
Citation: Xiao, X.; Li, C.; Lei, Y. A

Lightweight Self-Supervised

Representation Learning Algorithm

for Scene Classification in Spaceborne

SAR and Optical Images. Remote Sens.

2022, 14, 2956. https://doi.org/

10.3390/rs14132956

Academic Editors: Tianwen Zhang,

Tianjiao Zeng and Xiaoling Zhang

Received: 24 May 2022

Accepted: 15 June 2022

Published: 21 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

A Lightweight Self-Supervised Representation Learning
Algorithm for Scene Classification in Spaceborne SAR and
Optical Images
Xiao Xiao, Changjian Li and Yinjie Lei *

College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China;
xiaoxiaox@stu.scu.edu.cn (X.X.); li_changjian@stu.scu.edu.cn (C.L.)
* Correspondence: yinjie@scu.edu.cn

Abstract: Despite the increasing amount of spaceborne synthetic aperture radar (SAR) images and
optical images, only a few annotated data can be used directly for scene classification tasks based
on convolution neural networks (CNNs). For this situation, self-supervised learning methods can
improve scene classification accuracy through learning representations from extensive unlabeled data.
However, existing self-supervised scene classification algorithms are hard to deploy on satellites, due
to the high computation consumption. To address this challenge, we propose a simple, yet effective,
self-supervised representation learning (Lite-SRL) algorithm for the scene classification task. First, we
design a lightweight contrastive learning structure for Lite-SRL, we apply a stochastic augmentation
strategy to obtain augmented views from unlabeled spaceborne images, and Lite-SRL maximizes the
similarity of augmented views to learn valuable representations. Then, we adopt the stop-gradient
operation to make Lite-SRL’s training process not rely on large queues or negative samples, which can
reduce the computation consumption. Furthermore, in order to deploy Lite-SRL on low-power on-board
computing platforms, we propose a distributed hybrid parallelism (DHP) framework and a computation
workload balancing (CWB) module for Lite-SRL. Experiments on representative datasets including
OpenSARUrban, WHU-SAR6, NWPU-Resisc45, and AID dataset demonstrate that Lite-SRL can improve
the scene classification accuracy under limited annotated data, and it is generalizable to both SAR and
optical images. Meanwhile, compared with six state-of-the-art self-supervised algorithms, Lite-SRL has
clear advantages in overall accuracy, number of parameters, memory consumption, and training latency.
Eventually, to evaluate the proposed work’s on-board operational capability, we transplant Lite-SRL to
the low-power computing platform NVIDIA Jetson TX2.

Keywords: synthetic aperture radar; optical images; scene classification; on-board; lightweight
self-supervised algorithm

1. Introduction

The remote sensing scene classification (RSSC) task aims to classify scene regions
into different semantic categories [1–5], which plays an essential role in various Earth
observation applications, i.e., land resource exploration, forest inventory, urban-area mon-
itoring [6–8]. In recent years, Landsat, Sentinel, and other missions have provided an
increasing number of spaceborne images for scene classification task, including synthetic
aperture radar (SAR) images and optical images. With more available data, scene clas-
sification methods based on convolution neural networks (CNN) have undergone rapid
growth [7,9].

However, the amount of annotated scene data available for supervised CNN training
remains limited. Taking SAR data as an example, SAR images are affected by speckle
noise due to the imaging mechanism, resulting in poor image quality [10,11]. In addi-
tion, the random fluctuation of pixels makes it difficult to distinguish between scene
categories [12]. Therefore, the annotation of SAR images requires experienced experts and

Remote Sens. 2022, 14, 2956. https://doi.org/10.3390/rs14132956 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14132956
https://doi.org/10.3390/rs14132956
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs14132956
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14132956?type=check_update&version=1

Remote Sens. 2022, 14, 2956 2 of 26

is a time-consuming task [13]. The same problem of high annotation costs exists for optical
images. This leads to the total images number of RSSC datasets, i.e., OpenSARUrban [14],
WHU-SAR6 [11], NWPU-Resisc45 [3], and AID [15], compared with natural image datasets,
i.e., ImageNet [16], being much smaller; the specific images number for each datasets is
shown Figure A1. With limited annotated samples, CNN tends to be overfitted after train-
ing [17], leading to poor generalization performance in RSSC task. Therefore, exploring
methods to reduce RSSC task’s reliance on annotated data is appealing.

Recently, self-supervised learning (SSL) has emerged as an attractive candidate for
solving the problem of labeled data shortage [18]. SSL methods can learn valuable repre-
sentations from unlabeled images through solving pretext tasks [19]; the network trained
in a self-supervised fashion can be used as a pre-trained model to enable higher accuracy
with fewer training samples [20]. To this end, an increasing number of RSSC studies have
concentrated on SSL. In practice, remote sensing images (RSIs) differ significantly from
natural images in the acquisition and transmission stage—RSIs suffer from noise impact
and high transmission costs [21]. Performing self-supervised training on satellites can solve
these issues; however, existing SSL algorithms are hard to deploy on satellites due to the
high computation consumption. The method based on self-supervised instance discrim-
ination [22] was first applied in RSSC task; soon after, the SSL algorithm represented by
contrastive multiview coding [20] showed good performance in RSSC tasks. These methods
relies on a large batch of negative samples, while the training process needs to maintain
large queues, which can consume much computation resources. Other self-supervised
methods utilize images with the same geographic coordinate regions from different times
and introduce loss functions based on geographic coordinate with complex feature extrac-
tion modules [23], which also consume a lot of resources during training. Therefore, we
need to reduce the computation consumption during self-supervised training.

As mentioned above, we attempt to deploy a self-supervised algorithm on satellites.
A lightweight network is necessary, while a practical on-board training approach can
also provide support. Since it is impracticable to carry high-power GPUs on satellites,
current trend is to use edge devices, i.e., NVIDIA Jetson TX2 [24] as on-board comput-
ing devices [25]. Latest radiation characterized on-board computing modules, such as
the S-A1760 Venus [26], utilizes TX2 inside the product to help spacecraft achieve high
performance AI computing. Accordingly, we also use TX2 as the deployment platform.
As under resource-limited scenarios (limited memory, i.e., memory size of 8 G, limited
computation resources, i.e., bandwidth of 59.7 GB/S), distributed strategies are typically
applied to train the network; thus, for on-board training a flexible distributed training
framework is required. However, the approaches adopted by deep learning frameworks,
i.e., PyTorch [27], TensorFlow [28], and Caffe [29], for distributed training remain primitive.
Existing dedicated distributed training frameworks, such as Mesh-TensorFlow [30] and
Nemesyst [31], are likewise incapable for on-board scenarios, because they fail to consider
the case of limited on-board computation resources.

Based on the above observation, we need (i) a self-supervised learning algorithm
that satisfies guaranteed accuracy and low computation consumption simultaneously; and
(ii) an effective distributed strategy for on-board self-supervised training deployment. To
address these challenges, we propose a lightweight On-board Self-supervised Represen-
tation Learning (Lite-SRL) algorithm for RSSC task. Lite-SRL uses a contrastive learning
structure that contains lightweight modules, by maximizing the similarity of RSIs’ aug-
mented views to capture distinguishable feature from unlabeled images. The augmentation
strategies we used to obtain contrast views differ slightly between SAR and optical images.
Meanwhile, inspired by self-supervised learning algorithm BYOL [32] and SimSiam [33],
we use the stop-gradient operation making the training process not rely on large batch
size, queues, or negative sample pairs, which greatly reduces the computation workload
with guaranteed accuracy. Moreover, the structure of Lite-SRL is adapted to distributed
training for deployment. Experiments on representative scene classification datasets in-
cluding OpenSARUrban, WHU-SAR6, NWPU-Resisc45, and AID dataset demonstrate that

Remote Sens. 2022, 14, 2956 3 of 26

Lite-SRL can improve the scene classification accuracy with limited annotated data; it also
demonstrates that Lite-SRL is generalizable to both SAR and optical images in RSSC task.
Meanwhile, experiments with six state-of-the-art self-supervised algorithms demonstrate
that Lite-SRL has clear advantages in overall accuracy, number of parameters, memory
consumption, and training latency.

In order to deploy Lite-SRL algorithm to the low-power computing platform Jetson
TX2, we propose a distributed hybrid parallelism (DHP) training framework along with
a generic training computation workload balancing module (CWB). Since a single TX2
node cannot complete the whole network training, CWB automatically partitions the
network according to the workload balancing principle (View Algorithm 2 for details) and
assigns each part to DHP to realize distributed hybrid parallelism training. The integration
of CWB and DHP enables training neural networks under limited on-board resources.
Eventually, we transplant Lite-SRL algorithm to the on-board computing platform through
the distributed training modules.

