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Abstract: Extreme precipitation events have a more serious impact on densely populated cities and
therefore reliable estimation of extreme precipitation is very important. Satellite-derived precipi-
tation products provide precipitation datasets with high spatiotemporal resolution. For improved
applicability to estimating urban extreme precipitation, the performance of such products must
be evaluated regionally. This study evaluated three satellite-derived precipitation products, the
Integrated Multi-satellite Retrievals for GPM (IMERG_V06), Multi-Source Weighted-Ensemble Pre-
cipitation (MSWEP V2), and China Meteorological Forcing Dataset (CMFD), in capturing extreme
precipitation using observations acquired at 36 rainfall stations during 2001–2016 in Beijing, China.
Results showed that MSWEP had the highest accuracy regarding daily precipitation data, with the
highest correlation coefficient and the lowest absolute deviation between MSWEP and the rainfall
station observations. CMFD demonstrated the best ability for correct detection of daily precipitation
events, while MSWEP maintained the lowest rate of detecting non-rainy days as rainy days. MSWEP
performed better in estimating precipitation amount and the number of precipitation days when
daily precipitation was <50 mm; CMFD performed better when daily precipitation was >50 mm. All
three products underestimated extreme precipitation. The Structural Similarity Index, which is a
map comparison technique, was used to compare the similarities between the three products and
rainfall station observations of two extreme rainstorms: “7.21” in 2012 and “7.20” in 2016. MSWEP
and CMFD showed higher levels of similarity in terms of spatial–temporal structure. Overall, despite
systematic underestimation, MSWEP performed better than IMERG and CMFD in estimating extreme
precipitation in Beijing.

Keywords: satellite-derived precipitation products; IMERG; MSWEP; CMFD; extreme precipitation

1. Introduction

Urban extreme precipitation can be one of the most hazardous weather events owing
to the concentration of population and wealth in urban areas [1]. Extensive efforts have
been dedicated to studying urban extreme precipitation [2,3]. Recent related studies have
shown that urbanization might increase the frequency and intensity of regional extreme
precipitation [4]. Therefore, detection of changes in urban extreme precipitation has been a
critical research focus in recent decades [5,6].

The main methods adopted for monitoring urban precipitation include rainfall station
observations, weather radar observations, and satellite-derived products [7]. Rainfall sta-
tion observations represent the most direct and precise method for acquiring precipitation
data. However, use of interpolation methods results in potential errors when obtaining
continuous spatial precipitation estimates owing to the sparse and uneven distribution
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of rainfall stations over most continents [8,9]. Radars measure precipitation indirectly
by radiating electromagnetic energy and collecting the echo reflected by water droplets,
which can produce an instantaneous distribution of precipitation over a wide range and
provide real-time high-resolution precipitation estimates [10]. Thus, radars can compensate
for the inadequacies of areal rainfall estimation based on rainfall station observations,
and represent an effective tool for monitoring hazardous weather, quantitative estimation
of precipitation, and quantitative precipitation forecasting. Nevertheless, weather radar
observations of precipitation are often affected by factors such as complex terrain and
cloud movement, which can introduce high levels of uncertainty [11]. Satellite-derived
products, which can provide high spatiotemporal resolution precipitation information
with large coverage, represent an alternative to rainfall station observations, especially
for cities with limited numbers of rainfall stations [12]. Various satellite-derived prod-
ucts have been produced and applied to monitor urban precipitation, e.g., Tropical Rain-
fall Measuring Mission (TRMM) [13–15], Climate Prediction Center morphing technique
(CMORPH) [16–18], Precipitation Estimation from Remotely Sensed Information using Ar-
tificial Neural Networks (PERSIANN) [19–21], and the Integrated Multi-Satellite Retrievals
for GPM (IMERG) [22–24].

The accuracy of satellite-derived precipitation products is affected by errors in sensor
observations and retrieval algorithms, especially regarding extreme values [25]. Therefore, it is
of great importance to evaluate the precision and uncertainties of such products in capturing
extreme values of precipitation before application to a specific region [26,27]. Numerous previ-
ous studies used extreme precipitation indices and categorical error metrics to evaluate the
performance of satellite-derived precipitation products in estimating extreme precipitation
and detection skill in different regions [13,28–31]. Some studies analyzed the performance
of the satellite-derived precipitation products in relation to specific extreme precipitation
events, including evaluating the capability of satellite-derived precipitation products in
quantifying typhoon-related extreme rainfall [32,33] and extreme precipitation events in
different time series [34]. Most of these studies adopted a series of indices and metrics
to compare the differences between satellite-derived precipitation products and rainfall
station observations. However, similarities in the spatial structure of extreme precipitation
events, which are essential in relation to metropolitan areas with pronounced spatial dif-
ferences in population and poverty, have rarely been studied. The Structural Similarity
Index (SSI), which was developed to quantify the similarity between a compressed image
and a reference image [35], has shown applicability to comparison of spatial ecological
data [36,37] and annual precipitation distribution [38]. Theoretically, SSI is highly suitable
for analysis of similarities in the spatial structure of extreme precipitation events.

