solution can be obtained by a closed-loop iterative approach, shown in red.
The whole method structure is illustrated in Figure 2.

3.1. Optimization Formulation

Mathematically, the JAPPA strategy incorporates the antenna placement with power
allocation to achieve optimal target detection performance based on the regional charac-
teristics and predetermined power budget. The NP-based detection criterion deduced in
Section 3 is appropriate to construct the objective function.
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First, we define the following vectors: the transmitter antenna position vector is

LTk =
[

L1
T,k, . . . , Lm

T,k, . . . , LM
T,k

]T
, Lm

T,k =
(

xm
T,k, ym

T,k

)
. The receiver antenna position vector

is LRk =
[

L1
R,k, . . . , Ln

R,k, . . . , LN
R,k

]T
, Ln

R,k =
(

xn
R,k, yn

R,k

)
. The transmitter power allocation

vector is PTk = [PT1,k, . . . , LTm,k, . . . , LTM,k]
T . Then, the log-LRT can be rewritten as

Ln{TMIMO(LTk, LRk, PTk)} =
M

∑
m=1

N

∑
n=1

[
Ln

(
√

2π · Enm · cnm
σ

· exp

(
(Enm · cnm)

2

2σ2

))
− Ln

(
1 +

σ2
nm
σ2

)]H1
>
<
H0

η′ (33)

Considering a realistic confrontation, we set up an area with a priority level using the
historical statistic of non-cooperative targets (enemy targets) violations. The position with
a higher threat level has higher priority and higher detection probability requirements, and
vice versa. In this way, the priority level is utilized as a weighting coefficient multiplying
with the NP-based log-LRT at each location. Therefore, it is preferred to use the sum of
weighted NP-based log-LRT as the objective function.

F(LTk, LRk, PTk) = E
{

ζq[TMIMO(LTk, LRk, PTk)]
}

(34)

where E{·} is expectation operation, TMIMO is the NP-based log-LRT statistic. ζq is the
priority level coefficient, which can be determined by the comprehensive consideration
of the military objective location, operational missions, and other parameters. Although
the numerical computation of ζq is beyond the scope of this paper, just for simplicity, we
pre-define the priority levels for each regional grid point directly in the simulation.

Many constraints should be taken into account. Firstly, the optimal strategy for the
radar network should be subject to acceptable target detection performance.

Ln{TMIMO(LTk, LRk, PTk)} > η′ (35)

Then, the sum of the transmitters’ consumption power is bound by a power bud-
get PTOTAL.

1T
MPTk ≤ PTOTAL (36)

where 1T
M = [1, 1, . . . , 1]1×M. Next, each transmitter sets the minimum and maximum

power values as the constraints [34].{
PTkmin ≤ PTm,k
PTm,k ≤ PTkmax

(37)
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Therefore, the JAPPA optimization model can be formulated as

P : max F(LTk, LRk, PTk)
s.t. C1: 1T

MPTk ≤ PTOTAL
C2: 0 ≤ PTkmin ≤ PTm,k, ∀m ∈ M : {1, . . . , M}
C3: 0 ≤ PTm,k ≤ PTkmax, ∀m ∈ M : {1, . . . , M}
C4: xm

T , ym
T ∈ NET , ∀m ∈ M : {1, . . . , M}

C5: xn
R, yn

R ∈ NET , ∀n ∈ N : {1, . . . , N}

(38)

whereM and N represent the sets of antenna labels, and NET represents the antenna
candidate points set. Besides, C1 is the total power consumption constraint, C2 And C3
represents the upper and lower power bounds for each transmitter antenna, respectively.
C4 and C5 ensure the antennas are placed on the coordinate grid point.

3.2. Solution Technique

Due to the presence of the radar transceiver antenna term LTk and LRk in the objective
function, (38) is essentially a non-convex non-linear mixed integer programming problem,
and problem-solving is non-deterministic polynomial-time hard. A direct method is to
partition the discrete coordinate position variables and continuous power variables to
search for a solution [22,35].