The main contributions of this article are as follows:

1. To improve the scene classification accuracy under insufficient annotated data, we pro-
posed a simple yet effective self-supervised representation learning algorithm called
Lite-SRL. To reduce computation consumption, we design a lightweight contrastive
learning structure in Lite-SRL and adopt the stop-gradient operation;

2. To realize on-board deployment of Lite-SRL algorithm, we proposed a training frame-
work called DHP and a generic computation workload balancing module CWB. As
far as we know, we represent the first work to combine self-supervised learning with
on-board data processing;

3. Extensive experiments on four representative datasets demonstrated that Lite-SRL
could improve the scene classification accuracy under limited annotated data, and it is
generalizable to SAR and optical images. Compared with six state-of-the-art methods,
Lite-SRL had clear advantages in overall accuracy, number of parameters, memory
consumption, and training latency;

4. Eventually, to evaluate the proposed work’s on-board operational capability, we
transplant Lite-SRL to the low-power computing platform NVIDIA Jetson TX2.

The remainder of this paper is organized as follows: Section 2 covers research works
related to this article. Section 3 presents the detailed research steps. Section 4 presents the
experimental setups. In Section 5 detailed experimental results are presented and summa-
rized. Section 6 provides detailed records for the deployment process. Section 7 provides
conclusions. Appendix A lists all the abbreviations in this article and their corresponding
full names.

2. Related Works

In this section, we provide a brief review of existing related works. We present
solutions of related RSSC works under limited labeled samples, among which, the methods
based on self-supervised contrastive learning show excellent results, and we further present
the development of self-supervised contrastive learning. We also offer the existing related
studies on distributed training.

2.1. RSSC under Limited Annotated Samples

Recently, self-supervised learning (SSL) has attracted considerable interest in the study
of RSSC for solving the problem of labeled data shortage. SCL_MLNet [34] introduced an
end-to-end self-supervised contrastive learning-based metric network for few-shot RSSC task.
Li et al. [35] proposed Meta-FSEO model to improve the performance of few-shot RSSC task
in varying urban scenes. These few-shot learning tasks validate that SSL enables RSSC models
to achieve well generalization performance from only a few annotated data. Meanwhile,
studies [20,36] proved that using the same domain images for SSL training in RSSC task
can help to overcome classical transfer learning problems, which further demonstrates the
effectiveness of using SSL as a pre-training process in RSSC. The authors of [20,36,37] explored

Remote Sens. 2022, 14, 2956 4 of 26

the effectiveness of several SSL networks in RSSC task, among which the contrastive learning-
based [22,23] SSL algorithm performed best in the RSSC task. Moreover, Jung et al. [38]
presented self-supervised contrastive learning solution with smoothed representation for
RSSC based on the SimCLR [22] framework. Zhao et al. [39] introduced a self-supervised
contrastive learning algorithm to achieve hyperspectral image classification for problems with
few labeled samples. It has been proved by the above works that self-supervised contrastive
learning provides a great improvement for RSSC task; thus, our work also adopts the self-
supervised contrastive learning method for RSSC task.

2.2. Self-Supervised Contrastive Learning

Through solving pretext tasks, self-supervised methods utilize unlabeled data to
learn representations that can be transferred to downstream tasks. In self-supervised
learning methods, relative position predicting [19,40], image inpainting [41], and instance-
wise contrastive learning [22] are three common pretext tasks. As mentioned above, the
validity of contrastive learning is superior to image in-painting and relative position
predicting in RSSC tasks. Current state-of-the-art contrastive learning methods differ in
detail. SimCLR [22] and MoCo [42] benefit from a large queue of negative samples. Based
on earlier versions, MoCo-v2 [43] adds the same nonlinear layer as SimCLR to the encoder
representation. MoCo-v2 and SimCLR perform well when maintaining a larger batch.
SwAV [44] is another type of clustering-based idea that combines clusters into contrastive
learning networks. SwAV computes assignments separately from the two augmented
views to perform unsupervised clustering. The clustering-based approach likewise requires
large queues or memory banks to supply sufficient samples for clustering. BYOL [32] is
characterized by not requiring negative sample pairs and, thus, can eliminate the need
to maintain a very large batch of negative sample queues. With no reliance on negative
samples, BYOL is more robust to the choice of data enhancement methods. SimSiam [33] is
similar to BYOL but with no momentum encoder; meanwhile, it directly shares weights
between two branches. SimSiam’s experiments demonstrate that without using any of
the negative sample pairs, large batch, and momentum encoders, contrastive learning
structures can still learn valuable representations. We applied these methods to RSSC tasks
and synthetically compared them with our proposed algorithm.

2.3. Distributed Training under Limited Resources

Distributed training assigns the training process to multiple computing devices for col-
laborative execution [45]. Current mainstream distributed training methods can be divided
into data parallelism [46,47], model parallelism [47,48], and hybrid parallelism [49,50]. In
data parallelization, each node trains a duplicate of the model using different mini-batches
of data. All nodes contain a complete copy of the model and compute the gradients indi-
vidually [47], after training the parameters of the final model can be updated through the
server. In model parallelization, the network layers are divided into multiple partitions and
distributed over multiple nodes for parallel training [47,49]. During model parallelization
training, each node has different parameters and is responsible for the computation of
different partition layers, and each node updates only the weights of assigned partitions.
Hybrid parallelism is a combination of data parallelism and model parallelism, which is the
development trend of distributed training. Mesh-TensorFlow [30] and Nemesyst [31] are
two end-to-end hybrid parallel training frameworks, both using small independent batches
of data for training. Based on Mesh-TensorFlow, Moreno-Alvarez et al. [51] proposed
a static load balancing approach for the model parallelism scheme. Akintoye et al. [49]
proposed a generalized hybrid parallelization approach to optimize partition allocation
on available GPUs. FlexFlow [47] framework applied a simulator to predict optimal paral-
lelization strategy in order to improve training efficiency on GPU clusters. However, the
above distributed training frameworks failed to consider resource-limited scenarios; in
addition, they do not perform computation workload balancing for training process.

Remote Sens. 2022, 14, 2956 5 of 26

3. Methods
3.1. Overview of the Proposed Framework

The overview of the proposed work is shown in Figure 1; our work consists of two
main parts: (i) we propose a self-supervised algorithm Lite-SRL for RSSC task, the algorithm
satisfies guaranteed accuracy and low computation consumption simultaneously. (ii) We
use a low-power computing platform for deployment and we propose a set of distributed
training modules to satisfy the requirements.

Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 28

Moreno-Alvarez et al. [51] proposed a static load balancing approach for the model
parallelism scheme. Akintoye et al. [49] proposed a generalized hybrid parallelization
approach to optimize partition allocation on available GPUs. FlexFlow [47] framework
applied a simulator to predict optimal parallelization strategy in order to improve training
efficiency on GPU clusters. However, the above distributed training frameworks failed to
consider resource-limited scenarios; in addition, they do not perform computation
workload balancing for training process.

3. Methods
3.1. Overview of the Proposed Framework

The overview of the proposed work is shown in Figure 1; our work consists of two
main parts: (i) we propose a self-supervised algorithm Lite-SRL for RSSC task, the
algorithm satisfies guaranteed accuracy and low computation consumption
simultaneously. (ii) We use a low-power computing platform for deployment and we
propose a set of distributed training modules to satisfy the requirements.

Figure 1. Overview of the proposed work. Lite-SRL: on-board self-supervised representation
learning algorithm for RSSC task; CWB: computation workload balancing module; DHP: on-board
distributed hybrid parallelism training framework.

To improve the scene classification accuracy with limited annotated data, Lite-SRL
learns valuable representations from unlabeled RS images. During the algorithm
deployment, CWB automatically partitions the training process of Lite-SRL according to
the workload balancing principle (View Algorithm 2 for details) and assigns each partition
into the DHP training framework, achieving high efficiency on-board self-supervised
training.

3.2. Lite-SRL Self-Supervised Representation Learning Network
3.2.1. Network Structure

We propose an On-board Self-supervised Representation Learning (Lite-SRL)
network for RSSC tasks. Since SimSiam [33] and BYOL [32] have excelled as effective self-
supervised contrastive learning methods for many downstream tasks, we use a similar
structure as the pretext task for self-supervised contrastive learning and make the training
process less resource-intensive. Based on SimSiam’s experiment results, our Lite-SRL
directly maximizes the similarity of two augmented views of an image without using
either negative pairs or momentum encoders, and, thus, the training process does not rely

Figure 1. Overview of the proposed work. Lite-SRL: on-board self-supervised representation learning
algorithm for RSSC task; CWB: computation workload balancing module; DHP: on-board distributed
hybrid parallelism training framework.

To improve the scene classification accuracy with limited annotated data, Lite-SRL
learns valuable representations from unlabeled RS images. During the algorithm deploy-
ment, CWB automatically partitions the training process of Lite-SRL according to the
workload balancing principle (View Algorithm 2 for details) and assigns each partition into
the DHP training framework, achieving high efficiency on-board self-supervised training.