Many satellite-derived precipitation products have been evaluated and applied in the
field of hydrometeorology [39–41]. Among these products, the Integrated Multi-Satellite
Retrievals for GPM (IMERG_V06), Multi-Source Weighted-Ensemble Precipitation, version
2 (MSWEP V2), and China Meteorological Forcing Dataset (CMFD), have shown strong ap-
plicability to monitor extreme precipitation. The newly released IMERG product provides
global estimates of precipitation with high temporal and spatial resolutions. Some studies
have found that IMERG has greater estimation accuracy in detecting moderate rain, heavy
rain, and rainstorms in low-elevation areas along the eastern coast of China [42,43], with
reports that GPM/IMERG outperforms The TRMM Multi-satellite Precipitation Analysis
(TMPA)products in representing the spatial pattern, overall volume, and probability char-
acteristics of extreme precipitation over China [27,44]. MSWEP V2.2 is a gridded dataset
with high spatiotemporal resolution and a long time series, which integrates site data,
satellite data, and reanalysis data, as well as corrections based on runoff and potential
evapotranspiration data. Liu et al. [45] evaluated the accuracy of Climate Hazards Group
Infrared Precipitation with Station data Version2 (CHIRPS v2) [46] and MSWEP V2 and
found that MSWEP has higher accuracy than CHIRPS in relation to extreme precipitation
on the Qinghai–Tibet Plateau. CMFD is a gridded near-surface meteorological dataset with
high spatiotemporal resolution [47], which has been proven to perform better than both
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Asian Precipitation-Highly Resolved Observational Data Integration Towards Evaluation of
Water Resources (APHRODITE) [48] and CHIRPS in capturing the spatiotemporal pattern
of the most extreme precipitation indices over the Qinghai–Tibet Plateau in China [49].
Most of these previous studies focused on global, national, and basin scales, while few stud-
ies have evaluated the performance of such datasets in monitoring extreme precipitation at
the scale of a metropolitan area.

In this paper, comprehensive comparison is conducted to evaluate the performance
of satellite-derived precipitation products in metropolitan areas, which is helpful for hy-
drological research to select appropriate precipitation products for the study of flood early
warning. In addition to conventional extreme precipitation metrics on frequency, intensity,
occurrence date, and capture ability, the SSI approach is adopted to compare the spatial
structure of extreme rainstorms captured by satellite-derived precipitation products and
rainfall station observations. The proposed method is adopted to evaluate the performance
of IMERG, MSWEP, and CMFD over Beijing using daily precipitation data acquired at
36 rainfall stations during 2001–2016. The remainder of this paper is organized as follows.
In Section 2, the study area and the precipitation datasets used are introduced. In Section 3,
we briefly introduce the research methods and selected indicators. The derived results and
their analysis are presented in Section 4. In Section 5, we discuss these results, and Section 6
presents our conclusions.

2. Study Area and Data
2.1. Study Area

Beijing, which is located in the northern part of the North China Plain (39.4◦–41.6◦N,
115.7◦–117.4◦E), covers an area of 16,410.54 km2 [50]. Generally, the elevation of the terrain
is high in the northwest and low in the southeast. The mountainous area accounts for
approximately 62% of the total area, and plains account for approximately 38% [51]. Beijing
has a subhumid continental monsoon climate of the northern temperate zone, with hot rainy
summers, cold dry winters, and uneven distribution of precipitation [52]. Approximately
80% of the annual precipitation is concentrated in summer (June–August). According to
statistics from the Beijing Water Resources Bulletin, the average rainfall in Beijing (1950–
2012) is 585 mm. With continuous urbanization, the permanent population of Beijing
has increased from 13.64 million in 2000 to 21.54 million in 2018. According to previous
studies, urbanization and topography have influenced the frequency and intensity of
extreme precipitation in Beijing [4,53,54]. Referring to these studies, we divided Beijing
into the following six subregions: the urban area (UA), inner suburban area in the south
(ISAS), inner suburban area in the north (ISAN), outer suburban area (OSA), southwest
mountainous area (SWMA), and northwest mountainous area (NWMA) (Figure 1) [55].
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2.2. Datasets
2.2.1. Satellite-Derived Precipitation Products

IMERG is a level 3 product of the Global Precipitation Measurement (GPM) mission.
It makes full use of all the data provided by the satellite sensors onboard the GPM platform
and it also borrows from the previous TRMM era. IMERG uses passive microwave data
from recent instruments, including Defense Meteorological Satellite Program Flight 19
(DMSP-F19, developed by Lockheed Martin Space Systems Company, Rockville, MD, USA),
GPM Microwave Imager (GMI, developed by Ball Aerospace and Technology Corporation,
Boulder, CO, USA), and National Oceanic and Atmospheric Administration–20 (NOAA-20,
developed by the National Oceanic and Atmospheric Administration, Boulder, CO, USA),
which provide reasonably accurate satellite-based precipitation estimates. IMERG uses data
from as many low Earth orbit satellites as possible to compensate for the limited sampling
available from single low Earth orbit satellites, and to augment infrared precipitation
estimates from geosynchronous Earth orbit satellites [56]. Previous studies have proven
that the accuracy of IMERG products is notably improved in comparison with that of
TRMM products [57,58], and the IMERG products have proved useful in studying climate
change and conducting hydrological simulations [59]. Since 2014, IMERG has released
four official versions of data, and the previous version was replaced by IMERG_V06 in
2019. According to different data processing procedures, IMERG provides three types of
precipitation product: the near-real-time Early-Run and Late-Run products and the delayed
Final-Run product [60]. This study used the IMERG_ V06 Early-Run precipitation dataset
(2001–2021), which has spatial and temporal resolutions of 0.1◦ and 1 d, respectively.

MSWEP V2 is a global precipitation dataset recently developed by Beck et al. [61]. The
spatial and temporal resolutions of MSWEP are 0.1◦ and 3 h, respectively, and the data series
length covers 1979–2017. In comparison with version 1, MSWEP V2 supplements reanalysis
and rainfall station data with rainfall estimates based on infrared data to improve the
precipitation estimates in convection-dominated regions. The product integrates weather
station data (e.g., global daily climate history network data and global ground daily
weather data), satellite observation data, including CMORPH, Gridded Satellite (GridSat),
The Global Satellite Mapping of Precipitation (GSMaP), and TRMM 3B42RT, and model
simulation data, including Interim ECMWF Re-Analysis (ERA-Interim) and the Japanese
55-year Reanalysis (JRA-55). In some watersheds, calibration is performed using runoff
and potential evapotranspiration data, which have the characteristics of long time series
and high spatial resolution [62]. Beck et al. [61] also compared the performance of 11 types
of global or quasi-global precipitation datasets (including 1 pure measurement dataset
and 10 combined datasets) on the daily scale using rainfall station and radar precipitation
data in the United States and found that MSWEP V2 always had the highest accuracy.
In this study, the daily precipitation dataset of MSWEP V2(1979–2016) was obtained by
accumulating 3 h observations of precipitation.