Here, we propose a novel algorithm based on a two-stage local search, a mixed-
integer global optimization algorithm based on greedy take-away and Lagrange. The
discrete variable coordinates and the continuous variables are divided using the cutting
plane to obtain the integer variable linear approximation of the non-linear programming
model. Once the value of the integer variable is determined, the corresponding continuous
variable is solved by the Lagrangian function [36]. Finally, integer variables and continuous
variables together constitute a feasible solution to the original model. The steps are shown
as follows.

3.2.1. Local Search for Antenna Placement

In this case, we define the power of each transmitter as uniformly allocated, i.e.,
PT ,average = PTOTAL/M. The transmitting and receiving antenna deployment at the points
from the grid area are known to be NP hard. Simultaneous completion of transmitting
and receiving antennas is an arduous computational task; although the exhaustive search
method is feasible, the computational effort grows exponentially [27]. Therefore, it is
necessary to separate the two antenna arrangements, and the optimization equations for
transmitter and receiver antenna placement are, respectively, given below.

Transmitter : P : maxF
(
LT,k+1, LR,k, PT,average

)
s.t. C1 : xm

T,k+1, ym
T,k+1 ∈ NET , ∀m ∈ M : {1, . . . , M}

C2 : xn
R,k′ , yn

R,k ∈ NET , ∀n ∈ N : {1, . . . , N}
(39)

Receiver : P : maxF
(
LT,k+1, LR,k+1, PT, average

)
s.t. C1 : xm

T,k+1, ym
T,k+1 ∈ NET , ∀m ∈ M : {1, . . . , M}

C2 : xn
R,k+1, yn

R,k+1 ∈ NET , ∀n ∈ N : {1, . . . , N}
(40)

Initially, a dense uniformed grid with different priority levels over the antenna place-
ment area is assumed, each of the grid points of which serves as a potential antenna
placement location. Based on this structure, we propose a site selection algorithm based on
a two-stage greedy dropping heuristic to optimize the antenna positions of the transmitter
and receiver successively. The purpose is to choose M positions to place the transmitting
antennas and then select N positions to place the receiving antennas from the candidate
positions to optimize the objective function. Meanwhile, a taboo list has been set up to
accelerate the convergence speed. The summary of this algorithm is given in Algorithm 1
(Local search for antenna placement).
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Algorithm 1: Two-stage greedy dropping heuristic local search for antenna placement

Input: M, N, NET , ζq

Output: optimal LT,k =
[

L1
T,k, . . . , Lm

T,k, . . . , LM
T,k

]T
and LR,k =

[
L1

R,k, . . . , Ln
R,k, . . . , LN

R,k

]T

1 Initialize k = 1, q = 1, L1
T,1, . . . , LM

T,1 and L1
R,1, . . . , LN

R,1;
2 double Temp0,1 = Temp1,0 = 0, ε = 1e− 6;
3 while F

(
LT,k, LR,q, PT,average

)
− Tempk−1,q ≥ ε do

4 Replaces Tempk,q = F
(
LT,k, LR,q, PT,average

)
5 Recombines L’

T,k: substitute Lm
T,k with a new coordinate L, L /∈ LT,k ∪ · · · ∪ LT,0

6 if F
(
L’

T,k, LR,q, PT,average
)
≥ Tempq,k then

7 LT,k+1 = L’
T,k

8 Removes the L from the set of candidate points
9 end if
10 k = k + 1
11 end while
12 while F

(
LT,k, LR,q, PT,average

)
− Tempk,q−1 ≥ ε do

13 Replaces Tempk,q = F
(
LT,k, LR,q, PT,average

)
14 Recombines L’

R,q: substitute Ln
R,k with a new coordinate L, L /∈ LR,k ∪ · · · ∪ LR,0

15 if F
(
LT,k, L’