3.2. Lite-SRL Self-Supervised Representation Learning Network
3.2.1. Network Structure

We propose an On-board Self-supervised Representation Learning (Lite-SRL) network
for RSSC tasks. Since SimSiam [33] and BYOL [32] have excelled as effective self-supervised
contrastive learning methods for many downstream tasks, we use a similar structure as
the pretext task for self-supervised contrastive learning and make the training process
less resource-intensive. Based on SimSiam’s experiment results, our Lite-SRL directly
maximizes the similarity of two augmented views of an image without using either negative
pairs or momentum encoders, and, thus, the training process does not rely on large batches
or queues. Lite-SRL adopts lightweight structures as detailed in Figure 2, allowing us to
achieve high accuracy with fewer parameters and training resource usage.

Remote Sens. 2022, 14, 2956 6 of 26

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 28

on large batches or queues. Lite-SRL adopts lightweight structures as detailed in Figure
2, allowing us to achieve high accuracy with fewer parameters and training resource
usage.

Figure 2. Network structure.

The structure of Lite-SRL is shown in Figure 2, where two randomly augmented
views 𝑥 and 𝑥 are obtained from the training batch 𝑥 , 𝑥 , ⋯ 𝑥 as inputs, with the
top and bottom paths sharing the parameters of Encoder. These two views are processed
separately by encoder E, which consists of Backbone and Projection. Prediction is denoted
as P, it converts the output of one view after encoder and matches it with the other view.
Express the output vectors of 𝑥 and 𝑥 are expressed as 𝑝 = 𝑃 𝐸 𝑥 and 𝑒 =𝐸 𝑥 . Again, perform the above procedure in reverse order for 𝑥 and 𝑥 , the output
vectors are 𝑝 and 𝑒 . Vectors’ negative cosine similarity is expressed as follows: 𝑁 𝑝 , 𝑒 = − 𝑝‖𝑝 ‖ ∙ 𝑒‖𝑒 ‖ (1)

here ‖∆‖ is l2-norm, ‖𝑥‖ = ∑ 𝑥 . The symmetrization loss is expressed as follows:

𝐿 𝑥 , 𝑥 = − 12 𝑃 𝐸 𝑥𝑃 𝐸 𝑥 ∙ 𝐸 𝑥‖𝐸 𝑥 ‖ − 12 𝑃 𝐸 𝑥𝑃 𝐸 𝑥 ∙ 𝐸 𝑥‖𝐸 𝑥 ‖ (2)

using Equation (1) to simplify the symmetrization loss calculation, Equation (2) yields the
following equation: 𝐿 = 12 𝑁 𝑝 , 𝑒 + 12 𝑁 𝑝 , 𝑒 (3)

The overall loss during training is the average of all images in the batch. The study
of SimSiam and BYOL demonstrated that the stop gradient operation is the key to avoid
collapse during training. More importantly, stop gradient operation allows the training
process to not rely on large batch size, queues, or negative sample pairs, which greatly
reduces the computation workload. We also use the Stop-Grad operation, as shown in

Figure 2. Network structure.

The structure of Lite-SRL is shown in Figure 2, where two randomly augmented views
xa and xb are obtained from the training batch {x1, x2, · · · xk} as inputs, with the top and
bottom paths sharing the parameters of Encoder. These two views are processed separately
by encoder E, which consists of Backbone and Projection. Prediction is denoted as P, it
converts the output of one view after encoder and matches it with the other view. Express
the output vectors of xa and xb are expressed as pa = P(E(xa)) and eb = E

(
xb
)

. Again,

perform the above procedure in reverse order for xa and xb, the output vectors are pb and
ea. Vectors’ negative cosine similarity is expressed as follows:

N
(

pa, eb
)
= − pa

‖ pa ‖2
· eb

‖ eb ‖2
(1)

here ‖ ∆ ‖2 is l2-norm, ‖ x ‖=
√

∑n
i (xi)

2. The symmetrization loss is expressed as follows:

L
(

xa, xb
)
= −1

2
P(E(xa))

‖ P(E(xa)) ‖2
·

E
(

xb
)

‖ E
(

xb
)
‖2
− 1

2

P
(

E
(

xb
))

‖ P
(
E
(
xb
))
‖2
· E(xa)

‖ E(xa) ‖2
(2)

using Equation (1) to simplify the symmetrization loss calculation, Equation (2) yields the
following equation:

L =
1
2

N
(

pa, eb
)
+

1
2

N
(

pb, ea
)

(3)

The overall loss during training is the average of all images in the batch. The study
of SimSiam and BYOL demonstrated that the stop gradient operation is the key to avoid
collapse during training. More importantly, stop gradient operation allows the training
process to not rely on large batch size, queues, or negative sample pairs, which greatly
reduces the computation workload. We also use the Stop-Grad operation, as shown in

Remote Sens. 2022, 14, 2956 7 of 26

Figure 2, for the way that does not go through P we apply stop gradient operation to it
when performing back propagation, modifying (1) as follows:

N
(

pa, stop_gradient
(

eb
))

(4)

which means eb is considered as a constant in this term. By adding Stop-Grad operation,
the form in Equation (3) is realized as:

L =
1
2

N
(

pa, stop_gradient
(

eb
))

+
1
2

N
(

pb, stop_gradient(ea)
)

(5)

The encoder of xb in the first term of Equation (5) does not receive the gradient from
eb, instead receives the gradient from pb in the second term, and the operation performed
on the gradient of xa is opposite to that of xb. After obtaining the contrastive loss, we use
the stochastic gradient descent (SGD) optimizer to perform back propagation and update
the network parameters. The learning procedure is formally presented in Algorithm 1.
The structure of the Projection and Prediction multi-layer perceptron (MLP) modules in
Lite-SRL are shown in Figure 2. We use lightweight MLP modules, each fully connected
layer in Projection MLP is connected to batch normalization (BN) layer and rectified linear
unit (ReLU), we incorporated two concatenate layers in the structure. Prediction MLP uses
a bottleneck structure, as detailed in Figure 2. Neither BN nor ReLU is used in the last
output layer, and such a structure prevents training collapse [39,44].

Algorithm 1. Learning Procedure of Lite-SRL

E: Encoder with Backbone and Projection MLP
P: Prediction MLP
Aug: random image augmentation
θ: parameters of E and P
Stop: stop-gradient operation
Input: Training samples {x1, x2, · · · xk}
Output: negative cosine similarity loss
1: for number of training epochs do
2: Training samples {x1, x2, · · · xk} in a minibatch form

3: Do augmentation
({

xa
1, xa

2, · · · xa
k
}

,
{

xb
1, xb

2, · · · xb
k

})
= Aug({x1, x2, · · · xk})

4: In Lite-SRL 2-way do{
ea

1, ea
2, · · · ea

k
}
= E

({
xa

1, xa
2, · · · xa

k
})

and
{

pa
1, pa

2, · · · pa
k
}
= P

({
ea

1, ea
2, · · · ea

k
})

;{
eb

1, eb
2, · · · eb

k

}
= E

({
xb

1, xb
2, · · · xb

k

})
and

{
pb

1, pb
2, · · · pb

k

}
= P

({
eb

1, eb
2, · · · eb

k

})
5: Calculate negative cosine similarity with stop-gradient operation

Loss =
N({pa

1, pa
2, ···pa

k},Stop({eb
1, eb

2, ···eb
k}))

2 +
N({pb

1, pb
2, ···pb

k},Stop({ea
1, ea

2, ···ea
k}))

2
6: Do backwards propagation with SGD optimizer
7: Update weights θ

8: end for
9: After training, use pre-trained model for downstream Remote Sensing Scene Classification

Lite-SRL uses a simple, yet effective, network structure, which has significant ad-
vantages over existing self-supervised algorithms in (i) network parameters, (ii) memory
consumption, and (iii) the average training latency. Detailed experimental results are
shown in Section 5.1.

3.2.2. Lite-SRL Network Partition

In order to deploy the algorithm on low-power computing platforms, the training
process of Lite-SRL is adapted to a sequential structure as shown in Figure 3a. For two views,
xa and xb, of an augmented image, first perform concatenate operation and send them to
Encoder together, get the combined output of ea and eb, keep the values of ea and eb and do
not preserve the gradient information. Then send them to Prediction part and get pa and pb,

Remote Sens. 2022, 14, 2956 8 of 26

use the retained ea and eb when calculating the contrastive loss with pa and pb, considering
ea or eb as constant values when applying the stop-gradient operation. This allows the two
contrastive losses to be calculated simultaneously.

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 28

3.2.2. Lite-SRL Network Partition
In order to deploy the algorithm on low-power computing platforms, the training

process of Lite-SRL is adapted to a sequential structure as shown in Figure 3a. For two
views, 𝑥 and 𝑥 , of an augmented image, first perform concatenate operation and send
them to Encoder together, get the combined output of 𝑒 and 𝑒 , keep the values of 𝑒
and 𝑒 and do not preserve the gradient information. Then send them to Prediction part
and get 𝑝 and 𝑝 , use the retained 𝑒 and 𝑒 when calculating the contrastive loss
with 𝑝 and 𝑝 , considering 𝑒 or 𝑒 as constant values when applying the stop-
gradient operation. This allows the two contrastive losses to be calculated simultaneously.