CMFD [47] is a near-surface meteorological and environmental reanalysis dataset
developed by the Institute of Tibetan Plateau Research of the Chinese Academy of Sciences,
which includes near-surface air temperature, near-surface air pressure, near-surface spe-
cific humidity, near-surface wind speed, surface downward shortwave radiation, surface
downward longwave radiation, and surface precipitation rate. The spatial and temporal
resolutions of CMFD are 0.1◦ and 3 h, respectively. The data series length covers 1979–2018.
The dataset is based on internationally produced Princeton reanalysis data, Global Land
Data Assimilation System data, the Global Energy and Water Cycle Exchanges Surface
Radiation Budget (GEWEX-SRB) radiation data, and TMPA 3B42 calibration products as
the background field, and integrated with China’s meteorological observation data. The
accuracy is between that of meteorological station observations and satellite-derived data.
In this study, the daily precipitation dataset of CMFD was obtained by accumulating 3 h
observations of precipitation.
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For comparison with the rainfall station data, the spatial and temporal resolutions
of the three precipitation products were set at 0.1◦ and daily, respectively. Three satellite-
derived precipitation products are demonstrated in Table 1.

Table 1. Summary information for the three satellite-derived precipitation products used in this study.

Satellite Product Temporal Resolution Space Resolution Temporal Span Source Data References

IMERG V06
Early-Run Daily 0.1◦ 2001–2021 Satellite data [58]

MSWEP V2 3 h 0.1◦ 1979–2016 Gauge, satellite,
reanalysis data [61]

CMFD 3 h 0.1◦ 1979–2018 Gauge, satellite,
reanalysis data [47]

2.2.2. Rainfall Station Data

The precipitation observation data selected for use in this study were derived from
daily precipitation data (2001–2016) acquired at 36 rainfall stations in Beijing and provided
by the Beijing Municipal Hydrological Bureau and the China National Climate Center.
The quality of the dataset is strictly controlled before its release. Except for the dense
distribution of rainfall stations in urban areas of Beijing, the distribution of rainfall stations
in suburban and mountainous areas is sparse and uneven. There are 15 rainfall stations in
the urban area, 5 and 2 rainfall stations in the in the southern and northern suburbs, and
3 rainfall stations in the northern outer suburbs. Rainfall stations in mountainous areas are
sparsely distributed, with 5 and 6 rainfall stations in the southern and northern mountains
areas, respectively. The distribution of rainfall stations is shown in Figure 1.

3. Methods

We divided the comparison indices of extreme precipitation into the quantitative
index, classification scoring index, extreme precipitation index, and SSI. Generally, there
are two approaches, point-to-pixel and pixel-to-pixel methods, that can be applied to
compare the satellite-derived precipitation products with rainfall station observations.
The pixel-to-pixel method requires spatial interpolation of rainfall station observations to
match the pixel-based data of satellite-derived products, which might create uncertainties,
particularly owing to the sparse and uneven distribution of the rainfall stations [30,63], so
we used a point-to-pixel approach to compare the rainfall stations data and the satellite-
derived precipitation products data. This methodology has been used widely in assessing
precipitation estimated by satellite-derived precipitation products [32,64] and it is the
closest matching method in this study for the uneven distribution of rainfall stations in
Beijing. We calculated the regional metrics by averaging the metrics of the rainfall stations
in each subregion.

3.1. Quantitative Index

To compare and evaluate the accuracy of IMERG, MSWEP, and CMFD data in the
Beijing area, this study adopted four statistical indictors: absolute deviation (AD), relative
deviation (RB), root mean square error (RMSE), and correlation coefficient (Corr). We
calculated indictor values corresponding to each rainfall station, and spatially averaged the
indictor values over different subregions. These indicators were used to analyze both the
spatial characteristics of the errors of the satellite-derived precipitation data at different
sites in Beijing, and the errors generated by satellite-derived precipitation products under
different levels of precipitation intensity. In addition, these indicators are also used to
evaluate the accuracy of the occurrence dates of extreme precipitation detection by the
rainfall stations and satellite-derived precipitation products. Their perfect values are



Remote Sens. 2022, 14, 2698 6 of 21

unity for Corr, and zero for AD, RB, and RMSE. The specific calculation methods are as
follows [65,66]:

AD =
∑n

i=1|Si − Gi|
n

, (1)

RB =
∑n

i=1(Si − Gi)

∑n
i=1(Gi)

∗ 100%, (2)

RMSE =

√
∑n

i=1(Si − Gi)
2

n
, (3)

Corr =
∑n

i=1
(
Si − S

)(
Gi − G

)√
∑n

i=1
(
Si − S

)2
√

∑n
i=1
(
Gi − G

)2
, (4)

where n is the number of samples; S and G are the satellite-derived products data and
the rainfall station observations data, respectively; S is the average of the satellite-derived
products data; and G is the average of the observation data of the ground stations.

3.2. Classification Scoring Index

To evaluate the ability of IMERG, MSWEP, and CMFD data to capture precipitation
events, the threshold of precipitation occurrence was set at 0.1 mm/d, and two probability
statistical indicators were selected: the probability of detection (POD) and the false alarm
rate (FAR). Moreover, to compare and analyze the proportion of precipitation data success-
fully detected and falsely reported by satellite precipitation data, two volume statistical
indicators were selected: the volumetric POD (VPOD) and the volumetric FAR (VFAR).
The critical success index (CSI) [67,68] was adopted to analyze whether the precipitation
events captured by the three satellite-derived precipitation products were consistent with
the precipitation events observed by the ground stations, and to evaluate quantitatively the
ability of the satellite products to capture precipitation events and non-precipitation events.
The closer that POD, VPOD, and CSI are to 1, and the closer the FAR and VFAR are to 0,
the more accurate the satellite-derived precipitation products are at capturing precipitation
events. Each pair of daily precipitation records from the meteorological stations and corre-
sponding grids of IMERG, MSWEP, and CMFD was classified as a “hit”, “miss”, or “false”.
The classification results are shown in Table 2.