R,q, PT,average
)
≥ Tempk,q then

16 LR,q = L’
R,q

17 Removes the L from the set of candidate points
18 end if
19 q = q + 1
20 end while
21 return LT,k+1, LR,k+1

3.2.2. Local-Search-Based Lagrange-KKT for Power Allocation

The premise of power allocation is antenna placement; therefore, the optimization
model can be given by

P : max F(PT,k+1)
C1: 1T

MPT,k+1 = PTOTAL
C2: 0 ≤ PTmin ≤ Pm

T,k, ∀m ∈ M : {1, . . . , M}
C3: 0 ≤ Pm

T,k ≤ PTmax, ∀m ∈ M : {1, . . . , M}

(41)

where the only variable is the transmitter power vector PT,k+1 and the problem has been
transformed into a univariate optimization model. Thus, the corresponding continuous
variable power values can be determined by solving the sub-problems (41). Herein, a
Lagrangian multiplier method and the Karush–Kuhn–Tucker (KKT) condition are used to
solve the optimal power allocation among transmitters [37], and the Lagrangian function is
written in the following

L = F(PT,k+1)− λ1(PTmin − PTm ,k+1)− λ2(PTm ,k+1 − PTmax)− µ(
M

∑
m=1

PTm ,k+1 − PTOTAL) (42)

Appendix A proves that (41) is a non-linear convex optimization problem and con-
cludes that the approximate task utility function is unimodal [38]. From this, the optimal
power allocation strategy can be obtained, and we have

∇PT,k+1L
(

PT,k+1,
¯
λ, µ

)
= 0 (43)
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where PT,k+1 is the local optimum of the problem (41),
¯
λ = [λ1, λ1] and µ are multiplier

vectors; the KKT conditions are formulated as

∇PT,k+1L =
N
∑

n=1

(
1

2PTm,k+1
+ Lnmcnm

2

2σ2 − Lnmcnm
2

σ2+Lnmcnm2PTm,k+1

)
+ λ1 − λ2 − µ = 0

∇λ1L = PTmin − PTm,k+1 = 0
∇λ2L = PTm,k+1 − PTmax = 0

∇µL = PTOTAL −
M
∑

m=1
PTm,k+1 = 0

¯
λ ≥ 0

(44)

Considering σ2 � Pm
T,k+1LmnCmn

2 and all transmitting antennas have to operate, i.e.,
the inequality constraint cannot fetch an equal sign. Therefore, we simplify the constraint
conditions that λ1 = λ2 = 0. The optimal transmitter power allocation strategy can be
calculated as follows 

Pm
T,k+1 = N

2
(
−µ+

N
∑

n=1

Lnmcnm2

2σ2

)
M
∑

m=1
PTm ,k+1 = PTOTAL

(45)

According to the properties of the convex function, the local optimum PT satisfying
the KKT condition is the global optimum of (42), which is the optimal transmitter power
allocation scheme. At this time, we have obtained the optimal transmitter power allocation
scheme corresponding to the integer variable (LT,k+1, LR,k+1) that maximizes the target
detection capability of the MIMO radar network based on the existing antenna deployment.

3.3. Closed-Loop Resource Allocation Scheme

Further on, we exploit the previous results in the last optimization cycle as the feedback
information to implement joint antenna placement and power allocation optimization in
distributed MIMO radar networks by successive optimization. Overall, we iteratively
repeat transmitting and receiving antenna placement and power allocation. In such an
operation, first, the updated power allocation scheme is used to obtain the optimal antenna
placement scheme. Then, the placement scheme is employed to repeat the power allocation
optimization. Finally, the JAPPA strategy incorporates the prior information to achieve
the optimal antenna placement and power allocation, which results in superior detection
performance in the next round of the period.

In this paper, we combine the idea of cycle minimization (CM) to separate coordinate
deployment variables and power variables for cyclic optimization [29,30]. Before the
convergence properties analysis, we have

Lemma 1. For a given antenna position vector (LTk, LRk), the power allocation problem can be
rewritten as a convex optimization problem.