Figure 3. (a) We design the training process of Lite-SRL as a sequential structure to adapt model
parallelization. (b) Schematic of the proposed distributed hybrid parallel (DHP) training baseline.

Each convolution layer within a CNN structure can be used as a single partition to
achieve highly efficient model parallelism training capabilities. Given a network M that
consists of layers 𝐿 , 𝐿 ⋯ , 𝐿 . Divide network M into n partitions 𝑃 , 𝑃 ⋯ , 𝑃 where 𝑃 = 𝐿 , 𝐿 ⋯ , 𝐿 , 𝐿 , 𝐿 ⋯ , 𝐿 denotes partition 𝑃 is start from layer 𝐿 and
contains k layers. Except for this, the calculation of all partitions is sequential, partition 𝑃
transmit its output feature to its next partition 𝑃 , while the gradient calculated by
partition 𝑃 is transmitted to the front partition 𝑃 . At iteration t, during forward
propagation send the input 𝐴 from partition 𝑃 to partition 𝑃 and delivers
activation 𝐴 . Identically, during backward propagation of iteration t, the 𝐺 indicates
the gradient calculated by partition 𝑃 . With each layer 𝐿 ≤ 𝐿 ≤ 𝐿 , we denote the
weight parameter of layer 𝐿 as 𝑤 , the gradient is given as: 𝐺 = 𝛿𝐴𝛿𝑤 ∙ 𝐺 (6)

We denote the learning rate as 𝛾 , Equation (6) is updated by the following
equation:

Figure 3. (a) We design the training process of Lite-SRL as a sequential structure to adapt model
parallelization. (b) Schematic of the proposed distributed hybrid parallel (DHP) training baseline.

Each convolution layer within a CNN structure can be used as a single partition to
achieve highly efficient model parallelism training capabilities. Given a network M that
consists of layers

{
L1, L2 · · · , Lq

}
. Divide network M into n partitions {P1, P2 · · · , Pn}

where Pi =
{

Lj, Lj+1 · · · , Lj+K
}

,
{

Lj, Lj+1 · · · , Lj+K
}

denotes partition Pi is start from
layer Lj and contains k layers. Except for this, the calculation of all partitions is sequential,
partition Pi transmit its output feature to its next partition Pi+1, while the gradient calculated
by partition Pi is transmitted to the front partition Pi−1. At iteration t, during forward
propagation send the input At

Li−1
from partition Pi−1 to partition Pi and delivers activation

At
Li

. Identically, during backward propagation of iteration t, the Gt
Li+1

indicates the gradient
calculated by partition Pi+1. With each layer Li ≤ Lx ≤ Lq, we denote the weight parameter
of layer Lx as wx, the gradient is given as:

Ĝt−i
wx =

δAt−i
Lx

δwt−i−1
x

·Gt−i
Lx+1

(6)

We denote the learning rate as γt−i, Equation (6) is updated by the following equation:

wt−i
x = wt−i−1

x − γt−i·Ĝt−i
wx (7)

For layers in non-sequential CNN, parallel paths are not partitioned; instead the
parallel zone is considered as a block. After the network partitioning, the network can be
trained in model parallelism mode.

Remote Sens. 2022, 14, 2956 9 of 26

In Figure 3b, the feature and gradient are transferred between devices. Take Device
1 and Device 2, for example; Device 1 is in charge of Partition 1’ s training and Device 2
is in charge of Partition 2’ s training. In iteration t, during forward propagation, the last
layer of Partition 1 in Device 1 transmits feature value At

L1
to the first layer of Partition

2 in Device 2. During backward propagation, Device 2 transmits the gradient value Gt
L2

to Device 1, the gradient of Partition 1′s last layer is
δAt

L1
δwt−1

1
·Gt

L2
, where wt−1

1 is the weight

parameter of Partition 1′s last layer obtained from iteration t − 1. Device 1 updates the

weight parameters according to Equations (6) and (7): wt
1 = wt−1

1 − γt
δAt

L1
δwt−1

1
·Gt

L2
,where γt−i

is learning rate.

3.3. Distributed Training Strategy

We use a combination of six TX2 nodes and one high-speed switch to form the low-
power computing platform as shown in Figure 15.

With multiple nodes, different amounts of nodes can be flexibly scheduled to partici-
pate in the training according to the computing requirements. We propose a distributed hy-
brid parallelized DHP training framework based on the PyTorch framework, the schematic
of DHP is shown in Figure 3b. DHP framework uses TCP communication protocol, and
the data transmitted between nodes mainly include the output feature of each layer in the
forward propagation, the gradient values obtained from each layer in backward propa-
gation, and the parameters of layers aggregated by each node after reaching the number
of iterations. Meanwhile, we propose a generic computation workload balancing module
CWB, which can perform model partitioning and workload balancing for a given network
structure and working conditions. CWB is the core that enables training CNN under limited
computing power. Furthermore, based on our DHP framework, we propose a dynamic
chain system that can promote the training speed without sacrificing training accuracy.

3.3.1. Computation Workload Balancing Module

Under model parallelism, each node has different parameters and is responsible
for the computation of different model layers respectively, updating only the weights of
the assigned model layers. Setting appropriate network partitioning points for network
partitioning can improve the efficiency of distributed training. TX2 uses Jetson series SOC,
with CPU and GPU sharing 8 GB memory and the memory requirements during Lite-SRL
training process are larger than the computing capacity of a single TX2; thus, network
partitioning and workload balancing are required.

We propose a gen*eric Computation workload Balancing module, CWB; it works
as follows. For a given network structure and specified batch of input data, take Lite-
SRL as an example. Lite-SRL contains a total of q layers of networks

{
L1, L2 · · · , Lq

}
;

CWB first collects the forward inference and back propagation time of each layer running
on TX2, where the forward inference time of each layer is denoted as

{
Tf 1, Tf 2 · · · , T

}
,

and the back propagation is denoted as
{

Tb1, Tb2 · · · , Tbq

}
. CWB then calculates the

memory size occupied by the model parameters of each layers
{

Mw1, Mw2 · · · , Mwq
}

, and
the memory size occupied by the output of the intermediate layers

{
MI1, LI2 · · · , LIq

}
.

CWB partitions Lite-SRL into n partitions {P1, P2 · · · , Pn} and assigns them to n TX2
{TX21, TX22 · · · , TX2n}, where Pi =

{
Lj, Lj+1 · · · , Lj+K

}
, then between Pi and Pi+1, that

is, between TX2i and TX2i+1 need to transmit the feature data from layer Lj+K to layer
Lj+K+1, and the gradient value needs to be transmitted back during back propagation.
Record the ratio of the file size to the transmission rate between TX2 as the theoretical
transmission latency Tt, CWB calculates the transmission latency

{
Tt1, Tt2 · · · , Ttq

}
for all

candidate partition points.

Remote Sens. 2022, 14, 2956 10 of 26

The training time Tall for a mini-batch is:

Tall =
q

∑
0

Tf i +
q

∑
0

Tbi + Tta + Ttb (8)

The equation for calculating the equipment utilization index is as follows:

E = −ln
∑
(

Tn
tx2

Tall
− 1

n

)2

n
(9)

The process of CWB searching for the best partition point is formally presented in
Algorithm 2. After network partitioning, each partition is assigned to the DHP system for
distributed training. The detailed implementation of CWB is recorded in Figure 13.

Algorithm 2. CWB search for the best partition point

Step1:CWB performs memory workload balancing
Step2:CWB performs time equalization
1: Assign

{
Mw1, Mw2 · · · , Mwq

}
and

{
MI1, LI2 · · · , LIq

}
to {TX21, TX22 · · · , TX2n}

2: Assume 3 TX2s can satisfy memory allocation, then 2 sets of candidate partition point that
satisfy memory workload balancing are recorded as [[a, a + 1 · · ·], [b, b + 1 · · ·]]
3: for a in [a, a + 1 · · ·] do
4: for b in [b, b + 1 · · ·] do
5: Partition point 1 adopts a, partition point 2 adopts b
6: Denote the running time of TX21 as T1

tx2 = ∑a
0 Tf i + ∑a

0 Tbi

7: Denote the running time of TX22 as T2
tx2 = ∑b

a Tf i + ∑b
a Tbi

8: Denote the running time of TX23 as T3
tx2 = ∑

q
b Tf i + ∑

q
b Tbi

9: The training time Tall for a mini-batch is

Tall =
q
∑
0

Tf i +
q
∑
0

Tbi + Tta + Ttb

10: The partition point use [a, b], the ratio of running time to waiting time of TX2n is
Tn

tx2
Tall

11: Calculate the equipment utilization indices E using Equation (9)

E = −ln
∑
(

Tn
tx2

Tall
− 1

n

)2

n
12: end for
13: end for
14: The partition point of E with the highest score is the best partition point

3.3.2. Dynamic Chain System

Figure 4a shows our hybrid parallel distributed training baseline schematic, where
each node in the chain is fixedly linked to its front and back nodes, and the later nodes in
the chain have to wait for the front nodes to finish forward and backward propagation.
Overlap network computation time with transmission time is a common method to improve
efficiency in distributed training [52], which can improve training efficiency. Our modified
dynamic chain is shown in Figure 4b, where three nodes are responsible for the computation
of partition 1, two for the computation of partition 2, and one for the computation of
partition 3 of the model. We add a communication scheduler module to our distributed
training framework, enabling the node that first completes the computation to search for the
available nodes in the next layer. Each mini-batch will form a dynamic chain that performs
forward and backward propagation, and after each node completes its current backward
propagation, it will automatically leave the current chain and construct a new chain with
the node that is waiting. Dynamic chain system has higher training efficiency than baseline,
improving node utilization without reducing training accuracy. The dynamic chain system
can be well generalized for different training demands, and we have conducted additional
experiments for different training computations as detailed in Section 6.2.