Table 2. Contingency table of the satellite-derived precipitation data and rainfall station data.

Rainfall Stations
≥0.1 mm/d

Rainfall Stations
<0.1 mm/d

Satellite-derived data ≥ 0.1 mm/d Hit False
Satellite-derived data < 0.1 mm/d Miss 0

The calculation methods of the indicators are as follows:

POD =
Nhit

Nhit + Nmiss
, (5)

FAR =
N f alse

Nhit + N f alse
, (6)

CSI =
Nhit

Nhit + N f alse + Nmiss
, (7)

VPOD =
∑n

i=1[Si|(Si ≥ thr&Gi ≥ thr )]
∑n

i=1[Si|(Si ≥ thr&Gi ≥ thr )] + ∑n
i=1[Si|(Si < thr&Gi ≥ thr )]

, (8)

VFAR =
∑n

i=1[Si|(Si ≥ thr&Gi < thr )]
∑n

i=1[Si|(Si ≥ thr&Gi ≥ thr )] + ∑n
i=1[Si|(Si ≥ thr&Gi < thr )]

, (9)
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where n is the number of samples, Nhit is the total count of days when both rainfall stations
and satellite-derived products observe rain, Nfalse is the total count of days when the
satellite-derived products detect rain that is not detected by the rainfall stations, Nmiss is
the total count of days when the satellite-derived products miss rain that is detected by the
rainfall stations, and thr is the precipitation threshold. The index values obtained through
different specifications of thr reflect the inversion accuracy of the satellite-derived data for
different levels of precipitation.

To evaluate the capability of the satellite-derived precipitation products to capture
extreme precipitation, we first calculated the annual precipitation for each station at
thresholds of the 75th, 80th, 85th, 90th, 95th, and 99th quantiles, and the numbers of
days for which the precipitation data measured by the stations were greater than the
thresholds. The values of the rainfall stations were averaged in the research area, as
shown in Table 3. Precipitation above the thresholds of the 75th and 90th quantiles
was selected for evaluation to ensure sufficient precipitation events for calculation and
to reflect the differences in precipitation capture capability of the different thresholds.
We calculated the POD and FAR of the three products for precipitation events when
the measured values of the rainfall stations were above the thresholds of 75th and 90th
quantiles (Q75 threshold and Q90 threshold).

Table 3. Rainfall stations with different thresholds of precipitation and the numbers of days when-
precipitation was > thr.

Thresholds

R75p R80p R85p R90p R95p R99p

Rainfall stations (mm) 10.0 12.7 16.6 22.8 34.4 73.1
Rdays (Precipitation > thr) 18 15 11 7 4 1

3.3. Extreme Precipitation Index

This study selected 13 widely used precipitation indicators, defined by the Expert
Team on Climate Change Detection and Indices (ETCCDI) [69,70], to analyze the data
accuracy of IMERG, MSWEP, and CMFD in terms of extreme precipitation. The defi-
nitions of these 13 extreme precipitation indices are presented in Table 4. The annual
total precipitation (ATP) and annual mean precipitation intensity (API) are equivalent
to annual total wet-day precipitation (PRCPTOT) and Simple Daily Intensity Index
(SDII), respectively. The consecutive wet day (CWD) and consecutive dry day (CDD)
indicate the maximum number of wet or dry durations in a period of time. The RX1day
and RX5day were selected as the max indices and the percentile indices were obtained
from the 95th percentile of daily precipitation on wet days. Since the 99th percentile of
daily precipitation in Beijing is basically equal to the RX1day, the 99th percentiles were
excluded. The Rnnmm index represents the number of precipitation days in different
precipitation levels based on the classification of precipitation levels by China Meteoro-
logical Administration and the characteristics of daily precipitation in Beijing [71]. We
calculated the annual 13 extreme precipitation indexes from 2001 to 2016 by using the
annual daily precipitation series detected by the rainfall station and satellite-derived
precipitation products.
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Table 4. Detailed information regarding extreme precipitation indices.

Sort Index Definition Units

Total indices
ATP Annual total precipitation mm
API Annual mean precipitation intensity mm/day

Persistent indices
CDD Maximum number of consecutive dry days days
CWD Maximum number of consecutive wet days days

Max indices
RX1day Annual max 1-day precipitation mm
RX5day Annual max 5 days of consecutive precipitation mm

Percentile indices
R95p The 95th percentile of daily precipitation on wet days mm

R95pTOT The annual sum of precipitation on days where daily precipitation
exceeds the 95th percentile of daily precipitation mm

Absolute threshold
indices

R0.1 mm Annual count of days when daily precipitation is between 0.1 and 5 mm days

R5 mm Annual count of days when daily precipitation is between 5 and 10 mm days

R10 mm Annual count of days when daily precipitation is between 10 and 25 mm days

R25 mm Annual count of days when daily precipitation is between 25 and 50 mm days

R50 mm Annual count of days when daily precipitation is >50 mm days

3.4. Structural Similarity Index

We adopted the SSI to quantify the spatial structure difference of two extreme rain-
storms (“7.21” in 2012 and “7.20” in 2016) captured by the satellite-derived precipitation
products and the rainfall stations. The SSI compares the values of each grid between
satellite-derived precipitation products and the rainfall station data, while also accounting
for neighboring grids’ values. To account for the greater spatial differences between the
satellite-derived precipitation products and the rainfall station data, we used the lower
limit of neighborhood size (3 × 3 cells) and performed quantitative analysis by estimating
the similarity in mean (SIM), similarity in variance (SIV), and similarity in pattern (SIP) [35].
The equations for these metrics are as follows:

SIM(S, G) =
2µsµg + c1

µ2
s + µ2

g + c1
, (10)

SIV(S, G) =
2σsσg + c2

σ2
s + σ2

g + c2
, (11)

SIP(S, G) =
2σsg + c3

σsσg + c3
, (12)

us = ∑n
i=1 wiPsi, (13)