Proof. Same as Appendix A. �

Lemma 2. Based on the given power allocation scheme PTk, the antenna deployment solution of the
local search is the optimal scheme [19].

The closed-loop scheme consists of the two local search algorithms described above and
optimizes the (LTk, LRk) and PTk in each loop, respectively. In each iteration, the local search
algorithm for antenna placement is based on the optimal power solution from the last cycle.
Instead, its current placement scheme serves as an input parameter for power allocation,
obtaining the initial power value for the next cycle by convex optimization solving.
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In summary, the optimization is accomplished by selecting the locations of transmitting
and receiving antennas, and then completing the optimal transmit power allocation. On this
basis, the joint optimization problem can be solved by using a two-staged algorithm and
cyclic optimization, and the cycle terminates to the optimum once satisfying convergence
conditions [29,30,39]. This scheme ultimately improves the overall network target detection
performance, so that a closed loop is generated. The solution steps summary is given in
Figure 3.
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3.4. Computational Complexity Analysis

The proposed JAPPA strategy mainly contains two phases that are as follows:

(1) The local search for antenna placement;
(2) The Lagrange-KKT for Power Allocation.

Strictly speaking, the computational complexity of the proposed optimization model
solving algorithm is mainly determined by the number of iterations of the antenna po-
sition selection problem and in the proposed local search method, the exploration for a
better antenna placement can be via swapping in and out more points. Therefore, the
proposed antenna placement method is with a worst-case computational complexity of
O((M + N)Q3), wherein Q is the number of selectable coordinate points in the area. Ad-
ditionally, when the antenna position vectors in (34) are determined, they become convex.
At that time, with the Lagrangian-KKT method having a complexity of O(MN) in each
optimization round [37], the JAPPA method computational complexity can be evaluated as
O((M + N)Q3 + MN

)
. For comparison, the exhaustive search algorithm [23] is with the

worst-case complexity of O((CM+N
Q /(M!N !))MN) ≈ O

(
QM+N MN

)
, which possesses a

much heavier computational burden and the optimization method TWANPA, proposed
in [19], has a polynomial computational burden of O

(
MQ2(NQ + 1) + N2). Therefore, we

list the calculation complexity comparison given in Table 1.

Table 1. Computational complexity comparison.

Algorithm Exhaustive Search TWANPA Method JAPPA Strategy

Computational complexity O
(
QM+N MN

)
O
(

MQ2(NQ + 1) + N2) O(( M + N)Q3 + MN
)



Remote Sens. 2022, 14, 2650 14 of 24

4. Simulation Results and Discussion

In this section, the simulation results and numerical analysis are presented to demon-
strate the effectiveness of the proposed JAPPA strategy. Herein, in our simulation, a
3× 3 MIMO radar network (M = 3 transmitters and N = 3 receivers) is assumed to be
placed in a square-shaped plane with sides equal to 20 km. We ignore the electromagnetic
coupling between widely separated antennas, and we assume the Swerling I model for the
target RCS fluctuation. In addition, to simulate the combat scenario of realistic air defense
confrontation, we define a priority level ranging from approximately 0 to 1 for the whole
square from the perspective of target detection. As Figure 4 shows, we randomly set an
irregular priority level at each grid point, which will be utilized as the weighting coefficient
to measure the target detection capability. In addition, the relevant radar parameters used
in the simulation are given in Table 2.
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Table 2. System parameters.