Remote Sens. 2022, 14, 2956 11 of 26

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 28

improve efficiency in distributed training [52], which can improve training efficiency. Our
modified dynamic chain is shown in Figure 4b, where three nodes are responsible for the
computation of partition 1, two for the computation of partition 2, and one for the
computation of partition 3 of the model. We add a communication scheduler module to
our distributed training framework, enabling the node that first completes the
computation to search for the available nodes in the next layer. Each mini-batch will form
a dynamic chain that performs forward and backward propagation, and after each node
completes its current backward propagation, it will automatically leave the current chain
and construct a new chain with the node that is waiting. Dynamic chain system has higher
training efficiency than baseline, improving node utilization without reducing training
accuracy. The dynamic chain system can be well generalized for different training
demands, and we have conducted additional experiments for different training
computations as detailed in Section 6.2.

Figure 4. Illustration of our proposed distributed hybrid parallel training baseline and dynamic
chain system. (a) Distributed hybrid parallel training baseline. (b) Dynamic chain system. In
iteration 1, Devices 1, 4, and 6 forms a computation chain, while Devices 3 and 5 are in a waiting
state. During this time, Device 5 completes the forward computation from Device 2. At the end of
iteration 1, Device 6 disconnects from Device 4, automatically links to Device 5, and immediately
performs the third part of the training, Device 4 links to Device 3 and waits to link with Device 6. In
iteration 3, Device 4 links to Device 6, and the rest nodes also link to available nodes. Subsequent
iterations follow the same procedure.

4. Experimental Setups
4.1. Datasets Description

For SAR images, we use the OpenSARUrban [14] dataset and the WHU-SAR6 [11]
dataset for experiments. We use a small number of training samples to predict a large
number of test samples in our experiments, the training proportions for OpenSARUrban
dataset are 10% and 20%, and for WHU-SAR6 dataset we set training proportions as 10%
and 20%.
• The OpenSARUrban [14] dataset consists of 10 categories of urban scene images

collected from Sentinel-1; its scene images cover 21 major cities in China. Each
category contains about 40 to 2000 images with a size of 100 × 100 pixels, and the
resolution of the images is about 20 m;

• The WHU-SAR6 [11] dataset consists of six categories of scene images collected form
Sentinel-1 and GF-3. Each category contains about 250 to 420 images with ranging in
size from 500 to 600 pixels. Since the total number of WHU-SAR6 images is relatively
small, to increase the dataset volume we crop the images into small patches of 256 ×
256 pixels without destroying the scene semantic information.

Figure 4. Illustration of our proposed distributed hybrid parallel training baseline and dynamic chain
system. (a) Distributed hybrid parallel training baseline. (b) Dynamic chain system. In iteration 1,
Devices 1, 4, and 6 forms a computation chain, while Devices 3 and 5 are in a waiting state. During
this time, Device 5 completes the forward computation from Device 2. At the end of iteration 1,
Device 6 disconnects from Device 4, automatically links to Device 5, and immediately performs the
third part of the training, Device 4 links to Device 3 and waits to link with Device 6. In iteration 3,
Device 4 links to Device 6, and the rest nodes also link to available nodes. Subsequent iterations
follow the same procedure.

4. Experimental Setups
4.1. Datasets Description

For SAR images, we use the OpenSARUrban [14] dataset and the WHU-SAR6 [11]
dataset for experiments. We use a small number of training samples to predict a large
number of test samples in our experiments, the training proportions for OpenSARUrban
dataset are 10% and 20%, and for WHU-SAR6 dataset we set training proportions as 10%
and 20%.

• The OpenSARUrban [14] dataset consists of 10 categories of urban scene images
collected from Sentinel-1; its scene images cover 21 major cities in China. Each category
contains about 40 to 2000 images with a size of 100 × 100 pixels, and the resolution of
the images is about 20 m;

• The WHU-SAR6 [11] dataset consists of six categories of scene images collected form
Sentinel-1 and GF-3. Each category contains about 250 to 420 images with ranging
in size from 500 to 600 pixels. Since the total number of WHU-SAR6 images is
relatively small, to increase the dataset volume we crop the images into small patches
of 256 × 256 pixels without destroying the scene semantic information.

For optical images, we use the NWPU-RESISC45 [3] dataset and the Aerial Image
dataset (AID) [15]. The training proportions for NWPU-RESISC45 dataset are 10% and
20%, which are more challenging since they both require using a small number of training
samples to predict labels for many test data. For the AID dataset, we set training proportions
as 10%, 20%, and 50%. Detailed information is shown in Table 1.

• The NWPU-RESISC45 [3] dataset is the current largest open benchmark dataset for
scene classification task, consisting of 45 categories of scene images. Each category
contains 700 images with a size of 256 × 256 pixels, and the spatial resolution of the
images is about 0.2 to 30 m.

• The AID [15] dataset consists of 30 categories of scene images; each category containing
about 200 to 400 images, for a total of 10,000 samples, each with a size of 600× 600 pixels.

Remote Sens. 2022, 14, 2956 12 of 26

Table 1. Datasets description and training proportions.

Datasets Images Number Categories Number Training Proportions

OpenSARUrban 1 [14] 16679 10 10%, 20%
WHU-SAR6 2 [11] 17590 6 10%, 20%

NWPU-RESISC45 [3] 31500 45 10%, 20%
AID [15] 10000 30 10%, 20%, 50%

1 OpenSARUrban dataset has VH and VV polarizations, we used the VH data. 2 For WHU-SAR6 dataset, we
cropped the images into small patches of 256 × 256 pixels to increase the dataset volume.

4.2. Data Augmentation

By performing random crop and resize on target image, the receptive field of the
network can achieve both global and local prediction, which is crucial for RSSC task. We
perform spatial transformations such as random crop, flip, rotate, and resize to enable
the model to learn rotation invariants and scaling invariants simultaneously. Further, we
simulate temporal transformations with Gaussian blur, color jitter, and random grayscale.
The augmentation strategies differ between SAR images and optical images. Detailed data
augmentation result is shown in Figure 5.

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 28

Figure 5. Illustration of data augmentations.

4.3. Implementation Details
The input images were normalized to 224 × 224 and used the data augmentation

settings shown in Figure 5. The batch size was set to 64, and all methods were trained for
400 epochs. For all competitive algorithms, we used ResNet-18 [53] as the backbone and
removed the fully connected layer after Advpooling in ResNet-18. Since the loss functions
and optimizers of these competitive methods are different, the experimental results are
obtained under the individual methods’ respective optimal hyperparameter settings. All
competitive algorithms were implemented using PyTorch 1.7, Python3.7. The proposed
Lite-SRL method used an SGD optimizer with a momentum of 0.9 and a weight decay of
1 × 10−4, the initial learning rate was 0.05, and the learning rate decreased using the cosine
decay.

The experimental section consists of two parts.

Figure 5. Illustration of data augmentations.

Remote Sens. 2022, 14, 2956 13 of 26

4.3. Implementation Details

The input images were normalized to 224× 224 and used the data augmentation settings
shown in Figure 5. The batch size was set to 64, and all methods were trained for 400 epochs.
For all competitive algorithms, we used ResNet-18 [53] as the backbone and removed the
fully connected layer after Advpooling in ResNet-18. Since the loss functions and optimizers
of these competitive methods are different, the experimental results are obtained under the
individual methods’ respective optimal hyperparameter settings. All competitive algorithms
were implemented using PyTorch 1.7, Python3.7. The proposed Lite-SRL method used an
SGD optimizer with a momentum of 0.9 and a weight decay of 1 × 10−4, the initial learning
rate was 0.05, and the learning rate decreased using the cosine decay.

The experimental section consists of two parts.

• Experiments of self-supervised learning. In this part we use workstations to compare
the proposed Lite-SRL with other advanced self-supervised methods comprehensively.
The two workstations are identically configured with NVIDIA RTX 3090GPU, Intel
Xeon CPU E5-1650, and 64 G RAM.