σ2
s = ∑n

i=1 wi(Psi − us)
2, (14)

σsg = ∑n
i=1 wi(Psi − us)(Pgi − ug), (15)

where µs, µg, σs, σg, and σsg represent the satellite-derived precipitation data and rainfall
station data mean, variance, and covariance for each 3 × 3 cell, and S and G represent the
satellite-derived precipitation products and the rainfall station data, respectively. Three
constants (c1, c2, and c3) were used to avoid instability when the denominator values of
the equations were very close to zero. The values of these constants were calculated on the
basis of the dynamic range of the pixel values (R represents the dynamic range of the pixel
values) and two small constants (k1 = 0.01, k2 = 0.03). Therefore, c1 = (k1R)2, c2 = (k2R)2, and
c3 = c2/2. Psi and Pgi indicate the precipitation values for each grid in each 3 × 3 cell of the
maps S and G, respectively. The weight for the 9 grids in the local window, wi = 1/9. The
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values of SIM and SIV can vary from 0 to 1, while the value of SIP can vary from −1 to 1.
The SSI is calculated as an overall measure of comparison:

SSI(S, G) = SIM(S, G)α·SIV(S, G)β·SIP(S, G)γ, (16)

where constants α, β, and γ can be used to weight individual components of the SSI; in
this study, α = β = γ = 1. Therefore, the SSI is bounded by (−1, 1) where −1 indicates
complete dissimilarity of the spatial structure between the satellite data and the rainfall
station data, and 1 reflects identical spatial distributions of extreme precipitation. SSIM is a
mean index to evaluate the overall spatial structure difference, n is the grid number.

SSIM(S, G) = ∑n
i=1 SSI(Si, Gi), (17)

4. Results
4.1. Performance of Daily Satellite-Derived Precipitation Products
4.1.1. Accuracy Evaluation of Precipitation Data

The daily scale Corr, RB, AD, and RMSE of the satellite-derived precipitation products
were calculated for Beijing, and the average values of the four indicators in the six subre-
gions are shown in Table 5. It can be seen that in different subregions, the values of Corr
between MSWEP and rainfall station data are significantly higher than for IMERG and
CMFD. The regional averages of Corr of IMERG, MSWEP, and CMFD are 0.72, 0.81, and
0.76, respectively. Most Corr values of the three products are >0.6 over most subregions of
Beijing, indicating the significant correlation between the three products and the rainfall
stations. We found that the Corr between satellite-derived precipitation products and
rainfall station data in mountainous areas is lower than that in urban and suburban areas,
and similar trends have been found in other related studies [72,73]. This finding could be
attributable to the limitations of satellite-based rainfall estimations derived from inversion
of thermal infrared and passive microwave sensor retrievals in mountainous areas [74,75].
The regional averages of RB of IMERG, MSWEP, and CMFD are 3.2%, −12.4%, and 0.4%,
respectively. In the UA, ISAN, NWMA, and OSA subregions, MSWEP shows obvious
negative deviations, indicating that MSWEP underestimates daily precipitation in these
areas. The regional averages of AD of IMERG, MSWEP, and CMFD are 1.30, 0.95, and
1.15, respectively, and those of RMSE are 4.80, 4.10, 4.49, respectively. All satellite-derived
precipitation products show large AD and RMSE in the UA, NWMA, SWMA, and OSA
subregions. In each subregion, the values of AD and RMSE for MSWEP are lower than
those for IMERG and CMFD. From the perspective of daily precipitation accuracy, MSWEP
produces smaller errors but generally underestimates daily precipitation.

Table 5. Accuracy evaluation of the satellite-derived precipitation data in different subregions
of Beijing.

Index UA ISAS ISAN SWMA NWMA OSA Beijing

Corr
IMERG 0.74 0.73 0.76 0.68 0.70 0.75 0.72
MSWEP 0.82 0.82 0.77 0.80 0.78 0.80 0.81
CMFD 0.79 0.77 0.74 0.70 0.71 0.78 0.76

RB
IMERG 1.0% 13.6% 4.5% 2.3% 2.8% −1.6% 3.2%
MSWEP −13.0% −2.5% −17.9% −6.6% −16.0% −26.2% −12.5%
CMFD −5.8% 10.0% 4.5% 2.6% 2.4% 5.4% 0.4%

AD
(mm)

IMERG 1.33 1.29 1.24 1.27 1.27 1.32 1.30
MSWEP 0.94 0.90 0.96 0.94 0.97 1.07 0.95
CMFD 1.10 1.08 1.19 1.23 1.22 1.23 1.15

RMSE
(mm)

IMERG 5.02 4.68 4.46 4.94 4.40 4.73 4.80
MSWEP 4.22 3.81 4.30 4.10 3.81 4.38 4.10
CMFD 4.54 4.37 4.60 4.76 4.25 4.41 4.49
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4.1.2. Evaluation of Precipitation Capture Capability

This study calculated the precipitation capture capability index of the three satellite-
derived precipitation products of all daily precipitation data and the daily precipitation
data above the thresholds of 75th and 90th quantiles per year (Figure 2). It can be seen
from the figures that the POD values of IMERG, MSWEP, and CMFD are 0.86, 0.84, and
0.93, respectively, and that the VPOD values are 0.95, 0.96, and 0.98, respectively, indicating
that CMFD can correctly detect more precipitation events in all data. When precipitation at
the rainfall stations is above the Q75 threshold, the POD and VPOD values of MSWEP and
CMFD are very close and slightly higher than those of IMERG; however, in comparison with
all data, their precipitation capture abilities are significantly reduced, as shown by values
between 0.5 and 0.8. When precipitation at the rainfall stations is above Q90 threshold,
the POD and VPOD values of MSWEP are the highest, but their values are <0.6. The
FAR values of IMERG, MSWEP, and CMFD are 0.54, 0.33, and 0.52, respectively, and the
VFAR values are 0.18, 0.09, and 0.16, respectively, indicating that MSWEP has the lowest
FAR. With increase in the precipitation threshold, the FAR values of the three products
do not change greatly, whereas the VFAR values increase significantly. Moreover, the CSI
values of IMERG, MSWEP, and CMFD are 0.39, 0.56, and 0.44, respectively, indicating
that MSWEP has the best capability for catching precipitation. The CSI values of the three
products decrease with increase in the precipitation threshold. Generally, MSWEP has
greater capability for capturing extreme precipitation and has a lower FAR, followed in
descending order by CMFD and IMERG.
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4.2. Capability for Identification of Extreme Precipitation
4.2.1. Total Indices and Persistent Indices