Names Symbols Settings

Transmitting Antenna Gain Gm 30 dB
Receiving Antenna Gain Gn 30 dB

Processing Gain At Receiver Ip 20 dB
Carrier Frequency fc 10 GHz

Target Average RCS σ2
0 2 m2

Radar Network Scattering Loss Lc 0 dB
Radar Network Receiving Loss Lr 0 dB

Noise Factor Fn 4 dB
Bandwidth B 5 MHz

Transmit Power PTOTAL 30 KW
Minimum Transmit Power PTmin 0 KW
Maximum Transmit Power PTmax 30 KW

The echo SNR is an essential evaluation indicator of a radar system to evaluate its target
detection performance. We calculate the average SNR of the radar system by calculating
the SNR of each grid point and the echo SNR is given as

SNR = E{yn|H1 } − E{yn|H0 } (46)

Moreover, the corresponding detection probability (PD) of the radar network at the
k-th iteration is defined as [40].
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PDk ≈ 0.5× er f c
(√
− ln Pf a −

√
SNRk + 0.5

)
PDk ≈ 0.5× er f c

(√
− ln Pf a −

√
SNRk + 0.5

)
(47)

where complementary error function er f c is formulated as

er f c(z) = 1− 1√
π

∫ z

0
e−v2

dv (48)

Subsequently, to tackle the initialization of the optimization circulation, we firstly fix
the transmitters’ position parameters to optimize the remaining two parameters. Three
transmitter antennas are placed at the lowest system radiation power density point one
after another [19]. Therefore, the initial transmitting antenna positions are shown in Table 3
and our simulations are run in MATLAB 2019a on a computer with a 2.60 GHz CPU and
16.0 GB RAM. 16.0 GB.

Table 3. Initial transmitting antennas positions.

Transmitter x (km) y (km)

#1 14 10
#2 2 14
#3 4 18

At this point, we utilize the initial transmitting antennas position scheme for the first
iterative to start the iteration optimization loop. The positions are chosen one by one
according to the weighted NP-based log-LRT and converge to the optimal strategy after six
iterations of optimization. The result of receiver and transmitter coordinate positions is
shown in Tables 4 and 5, respectively. Further, the optimal power allocation scheme and
antenna geometry are shown in Table 6 and Figure 5, respectively.

Table 4. Transmitting antennas positions.

Transmitter x (km) y (km)

#1 4 2
#2 10 6
#3 14 10

Table 5. Receiving antennas positions.

Transmitter x (km) y (km)

#1 16 8
#2 12 12
#3 8 4

Table 6. Receiving antennas positions.

Transmitter #1 #2 #3

Power Allocation
(KW) 0.133 5.744 24.123
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(1) Transmitting antenna position optimization (TAO): The approach simply adjusts 
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Figure 5. Optimal antennas’ geometry distribution.

The resulting transmitting power allocated to the transmitters over 15 iterations is
present in Figure 6. The power allocation values remain stable after the five iterations,
which verified the algorithm’s convergence inferred in the previous paper. The transmitting
antenna #2 has the highest priority level of the plane, so it receives more power resources
than the other two antennas. The relatively large distance between the transmitting antenna
#1 and the rest of the radars and its inferior priority position results in a lower allocated
power level.
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4.1. Factors That Affect the Results of Iterative Optimization
4.1.1. Case 1: Optimization Parameters’ Degree of Freedom

In principle, expanding the freedom of optimizing parameters can effectively improve
the operational performance of radar systems. Here, we discuss the effect of optimization
parameters’ degree of freedom (DOF). There are three DOFs regarding antenna placement
and power allocation: the positions of the transmitting antenna, the positions of the
receiving antennas, and the transmitting power. In this case, separate optimization and
combinatorial optimization of antenna placements and power allocation are carried out to
analyze the different detection performance improvements, respectively. The following
groups of different optimization objects will be investigated separately.

1. Single-parameter optimization:

(1) Transmitting antenna position optimization (TAO): The approach simply adjusts
the location of the transmitting antenna to enhance the radar network’s target
detection capacity.



Remote Sens. 2022, 14, 2650 17 of 24

(2) Receiving antenna position optimization (RAO): The radar network transmitter
sites remain constant with evenly distributed transmitting power, and only
the placements of the receiving antennas are modified to improve the radar
network’s detecting capability.

(3) Transmit power allocation optimization (TPO): The transmitting power is effi-
ciently allocated to increase target detection capabilities based on the random
deployment of the radar network antenna space architecture.