• Experiments for on-board deployment of Lite-SRL algorithm. We used the proposed
distributed training modules and provided detailed records for the deployment pro-
cess. The experimental on-board computing platform consists of NVIDIA Jetson TX2
nodes and a high-speed switch.

5. Experimental Results

The flowchart of self-supervised learning experiments is shown in Figure 6. Encoders
obtained by self-supervised training are used both as (i) frozen feature extractors (Freeze
experiment), and as (ii) initial fine-tune model (Fine-tune experiment). For both the freeze
and fine-tune experiments, we connected a linear classifier after the encoder and used
an Adam optimizer with a batch size of 64, the learning rate reduced in a cosine manner
within 200 epochs.

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 28

• Experiments of self-supervised learning. In this part we use workstations to compare
the proposed Lite-SRL with other advanced self-supervised methods
comprehensively. The two workstations are identically configured with NVIDIA
RTX 3090GPU, Intel Xeon CPU E5-1650, and 64 G RAM.

• Experiments for on-board deployment of Lite-SRL algorithm. We used the proposed
distributed training modules and provided detailed records for the deployment
process. The experimental on-board computing platform consists of NVIDIA Jetson
TX2 nodes and a high-speed switch.

5. Experimental Results
The flowchart of self-supervised learning experiments is shown in Figure 6. Encoders

obtained by self-supervised training are used both as (i) frozen feature extractors (Freeze
experiment), and as (ii) initial fine-tune model (Fine-tune experiment). For both the freeze
and fine-tune experiments, we connected a linear classifier after the encoder and used an
Adam optimizer with a batch size of 64, the learning rate reduced in a cosine manner
within 200 epochs.

Figure 6. The flowchart of self-supervised learning experiments.

5.1. Guaranteed Accuracy with Less Computation
We compare (i) overall accuracy, (ii) number of parameters, (iii) memory

consumption, and (iv) average training latency with competitive self-supervised
algorithms. The memory consumption during network training consists of the following
elements. The memory occupied by the model: including the consumption of parameters,
gradients and optimizer momentum. The memory occupied by the network intermediate
layers’ outputs: including the inputs and outputs of each layer.

Considering that on-board scenario is highly sensitive to the computation workload,
the algorithm is required to achieve higher accuracy and less computation
simultaneously. Experiments show that Lite-SRL can achieve optimal classification
accuracy with minimum computation. As shown in Figure 7, Lite-SRL shows the best
accuracy in the RSSC task, while Lite-SRL has a clear advantage in terms of computation
consumption. Thus Lite-SRL provides a lightweight yet effective solution for on-board
self-supervised representation learning.

Figure 7. Guaranteed accuracy with less computation. (a) Fine-tune and freeze experiment results
on NWPU-45 dataset with training proportion of 20%, the horizontal axis compares the number of

Figure 6. The flowchart of self-supervised learning experiments.

5.1. Guaranteed Accuracy with Less Computation

We compare (i) overall accuracy, (ii) number of parameters, (iii) memory consumption,
and (iv) average training latency with competitive self-supervised algorithms. The memory
consumption during network training consists of the following elements. The memory
occupied by the model: including the consumption of parameters, gradients and optimizer
momentum. The memory occupied by the network intermediate layers’ outputs: including
the inputs and outputs of each layer.

Considering that on-board scenario is highly sensitive to the computation workload,
the algorithm is required to achieve higher accuracy and less computation simultaneously.
Experiments show that Lite-SRL can achieve optimal classification accuracy with minimum
computation. As shown in Figure 7, Lite-SRL shows the best accuracy in the RSSC task, while
Lite-SRL has a clear advantage in terms of computation consumption. Thus Lite-SRL provides
a lightweight yet effective solution for on-board self-supervised representation learning.

Remote Sens. 2022, 14, 2956 14 of 26

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 28

• Experiments of self-supervised learning. In this part we use workstations to compare
the proposed Lite-SRL with other advanced self-supervised methods
comprehensively. The two workstations are identically configured with NVIDIA
RTX 3090GPU, Intel Xeon CPU E5-1650, and 64 G RAM.

• Experiments for on-board deployment of Lite-SRL algorithm. We used the proposed
distributed training modules and provided detailed records for the deployment
process. The experimental on-board computing platform consists of NVIDIA Jetson
TX2 nodes and a high-speed switch.

5. Experimental Results
The flowchart of self-supervised learning experiments is shown in Figure 6. Encoders

obtained by self-supervised training are used both as (i) frozen feature extractors (Freeze
experiment), and as (ii) initial fine-tune model (Fine-tune experiment). For both the freeze
and fine-tune experiments, we connected a linear classifier after the encoder and used an
Adam optimizer with a batch size of 64, the learning rate reduced in a cosine manner
within 200 epochs.

Figure 6. The flowchart of self-supervised learning experiments.

5.1. Guaranteed Accuracy with Less Computation
We compare (i) overall accuracy, (ii) number of parameters, (iii) memory

consumption, and (iv) average training latency with competitive self-supervised
algorithms. The memory consumption during network training consists of the following
elements. The memory occupied by the model: including the consumption of parameters,
gradients and optimizer momentum. The memory occupied by the network intermediate
layers’ outputs: including the inputs and outputs of each layer.

Considering that on-board scenario is highly sensitive to the computation workload,
the algorithm is required to achieve higher accuracy and less computation
simultaneously. Experiments show that Lite-SRL can achieve optimal classification
accuracy with minimum computation. As shown in Figure 7, Lite-SRL shows the best
accuracy in the RSSC task, while Lite-SRL has a clear advantage in terms of computation
consumption. Thus Lite-SRL provides a lightweight yet effective solution for on-board
self-supervised representation learning.

Figure 7. Guaranteed accuracy with less computation. (a) Fine-tune and freeze experiment results
on NWPU-45 dataset with training proportion of 20%, the horizontal axis compares the number of
Figure 7. Guaranteed accuracy with less computation. (a) Fine-tune and freeze experiment results
on NWPU-45 dataset with training proportion of 20%, the horizontal axis compares the number of
parameters. (b) Freeze experiment results on NWPU-45 dataset with training proportion of 20%;
horizontal axis compares the training time consumption per iteration, and the diameter of the bubble
is proportional to the memory consumption during network training.

5.2. Self-Supervised Representation Extractor

In freeze training experiment, we use the encoders obtained from each method as
feature extractors to evaluate their performance in scene classification. To visualize the
effectiveness of Lite-SRL, we fed the test set images to the pre-trained model learned from
Lite-SRL, and applied t-SNE [54] to map the output features to a 2-dimensional space.
As shown in Figure 8, features from different classes can be well distributed by our self-
supervised method, with significantly better results than ImageNet supervised pre-trained
model. This demonstrates that by utilizing unlabeled RSI data, our proposed representa-
tion learning strategy enables the model to produce a valuable feature representation for
downstream RSSC task.

In Figure 8c, we marked the samples from the OpenSARUrabn dataset that Lite-SRL
failed to distinguish. We found that these SAR samples contain confusable features. For
instance, the six different scene categories in Figure 8c all contain a river flowing through
the city. Since we do not use any labels during self-supervised learning, Lite-SRL may
extract the wrong features for these confusing scene images.

Table 2 shows the results of freeze training. Experimental results show that in RSSC
task, these self-supervised models get better results than supervised models pre-trained on
ImageNet, despite the fact that the datasets used for self-supervised pre-training are much
smaller than the ImageNet dataset (OpenSARUrban dataset has 16,670 images, WHU-
SAR6 dataset has 17,590 images, NWPU-RESISC45 dataset has a total of 34,500 images, the
ImageNet pre-trained model used approximately 1.5 million images). Lite-SRL achieved the
highest classification accuracy, while higher accuracy can be achieved using the fine-tuning
method, as detailed in Table 3.

5.3. Improving the Scene Classification Accuracy with Limited Annotated Data

The proposed self-supervised learning method can solve the problem of annotated
data shortage in scene classification task, as high accuracy is achieved in the test set using a
small number of training samples.

The fine-tune results of the competitive self-supervised methods are shown in Table 3.
Note that due to the differences in these methods, our experimental results record the best
results of each method with different learning rates. All of the self-supervised methods
showed significant improvements over the randomly initialized models, and at the same
time, all of the methods outperformed the models pre-trained in a supervised manner on
ImageNet. In 10% training proportion experiments, we used a small number of training
samples to predict a large number of test samples. Even so, we achieved high classification
accuracy with a simple classification network structure by using the self-supervised pre-

Remote Sens. 2022, 14, 2956 15 of 26

trained model as the start point for fine-tuning, proving the effectiveness of the proposed
self-supervised learning method.

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 28

Figure 8. The t-SNE visualization of feature distributions on different datasets. (a) Lite-SRL model
on WHU-SAR6 dataset; (b) fine-tuned Lite-SRL model on WHU-SAR6 dataset; (c) Lite-SRL model
on OpenSARUrban dataset; (d) fine-tuned Lite-SRL model on OpenSARUrban dataset; for SAR
dataset due to the imaging mechanism, we did not use ImageNet’s pre-trained model. (e) ImageNet
pre-trained model on NWPU-45 dataset; (f) Lite-SRL model on NWPU-45 dataset; (g) fine-tuned
Lite-SRL model on NWPU-45 dataset; (h) ImageNet pre-trained model on AID dataset; (i) Lite-SRL
model on AID dataset; (j) fine-tuned Lite-SRL model on NWPU-45 dataset.