Figure 3 shows box plots for the rainfall station data and the three satellite-derived
precipitation products for the total indices and the persistent indices (i.e., ATP, API, CDD,
and CWD). The ATP values of rainfall stations, IMERG, MSWEP, and CMFD data are
522.9, 533.8, 452.1, and 520.5 mm, respectively, and the API values are 8.54, 4.67, 5.82, and
4.34 mm/d, respectively. It can be seen that the ATP values of IMERG and CMFD are very
close to those of the rainfall station data, whereas there is slight underestimation by MSWEP.
However, the API values for all satellite-derived precipitation products are significantly
lower than those for the rainfall station data, indicating significant overestimation of the
number of annual precipitation days. IMERG and CMFD reduce the differences in the API
values among the different subregions of Beijing. The CDD values of the rainfall stations
and the three precipitation products are 50, 30, 46, and 33 d, respectively, and the CWD
values are 5, 8, 8, and 11 d, respectively. In terms of the CDD and CWD indices, all of the
satellite-derived precipitation data underestimate the number of consecutive dry days and
overestimate the number of consecutive wet days, with MSWEP being closest to the rainfall
station data. Moreover, CMFD significantly increases the differences in CWD values among
the different subregions in Beijing. It can be seen that if MSWEP data were used to evaluate
precipitation in Beijing, annual precipitation would be underestimated and humidity would be
underestimated, whereas use of IMERG or CMFD would result in overestimation of humidity
in Beijing. Generally, MSWEP has greater accuracy in terms of the total and persistent indices
in Beijing, but annual precipitation would be underestimated and the wetness degree would
be underestimated if MSWEP were used to evaluate precipitation in Beijing.
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4.2.2. Percentile and Max Indices

To analyze the capability of the three satellite-derived precipitation products for
capturing extreme precipitation, four extreme precipitation indicators (i.e., RX1day,
RX5day, R95p, and R95pTOT) of rainfall station data and IMERG, MSWEP, and CMFD
data were calculated, as shown in Figures 4 and 5. It can be seen from Figure 4 that
each of the four indicators of the three precipitation products has the same trend as
that of the rainfall station data, but all underestimate RX1day, RX5day, and R95p. As
shown in Figure 5, the RX1day values of the rainfall station data and IMERG, MSWEP,
and CMFD are 76.5, 56.3, 54.7, and 58.1 mm, respectively, and the RX5day values are
108.1, 83.4, 83.9, and 89.5 mm, respectively. The three satellite-derived precipitation
products have similar degrees of underestimation of the RX1day and RX5day values,
but IMERG narrows the gap of the RX5day values in different subregions. The R95p
values of the rainfall stations and satellite-derived precipitation products are 34.3, 20.4,
23.4, and 19.2 mm, respectively, and the R95pTOT values are 166.1, 187.9, 142.4, and
189.4 mm, respectively. The R95p values of MSWEP are closest to the values of the
rainfall stations. We also found that IMERG obviously narrows the gap of the R95p
values in different subregions. Overall, the three satellite-derived precipitation products
have underestimated extreme precipitation indicators (i.e., RX1day, RX5day, and R95p).
In terms of the R95pTOT index, the values are overestimated for IMERG and CMFD but
are underestimated for MSWEP.
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To analyze the time consistency of extreme precipitation captured by the three satellite-
derived precipitation products, we evaluated the accuracy index of the occurrence dates
of RX1day detection by the rainfall station and satellite-derived precipitation products
for the period 2001–2016 (Table 6). We sorted the 365 days in a year according to 1–365,
calculated the serial number corresponding to the annual RX1day occurrence time of each
rainfall station and the grid corresponding to the three precipitation products. It can be seen
from Table 6 that the occurrence dates of RX1day detection by the three products have no
significant correlation with the rainfall stations. The three products have positive deviations
in the UA, SWMA, and OSA subregions, indicating that their measured occurrence dates of
RX1day were later than those of the rainfall station, whereas they have advanced occurrence
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dates of RX1day in the ISAS and ISAN subregions because of the negative deviation. The
regional averages of AD of IMERG, MSWEP, and CMFD are 22, 22 and 25 d, respectively,
and those of RMSE are 33, 35, and 38 d, respectively. IMERG and MSWEP show better
performance in time consistency for the occurrence dates of RX1day, but most occurrence
dates of RX1day captured by the three products remain inconsistent with the occurrence
dates determined by the rainfall station data.
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Table 6. Accuracy evaluation of the occurrence date of RX1day detection by the rainfall station and
satellite-derived precipitation products for the period 2001–2016.

Index UA ISAS ISAN SWMA NWMA OSA Beijing

Corr
IMERG 0.41 0.41 0.22 0.18 0.48 0.26 0.36
MSWEP 0.48 0.27 0.40 0.19 0.29 0.45 0.37
CMFD 0.17 0.39 0.47 0.11 0.31 0.19 0.23

RB
IMERG 1.7% −1.6% −1.4% 4.4% −0.7% 1.4% 1.0%
MSWEP 4.3% −1.9% −1.3% 6.3% 2.4% 2.1% 2.9%
CMFD 0.8% −1.7% −1.8% 3.3% −1.2% 0.4% 0.3%

AD
(days)

IMERG 20 25 23 28 22 19 22
MSWEP 18 24 17 29 28 19 22
CMFD 23 25 18 32 27 19 25

RMSE
(days)