2. Two-element optimization:

(1) Joint antenna placement optimization (JAP): In this experiment, the transmitting
power is uniformly distributed and the antenna deployment positions are
optimized using a two-stage method, in which transmitting and receiving
antenna positions are iteratively optimized. The iteration completes when the
increment reaches the given error limit.

(2) Joint transmitter placement and power allocation optimization (JTPPA): We jointly
design the transmit power allocation and transmitters’ placement to optimize
radar performance criteria.

Figure 7 compares the radar target detection performance by the receiver-operating
characteristic (ROC) curves of different optimization methods. The larger the area under
the curve, the higher the SNR of the radar network, which implies better target detec-
tion performance. It can be observed that the optimal transmitting power allocation with
random antenna placement disregards the importance of location and the priority level
and, thus, TPO provides the worst detection performance. By contrast, the optimization
considering the antenna placement with the same power has a slightly better effect. The
JAP and JTPPA ROC curves indicate that addressing the power allocation and antenna de-
ployment simultaneously can significantly improve the performance of the radar network.
The suboptimal two-element optimization method has an overall higher ability to improve
radar performance than the single-parameter optimization method. Furthermore, it can
be seen that the proposed JAPPA method optimizes three parameters simultaneously to
improve detection ability, thus, providing the most superior detection performance.

Remote Sens. 2022, 14, x FOR PEER REVIEW 19 of 26 
 

 

(2) Receiving antenna position optimization (RAO): The radar network transmitter 
sites remain constant with evenly distributed transmitting power, and only the 
placements of the receiving antennas are modified to improve the radar net-
work’s detecting capability. 

(3) Transmit power allocation optimization (TPO): The transmitting power is efficient-
ly allocated to increase target detection capabilities based on the random de-
ployment of the radar network antenna space architecture. 

2. Two-element optimization: 
(1) Joint antenna placement optimization (JAP): In this experiment, the transmitting 

power is uniformly distributed and the antenna deployment positions are op-
timized using a two-stage method, in which transmitting and receiving anten-
na positions are iteratively optimized. The iteration completes when the in-
crement reaches the given error limit. 

(2) Joint transmitter placement and power allocation optimization (JTPPA): We jointly 
design the transmit power allocation and transmitters’ placement to optimize 
radar performance criteria. 

Figure 7 compares the radar target detection performance by the receiver-operating 
characteristic (ROC) curves of different optimization methods. The larger the area under 
the curve, the higher the SNR of the radar network, which implies better target detection 
performance. It can be observed that the optimal transmitting power allocation with 
random antenna placement disregards the importance of location and the priority level 
and, thus, TPO provides the worst detection performance. By contrast, the optimization 
considering the antenna placement with the same power has a slightly better effect. The 
JAP and JTPPA ROC curves indicate that addressing the power allocation and antenna 
deployment simultaneously can significantly improve the performance of the radar 
network. The suboptimal two-element optimization method has an overall higher ability 
to improve radar performance than the single-parameter optimization method. Fur-
thermore, it can be seen that the proposed JAPPA method optimizes three parameters 
simultaneously to improve detection ability, thus, providing the most superior detection 
performance. 

 
Figure 7. Average ROC curves for power allocation method. 

4.1.2. Case 2: Iterative Loop Containment Range 
This case investigates the effect of iterative loop range on resource allocation, and 

further analyzes the joint optimization problem of antenna placement and power alloca-
tion in distributed MIMO radar networks, focusing on the collaborative optimization of 
optimizing power allocation and antenna location problem. 

Figure 7. Average ROC curves for power allocation method.