Table 2 shows the results of freeze training. Experimental results show that in RSSC
task, these self-supervised models get better results than supervised models pre-trained
on ImageNet, despite the fact that the datasets used for self-supervised pre-training are
much smaller than the ImageNet dataset (OpenSARUrban dataset has 16,670 images,
WHU-SAR6 dataset has 17,590 images, NWPU-RESISC45 dataset has a total of 34,500

Figure 8. The t-SNE visualization of feature distributions on different datasets. (a) Lite-SRL model
on WHU-SAR6 dataset; (b) fine-tuned Lite-SRL model on WHU-SAR6 dataset; (c) Lite-SRL model
on OpenSARUrban dataset; (d) fine-tuned Lite-SRL model on OpenSARUrban dataset; for SAR
dataset due to the imaging mechanism, we did not use ImageNet’s pre-trained model. (e) ImageNet
pre-trained model on NWPU-45 dataset; (f) Lite-SRL model on NWPU-45 dataset; (g) fine-tuned
Lite-SRL model on NWPU-45 dataset; (h) ImageNet pre-trained model on AID dataset; (i) Lite-SRL
model on AID dataset; (j) fine-tuned Lite-SRL model on NWPU-45 dataset.

Remote Sens. 2022, 14, 2956 16 of 26

Table 2. Results of freeze experiment in terms of overall accuracy (%).

Method: Freeze
Parameters
(Millions)

Overall Accuracy (%)

WHU-SAR6 OpenSARUrban NWPU-45 AID

10% 20% 10% 20% 10% 20% 10% 20%

ImageNet 1

(Supervised) [16]
- - - - - 73.17 77.08 79.40 80.45

SimCLR [22] 13.57 83.40 86.73 67.87 68.33 86.45 88.32 85.52 87.23
MoCo-v2 [43] 22.48 82.39 85.07 65.52 66.07 83.37 86.63 84.56 86.05

SWAV [44] 18.45 83.04 86.30 65.98 67.28 84.16 87.85 84.85 86.59
BYOL [32] 31.81 86.11 87.75 68.36 69.73 88.63 90.06 87.24 88.32

SimSiam [33] 22.73 87.59 88.64 70.20 70.86 91.19 91.26 89.15 90.49
Lite-SRL (ours) 12.82 87.71 88.56 70.23 71.09 91.22 91.28 89.27 90.67

1 The ImageNet is the encoder obtained by supervised pre-training on ImageNet dataset.

Table 3. Results of fine-tune experiment in terms of overall accuracy (%).

Method:
Fine-Tune

Parameters
(Millions)

Overall Accuracy (%)

WHU-SAR6 OpenSARUrban NWPU-45 AID

10% 20% 10% 20% 10% 20% 10% 20%

Randomly
initialized - - - - - 77.16 82.87 80.63 83.47

ImageNet
(Supervised) - - - - - 84.74 89.93 89.81 90.54

SimCLR 13.57 91.85 93.74 80.21 83.87 90.35 92.02 91.32 93.54
MoCo-v2 22.48 90.59 92.70 79.07 82.75 88.71 90.56 89.96 91.47

SWAV 18.45 91.58 93.37 79.85 83.63 89.26 92.07 91.53 92.84
BYOL 31.81 93.21 94.86 80.62 84.88 90.57 92.94 91.95 93.68

SimSiam 22.73 94.77 95.69 81.49 85.29 92.68 93.48 92.38 94.63
Lite-SRL (ours) 12.82 94.57 95.83 81.76 85.43 92.77 93.51 92.55 94.82

Note that our method exhibited higher accuracy with small training batch, while
with large training batch, methods such as SimCLR, MoCo-v2, and SWAV, which need to
maintain large queues or negative sample pairs, would have improved accuracy.

In Table 4 we illustrate the classification performance of some state-of-the-art methods.

Table 4. Compare with some SOTA methods, in terms of overall accuracy (%).

Method
Overall Accuracy (%)

NWPU 10% NWPU 20% AID 20% AID50%

D-CNN with GoogLeNet [55] 86.89 90.49 86.89 90.49
RTN [56] 89.90 92.71 92.44 -

MG-CAP(Sqrt-E) [57] 90.83 92.95 93.34 96.12
ResNet-101 [53] 89.41 92.51 93.31 96.34

ResNet-101+MTL [58] 91.61 93.93 93.67 96.61
ResNet-18+Lite-SRL (ours) 92.77 93.51 94.82 95.78

ResNet-101+Lite-SRL (ours) 93.41 94.43 95.29 96.82

Including multi-granularity canonical appearance pools (MG-CAP) [57], recurrent
transformer networks (RTN) [56], and MTL [58] using a self-supervised approach. Our
Lite-SRL produces an accuracy close to ResNet-101 when using ResNet-18 as the encoder.
Further, we set up experiments using ResNet-101 as the encoder in Lite-SRL and produced
a top accuracy of 94.43%, which is in pair with the ResNet-101+MTL [58] approach, repre-
senting the state-of-the-art performance. The promising performance of Lite-SRL further
validates the effectiveness of self-supervised learning in RSSC task.

Remote Sens. 2022, 14, 2956 17 of 26

5.4. Confusion Matrix Analysis

As can be seen from the OpenSARUrban (20%) confusion matrix shown in Figure 9a,
the accuracy of the entire test set is 85.43%. High Building category reported the lowest
recognition accuracy, and 6.2% were incorrectly identified as Single Building. Urban building
areas including Gen.Res, High Building, Single Building, and Denselow showed high misclas-
sifications, as these urban functional areas have similar characteristics. Due to the imbalance
of each category, Railway only had 20 test samples with three incorrect classifications.

Remote Sens. 2022, 14, x FOR PEER REVIEW 18 of 28

In Table 4 we illustrate the classification performance of some state-of-the-art
methods.

Table 4. Compare with some SOTA methods, in terms of overall accuracy (%).

Method
Overall Accuracy (%)

NWPU 10% NWPU 20% AID 20% AID50%
D-CNN with GoogLeNet [55] 86.89 90.49 86.89 90.49

RTN [56] 89.90 92.71 92.44 -
MG-CAP(Sqrt-E) [57] 90.83 92.95 93.34 96.12

ResNet-101 [53] 89.41 92.51 93.31 96.34
ResNet-101+MTL [58] 91.61 93.93 93.67 96.61

ResNet-18+Lite-SRL (ours) 92.77 93.51 94.82 95.78
ResNet-101+Lite-SRL (ours) 93.41 94.43 95.29 96.82

Including multi-granularity canonical appearance pools (MG-CAP) [57], recurrent
transformer networks (RTN) [56], and MTL [58] using a self-supervised approach. Our
Lite-SRL produces an accuracy close to ResNet-101 when using ResNet-18 as the encoder.
Further, we set up experiments using ResNet-101 as the encoder in Lite-SRL and produced
a top accuracy of 94.43%, which is in pair with the ResNet-101+MTL [58] approach,
representing the state-of-the-art performance. The promising performance of Lite-SRL
further validates the effectiveness of self-supervised learning in RSSC task.

5.4. Confusion Matrix Analysis
As can be seen from the OpenSARUrban (20%) confusion matrix shown in Figure 9a,

the accuracy of the entire test set is 85.43%. High Building category reported the lowest
recognition accuracy, and 6.2% were incorrectly identified as Single Building. Urban
building areas including Gen.Res, High Building, Single Building, and Denselow showed
high misclassifications, as these urban functional areas have similar characteristics. Due
to the imbalance of each category, Railway only had 20 test samples with three incorrect
classifications.

Figure 9. Confusion matrix of fine-tuned results: (a) on OpenSARUrban with 20% training
proportion; (b) on WHU-SAR6 with 20% training proportion.

Figure 9b shows the confusion matrix of fine-tuned results on WHU-SAR6 (20%), the
accuracy of the entire test set is 95.83%, with four of the six categories achieving 95% or

Figure 9. Confusion matrix of fine-tuned results: (a) on OpenSARUrban with 20% training proportion;
(b) on WHU-SAR6 with 20% training proportion.

Figure 9b shows the confusion matrix of fine-tuned results on WHU-SAR6 (20%), the
accuracy of the entire test set is 95.83%, with four of the six categories achieving 95% or
higher accuracy. Lake and Bridge are the two classes with the highest confusion rates
because these two categories both contain water areas.

As can be seen from the NWPU-45 (20%) confusion matrix shown in Figure 10, With
38 of the 45 categories achieving 90% or higher accuracy, the accuracy of the entire test
set is 93.51%. Churches and palaces are the two classes with the highest confusion rates
because the buildings have similar distribution and appearance in these two groups.