IMERG 31 38 34 40 32 29 33
MSWEP 29 43 27 45 41 30 35
CMFD 36 39 28 50 42 31 38
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4.2.3. Absolute Threshold Indices

According to the classification of precipitation grades by the meteorological depart-
ment and the characteristics of precipitation in Beijing, daily precipitation grades are
divided into the following five categories: light precipitation (0.1–5.0 mm/d), moderate
precipitation (5.1–10 mm/d), heavy precipitation (10.1–25.0 mm/d), torrential precipita-
tion (25.1–50.0 mm/d), and extraordinary rainstorm (>50 mm/d) [48]. By calculating the
AD and RB of the precipitation amount and the precipitation days produced by satellite-
derived precipitation products at different precipitation levels (Figure 6), it was found that
all satellite products mainly overestimate the amount of precipitation and the number of
precipitation days for slight and moderate precipitation, and mainly underestimate the
amount of precipitation and the number of precipitation days when the precipitation level
is >10 mm/d. When the precipitation level is <50 mm, the AD and RB values of the pre-
cipitation produced by MSWEP are relatively small, especially for light precipitation, e.g.,
the RB of precipitation produced by MSWEP is 50%, which is much lower than the 101%
produced by IMERG and CMFD. Moreover, the AD and RB values of precipitation days
produced by MSWEP at this level are the lowest. Generally, IMERG, MSWEP, and CMFD
significantly overestimate precipitation and the number of precipitation days for light
precipitation, and significantly underestimate precipitation and the number of precipitation
days for torrential precipitation and extraordinary rainstorms. When daily precipitation
is <50 mm/d, MSWEP performs best, and when daily precipitation is >50 mm/d, CMFD
performs best.
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4.3. Spatial Comparison Statistics of Extreme Rainstorms

Extreme rainstorms occurred in Beijing on 21 July 2012 (“7.21”) and 20 July 2016
(“7.20”), which triggered secondary disasters such as urban waterlogging and mountain
torrents, causing massive loss of life and substantial damage to property. We calculated
the SIM, SIV, SIP, and SSI values of the two extreme rainstorms captured by the three
satellite-derived precipitation products relative to the rainfall stations (Figures 7–10). It can
be seen that local means of the three satellite products are comparable with the local means
of the rainfall stations for the “7.21” rainstorm in 2012 (SIM is close to 1), but they show
a slightly lower SIM value in the southwest of Beijing. MSWEP and CMFD performed
well for the “7.20” rainstorm in 2016, but IMERG shows some discrepancy relative to the
rainfall stations over the SWMA subregion. In Figure 8, MSWEP displays larger differences
in local variance over Beijing for the two rainstorms, and CMFD performed best with
its SIV value close to 1 over the region. SIP represents the spatial correlation between
satellite precipitation products and rainfall stations, and SIP values close to 1 indicate
similarity in locations of high and low variance between the satellite products and the
rainfall stations. Comparison of Figure 9a–f reveals that the three precipitation products all
show negative values in plain areas, especially the UA and ISAS subregions, and positive
values in mountainous areas for the “7.21” rainstorm in 2012; IMERG shows relatively low
correlation with rainfall stations throughout the entire region. From the perspective of
the comprehensive SSI (Figure 10a–f), the SSI values of the two rainstorms are generally
affected by the SIP values, indicating that SIP is the main component contributing to the
inconsistency in the spatial structure between the three precipitation products and the
rainfall stations over Beijing. They show obvious spatial structure inconsistencies in the
plain areas (mainly urban and southern suburbs) for the “7.21” rainstorm in 2012. We
calculated the SSIM of IMERG, MSWEP, and CMFD, which were 0.44, 0.59, and 0.62 in 2012
and 0.34, 0.49, and 0.53 in 2016, respectively. Generally, MSWEP and CMFD performed
better than IMERG.

Remote Sens. 2022, 14, 2698 16 of 22 
 

 

ponent contributing to the inconsistency in the spatial structure between the three pre-
cipitation products and the rainfall stations over Beijing. They show obvious spatial 
structure inconsistencies in the plain areas (mainly urban and southern suburbs) for the 
“7.21” rainstorm in 2012. We calculated the SSIM of IMERG, MSWEP, and CMFD, which 
were 0.44, 0.59, and 0.62 in 2012 and 0.34, 0.49, and 0.53 in 2016, respectively. Generally, 
MSWEP and CMFD performed better than IMERG. 

 

 

Figure 7. Similarity in mean index (SIM) of the extreme rainstorms that occurred in Beijing on 21 
July 2012 and 20 July 2016: (a) IMERG (2012), (b) MSWEP (2012), (c) CMFD (2012), (d) IMERG 
(2016), (e) MSWEP (2016), and (f) CMFD (2016). 

Figure 7. Similarity in mean index (SIM) of the extreme rainstorms that occurred in Beijing on 21 July
2012 and 20 July 2016: (a) IMERG (2012), (b) MSWEP (2012), (c) CMFD (2012), (d) IMERG (2016),
(e) MSWEP (2016), and (f) CMFD (2016).



Remote Sens. 2022, 14, 2698 16 of 21
Remote Sens. 2022, 14, 2698 17 of 22 
 

 

 
Figure 8. Similarity in variance index (SIV) of the extreme rainstorms that occurred in Beijing on 
21 July 2012 and 20 July 2016: (a) IMERG (2012), (b) MSWEP (2012), (c) CMFD (2012), (d) IMERG 
(2016), (e) MSWEP (2016), and (f) CMFD (2016). 

 
Figure 9. Similarity in pattern (SIP) of the extreme rainstorms that occurred in Beijing on 21 July 
2012 and 20 July 2016: (a) IMERG (2012), (b) MSWEP (2012), (c) CMFD (2012), (d) IMERG (2016), 
(e) MSWEP (2016), and (f) CMFD (2016). 

Figure 8. Similarity in variance index (SIV) of the extreme rainstorms that occurred in Beijing on 21
July 2012 and 20 July 2016: (a) IMERG (2012), (b) MSWEP (2012), (c) CMFD (2012), (d) IMERG (2016),
(e) MSWEP (2016), and (f) CMFD (2016).