4.1.2. Case 2: Iterative Loop Containment Range

This case investigates the effect of iterative loop range on resource allocation, and
further analyzes the joint optimization problem of antenna placement and power alloca-
tion in distributed MIMO radar networks, focusing on the collaborative optimization of
optimizing power allocation and antenna location problem.
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Two experiments are carried out: Iterative optimization of antenna placement (IOAP),
an algorithm that first iteratively optimizes the antenna position and finally optimizes the
power allocation, and iterative loop of antenna position and power distribution (JAPPA).
The optimization difference between the two iterative loops is shown in Figure 8a. The
first separation of the two dotted lines is due to the JAPPA method performing the optimal
power allocation, while IOAP executes the next round of antenna position optimization
deployment. Finally, both the curves terminate the optimization process after satisfying
the convergence conditions. Figure 8b gives an SNR comparison of the two algorithms,
demonstrating that JAPPA can more fully use the limited resources to enhance the system.
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The IOAP antenna placement scheme is given in Tables 7 and 8. Figure 9a illustrates
the resulting antenna geometry distribution in the square-shaped plane and Figure 9b
presents the solution for the power allocation problem and compares the power allocation
schemes of the IOPA and JAAPA methods. The transmitting antenna with the highest
power allocation is located at the same location compared to the JAPPA scheme. The essence
is that the point has the highest priority, and its results also justify the optimization results.

Table 7. Transmitting antennas positions.

Transmitter x (km) y (km)

#1 18 14
#2 10 6
#3 14 10

Table 8. Receiving antennas positions.

Transmitter x (km) y (km)

#1 16 12
#2 12 8
#3 8 4
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4.1.3. Case 3: Numbers of Antennas

Obviously, improvements such as raising the transmitting power, improving the
antenna gain, and increasing the amount of system equipment can enhance detection
performance [9,25]. This simulation is extended to the different numbers of the transmitting
and receiving antennas, and the effect of different antenna quantities to complete the target
detection task under the constraint of power resource budget has been investigated.

The curves in Figure 10 represent different numbers of transceiver stations, and the
detection probability varies with the probability of false alarms. The results indicate that
with the increase in the antenna amounts, the radar network possesses a superior detection
performance due to the SNR improvement brought by the diversity gain. However, the
target detection performance of radar networks under power constraints is not always
positively correlated with the number of antennas. Since the radar network detection
performance of M = 3, N = 2 is superior to that of M = 3, N = 3, the optimal antennas
quantity scheme for monitoring in a particular area is not superior in number. It deserves
further research since it has significant guiding relevance for practical applications.
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4.2. The Efficiency of the Iterative Two-Stage Closed-Loop Solver

In this section, the time efficiency of the proposed method is illustrated using the
exhaustive search-based algorithm as a benchmark. In Figure 11a, it can be observed that
the SNR performance of JAPPA is close to that of the exhaustive method, which proves
the effectiveness of JAPPA. The threshold ε = 10−6 is set for each iteration increment to
fairly compare the computational complexity. Then, the running time of the algorithm is
calculated by Monte Carlo experiments, and a visual comparison is shown in Figure 11b.
Specifically, it separately takes the exhaustive search method and the TWANPA method
about 105 and 3× 102 s to complete optimization. By contrast, the proposed two-staged
JAPPA algorithm only takes about 2× 102 s in problem solving. That implies the proposed
JAPPA method can provide comparable performance to the exhaustive search method
while less time-consuming than the TWANPA and conforms to the complex conclusion in
Table 1.
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4.3. Effectiveness of the Proposed Method

In this part, the effectiveness of the proposed JAPPA technique is analyzed with three
comparative tests by evaluating the degree of optimization of the algorithm on the radar
target recognition performance.

1. Random antenna placement with uniform power allocation (RAP-UPA): This method
randomly selects the positions of the antennas with the uniform transmitting power
resource allocation.

2. Random antenna placement with non-uniform power allocation (RAP-UUPA): The realistic
scenario of non-uniform power allocation and random antenna placement will be
considered in this simulation.

3. Optimal antenna placement with uniform power allocation (OAP-UPA) [13]: In this sce-
nario, the transmitters and receivers are optimally placed sequentially with the power
consumption uniformly allocated to the transmitting antennas.