Remote Sens. 2022, 14, 2698 17 of 22 
 

 

 
Figure 8. Similarity in variance index (SIV) of the extreme rainstorms that occurred in Beijing on 
21 July 2012 and 20 July 2016: (a) IMERG (2012), (b) MSWEP (2012), (c) CMFD (2012), (d) IMERG 
(2016), (e) MSWEP (2016), and (f) CMFD (2016). 

 
Figure 9. Similarity in pattern (SIP) of the extreme rainstorms that occurred in Beijing on 21 July 
2012 and 20 July 2016: (a) IMERG (2012), (b) MSWEP (2012), (c) CMFD (2012), (d) IMERG (2016), 
(e) MSWEP (2016), and (f) CMFD (2016). 

Figure 9. Similarity in pattern (SIP) of the extreme rainstorms that occurred in Beijing on 21 July
2012 and 20 July 2016: (a) IMERG (2012), (b) MSWEP (2012), (c) CMFD (2012), (d) IMERG (2016),
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July 2012 and 20 July 2016: (a) IMERG (2012), (b) MSWEP (2012), (c) CMFD (2012), (d) IMERG (2016),
(e) MSWEP (2016), and (f) CMFD (2016).

5. Discussion

This study assessed the accuracy and capability of IMERG, MSWEP, and CMFD in
capturing daily precipitation and extreme precipitation events in Beijing in relation to
rainfall station data. We selected daily precipitation data from 2001–2016 and found that
MSWEP has better performance than both IMERG and CMFD. MSWEP has higher accuracy
in terms of daily precipitation estimation with the highest Corr and lowest AD values.
However, MSWEP mainly underestimates daily precipitation in the different subregions of
Beijing, resulting in a relatively large RB, while IMERG and CMFD mainly overestimate
daily precipitation. CMFD has the greatest capability for capturing precipitation, which
might be attributable to the integration of conventional meteorological observations from
the China Meteorological Administration. MSWEP has the lowest percentage of incorrectly
captured precipitation events. Generally, MSWEP has greater capability for capturing
extreme precipitation and has a lower FAR, followed in descending order by CMFD
and IMERG.

By comparing and analyzing 13 extreme precipitation indices of the three satellite-
derived precipitation products and rainfall station observations, we found that IMERG,
MSWEP, and CMFD underestimate CDD and overestimate CWD. The three products
would overestimate the degree of humidity when assessing precipitation in Beijing owing
to overestimation of the number of annual precipitation days. It can be seen that MSWEP
has higher accuracy in terms of the total and persistent indices in relation to Beijing. All
three products underestimate the RX1day, RX5day, and R95p indices. Both IMERG and
CMFD mainly overestimate R95pTOT, whereas it is mainly underestimated by MSWEP.
IMERG and MSWEP show better performance in time consistency for the occurrence dates
of RX1day, but the occurrence dates of RX1day captured by the three products remain
inconsistent with that derived from rainfall station observations because their AD is >20 d.
On the basis of the performance regarding different precipitation levels, IMERG, MSWEP,
and CMFD significantly overestimate precipitation and the number of precipitation days



Remote Sens. 2022, 14, 2698 18 of 21

for light precipitation, and significantly underestimate precipitation and the number of
precipitation days for torrential precipitation and extraordinary rainstorms, which is a
finding in accordance with the results for Beijing reported by Ren [76].

Many studies [76,77] have shown that topography (mainly elevation) affects the
accuracy of satellite-derived precipitation products; however, it can be seen from Table 5
that the values of AD, RB, and RMSE associated with the three satellite-derived precipitation
products in mountainous and plain areas have no obvious regional differences. Moreover, as
MSWEP and CMFD are precipitation fusion products integrated with station precipitation
data, whereas IMERG is solely a satellite-derived precipitation product, the accuracy
and precipitation capture capability of IMERG are not as good as those of MSWEP and
CMFD. However, in future research, precipitation fusion products and satellite-derived
precipitation products should be compared separately to better reflect the performance
of different satellite-derived precipitation products. Additionally, the commonly used
satellite precipitation products with a high spatial resolution of 0.1 degree is still a little
coarse for Beijing. Moreover, due to the uneven distribution of rainfall stations in Beijing,
dense stations in urban areas and sparse stations in mountainous areas, the grid matching
accuracy and comparison accuracy will be affected. At present, the rainfall stations in
Beijing are under construction and improvement. We hope to use the rainfall station
data and the satellite-derived precipitation data with higher spatial-temporal resolution to
evaluate extreme precipitation events at shorter durations in future work.

6. Conclusions

In this study, we used observations from 36 rainfall stations in Beijing as reference
data to evaluate the applicability of the three satellite-derived precipitation products:
IMERG_V06, MSWEP V2, and CMFD. In addition to detecting their capability in capturing
the frequency, intensity, and occurrence date of precipitation, we also used the novel
SSI spatial map comparison method to compare the spatial distributions of two extreme
rainstorms that occurred in Beijing.

We found that MSWEP had the highest Corr of daily precipitation with rainfall station
data, and the lowest AD and RMSE values; however, it presented systematic underesti-
mation. CMFD had a higher detection rate, but MSWEP always maintained the lowest
FAR for all data and for data above the 75% and 90% thresholds. In terms of the moni-
toring of extreme precipitation indicators, the three products all underestimated RX1day,
RX5day, and R95p. The R95pTOT indicator was overestimated by IMERG and CMFD but
underestimated by MSWEP. Moreover, MSWEP showed higher accuracy in estimating
precipitation amount and the number of precipitation days for different precipitation levels.
Of the three satellite-derived products, the SSI evaluation showed that MSWEP and CMFD
have greatest similarity to the two extreme rainstorms, i.e., “7.21” in 2012 and “7.20” in
2016. Overall, of the three products, MSWEP was found most suitable for application to
the Beijing region, but it produced systematic underestimation and should be used with
caution in relation to early warning of urban flood disasters.
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