4. Three-stage water-filling-type antenna placement and power allocation strategy (TWANPA) [19]:
This method improves the radar detection performance through successive optimiza-
tion under the total power constraint and designs a suboptimal method to effectively
locate transmitting and receiving antennas under the water-filling power allocation. It
completes the transmitting antenna placement using the power density criterion and
positioning the receiving antenna with the SNR criterion. Subsequently, a closed-loop
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optimization mechanism is established by repeating the antennas’ positions using the
allocated powers.

The simulation results in Figure 12 present the ROC comparison between the proposed
JAPPA strategy and the other four benchmarks. Therefore, it is apparent from a brief look at
Figure 12 that the superior performance of the proposed JAPPA strategy is very significant
to improve the SNR of the radar system. Among these four benchmarks, OAP-UPA
outperforms RAP-UPA and RAP-UUPA due to the optimal antenna positions at both
the transmitter and receiver end. TWANPA shows advantages over the OAP-UPA and
achieves superior detection performance, since it uses an optimal power allocation scheme
based on the water-filling-type method. The TWANPA method selects the optimal antenna
placement set based on two different objective functions and iteratively converges to a
suboptimal solution, while the proposed JAPPA method completes the optimization based
on a unified log-LRT function. The result verifies the effectiveness of the established
optimization model.
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5. Conclusions

In this paper, the joint resource allocation problem of a distributed MIMO radar net-
work based on environmental information is investigated and an optimization scheme
JAPPA is developed to maximize the detection performance of the radar system for the
whole surveillance area. The intractable mixed-integer programming problem is modified
into a two-stage optimization problem, which is solved by the greedy take-away method
and the Lagrangian-KKT method, respectively. Finally, the jointly optimal solution is guar-
anteed using a closed-loop scheme and the simulation results demonstrate the superiority
of the proposed JAPPA method and show the following aspects.

1. The log-LRT function unifies the antenna position variables and transmitter power
allocation variables into a single collaborative objective function, which is suitable for
guiding the joint resource allocation optimization.

2. The joint antenna and power allocation optimization can more effectively improve
the target detection performance of the radar system.

3. The proposed strategy is effective and efficient in solving the JAPPA problem.

Future research could consider more environmental factors, such as terrain, clutter
distribution, etc., to get closer to the actual battlefield environment [41,42], and extend
to dynamic target detection and joint detection and tracking [43,44]. Beyond that, game
theory [45] and machine learning may be taken into account.
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Appendix A

Prove that Formula (42) is a convex optimization model.
The constraint in the Formula (42) is linear and convex. The objective function is

rewritten as follows:

F(PT) =
M

∑
m=1

N

∑
n=1

[
Ln
(√

2π · Enmcnm

σ
· exp

(
Enmcnm

2

2σ2

))
− Ln

(
1 +

Enmcnm
2

σ2

)]
(A1)

To simplify the calculation process, we have

G = Ln
(√

2π · cnm
√

LnmPTm
σ

· exp
(

cnm
2LnmPTm

2σ2

))
− Ln

(
1 +

cnm
2LnmPTm
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)
(A2)

It is necessary to derive the second derivative of G

∇Pm
Pm
G =

2P2
Tm ·

(
cnm

2Lnm
σ2

)2
−
(

1 + Cnm
2Lnm

σ2 · PTm

)2

2P2
Tm ·

(
1 + cnm2Lnm

σ2 · PTm

)2 (A3)

where∇Pm
Pm

denotes the second partial derivative with regard to Pm. From the literature [36],
if the second derivative of a one-variable function is always non-negative in the feasible
region, the function is convex. At this point, only the sign of the numerator needs to be
considered and it is easy to prove that in the case of the actual radar power consumption
order of magnitude, ∇Pm

Pm
G is always positive and F(PT) can be regarded as the affine

transformation of G with respect to Pm. Therefore, F(PT) is convex. That is, problem (45) is
a convex optimization problem [23].

The certificate is completed.
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