Figure 11 shows the confusion matrix of fine-tuned results on the AID (50%) dataset.
With 26 of the 30 categories reaching 90% or higher accuracy and 23 categories achieving
higher than 95%, the accuracy of the entire test set is 95.78%. Resort and park, and center
and square are the categories with the highest confusion rate because the images of resorts
and parks have a similar distribution of greenery, while center and square are urban scenes
with similar characteristics.

Remote Sens. 2022, 14, 2956 18 of 26

Remote Sens. 2022, 14, x FOR PEER REVIEW 19 of 28

higher accuracy. Lake and Bridge are the two classes with the highest confusion rates
because these two categories both contain water areas.

As can be seen from the NWPU-45 (20%) confusion matrix shown in Figure 10, With
38 of the 45 categories achieving 90% or higher accuracy, the accuracy of the entire test set
is 93.51%. Churches and palaces are the two classes with the highest confusion rates
because the buildings have similar distribution and appearance in these two groups.

Figure 10. Confusion matrix of fine-tuned results on NWPU-45 20% training proportion.

Figure 11 shows the confusion matrix of fine-tuned results on the AID (50%) dataset.
With 26 of the 30 categories reaching 90% or higher accuracy and 23 categories achieving
higher than 95%, the accuracy of the entire test set is 95.78%. Resort and park, and center
and square are the categories with the highest confusion rate because the images of resorts
and parks have a similar distribution of greenery, while center and square are urban
scenes with similar characteristics.

Figure 10. Confusion matrix of fine-tuned results on NWPU-45 20% training proportion.
Remote Sens. 2022, 14, x FOR PEER REVIEW 20 of 28

Figure 11. Confusion matrix of fine-tuned results on AID 50% training proportion.

6. Deployment of Lite-SRL
We applied the Lite-SRL self-supervised algorithm to the proposed DHP distributed

training system. The flowchart of deployment is shown in Figure 12.

Figure 12. The flowchart of Lite-SRL’s deployment corresponds to the content in the following. N-
Layers corresponds to Figure 13a; Statistic the Memory Usage corresponds to Figure 13b; Statistic
the Time Consumption corresponds to Figure 13c; Candidate Partition Points corresponds to Figure
14a; Best Partition Point corresponds to Figure 14b.

Figure 11. Confusion matrix of fine-tuned results on AID 50% training proportion.

Remote Sens. 2022, 14, 2956 19 of 26

6. Deployment of Lite-SRL

We applied the Lite-SRL self-supervised algorithm to the proposed DHP distributed
training system. The flowchart of deployment is shown in Figure 12.

Remote Sens. 2022, 14, x FOR PEER REVIEW 20 of 28

Figure 11. Confusion matrix of fine-tuned results on AID 50% training proportion.

6. Deployment of Lite-SRL
We applied the Lite-SRL self-supervised algorithm to the proposed DHP distributed

training system. The flowchart of deployment is shown in Figure 12.

Figure 12. The flowchart of Lite-SRL’s deployment corresponds to the content in the following. N-
Layers corresponds to Figure 13a; Statistic the Memory Usage corresponds to Figure 13b; Statistic
the Time Consumption corresponds to Figure 13c; Candidate Partition Points corresponds to Figure
14a; Best Partition Point corresponds to Figure 14b.

Figure 12. The flowchart of Lite-SRL’s deployment corresponds to the content in the following. N-
Layers corresponds to Figure 13a; Statistic the Memory Usage corresponds to Figure 13b; Statistic the
Time Consumption corresponds to Figure 13c; Candidate Partition Points corresponds to Figure 14a;
Best Partition Point corresponds to Figure 14b.

Remote Sens. 2022, 14, x FOR PEER REVIEW 21 of 28

Figure 13. Data collected by CWB. (a) Partitionable layers contained in the Lite-SRL network
structure, corresponding to 28 partitionable points 𝑝 , 𝑝 , ⋯ 𝑝 . (b) CWB calculated the memory
workload occupied by each network layer during the training process, including the intermediate
variables and network parameters for each layer. (c) CWB measured time consumption, including
inference latency and backward propagation latency of each layer when trained on TX2, together
with the data transmission latency between TX2. The transmission latency was derived from the
gradient data size between two layers and the inter-device transfer rate.

Figure 13. Data collected by CWB. (a) Partitionable layers contained in the Lite-SRL network structure,
corresponding to 28 partitionable points {p1, p2, · · · p28}. (b) CWB calculated the memory workload
occupied by each network layer during the training process, including the intermediate variables
and network parameters for each layer. (c) CWB measured time consumption, including inference
latency and backward propagation latency of each layer when trained on TX2, together with the data
transmission latency between TX2. The transmission latency was derived from the gradient data size
between two layers and the inter-device transfer rate.

Remote Sens. 2022, 14, 2956 20 of 26Remote Sens. 2022, 14, x FOR PEER REVIEW 22 of 28

Figure 14. CWB calculates the optimal partition points. Two sets of candidate partition points are 𝑝 , 𝑝 , 𝑝 , 𝑝 and 𝑝 , 𝑝 , 𝑝 , 𝑝 , the rest of the partition points have been screened out as they
cannot satisfy the memory allocation requirements. (a) Runtime proportion of each node under
candidate partition points. (b) Using Equation (9) to calculate equipment utilization evaluation
indices under candidate partition points.

6.1. Computation Workload Balancing
As shown in Figure 13a, CWB figured out all partitionable points over the given Lite-

SRL Network structure. CWB requires the following training setup information: (i) the
training batch size, (ii) the type of optimizer being used, and (iii) the data exchange rate
between TX2 devices to calculate the figures required for workload balancing. In the
experiment, the batch is set to 64 and used SGD optimizer with momentum for training.
The rate of data transmission between TX2 is simulated by the Linux traffic control tool.
According to the partition points and the above setup information, CWB statistic the
memory usage and the time consumption of each layer when training on TX2.

In experiments we uniformly use the float32 format data type, one data occupies 4
bytes of memory. CWB first performed memory workload balancing and computed the
candidate partition points using the data shown in Figure 13b, the theoretical memory
usage for all intermediate values during training is 7599.7 MB. Based on experience, each
TX2 can achieve a preferable working state when allocating about 3 GB memory of

Figure 14. CWB calculates the optimal partition points. Two sets of candidate partition points are
{p2, p3, p4, p5} and {p7, p8, p9, p10}, the rest of the partition points have been screened out as they
cannot satisfy the memory allocation requirements. (a) Runtime proportion of each node under
candidate partition points. (b) Using Equation (9) to calculate equipment utilization evaluation
indices under candidate partition points.

6.1. Computation Workload Balancing

As shown in Figure 13a, CWB figured out all partitionable points over the given Lite-
SRL Network structure. CWB requires the following training setup information: (i) the
training batch size, (ii) the type of optimizer being used, and (iii) the data exchange rate
between TX2 devices to calculate the figures required for workload balancing. In the
experiment, the batch is set to 64 and used SGD optimizer with momentum for training.
The rate of data transmission between TX2 is simulated by the Linux traffic control tool.
According to the partition points and the above setup information, CWB statistic the
memory usage and the time consumption of each layer when training on TX2.

In experiments we uniformly use the float32 format data type, one data occupies
4 bytes of memory. CWB first performed memory workload balancing and computed the
candidate partition points using the data shown in Figure 13b, the theoretical memory usage
for all intermediate values during training is 7599.7 MB. Based on experience, each TX2 can
achieve a preferable working state when allocating about 3 GB memory of computation,

Remote Sens. 2022, 14, 2956 21 of 26

so it requires 3 TX2s to collaborate the training process of one mini-batch. The two sets
of candidate partition points calculated by CWB are {p2, p3, p4, p5} and {p7, p8, p9, p10},
satisfying that the training of each partition can be carried out on a single TX2, the rest
of the partition points have been screened out. CWB then performed time equalization
utilizing the data in shown Figure 13c, by accumulating the forward and backward latency
of individual layers under different candidate partition points, to obtain the running time
of each TX2 node during a training batch.

As shown in Figure 14, CWB used the equipment utilization index to find the optimal
partition point among the candidate partition points. Figure 14a shows the runtime proportion
of each node under candidate partition points, the transmission latency varies depending
on different combinations of partition points. In Figure 14b CWB found the partition point
combination with the highest equipment utilization [p3, p8], representing the optimal partition
points. For the given Lite-SRL network structure and training settings, CWB partitioned
it into the following three parts: partition 1 {p1, p2}, partition 2 {p3, p4, p5, p6, p7}, parti-
tion 3 {p8, · · · p28}.

6.2. Distributed Training with Higher Efficiency

We used six TX2 nodes to compose an on-board computation platform and tested the
proposed distributed training baseline along with the improved dynamic chain system.
In our on-board distributed training baseline experiments, six nodes formed a two-chain
hybrid parallel training according to Figure 4b. After the workload balancing, we allocated
the training of three network partitions to TX2 nodes on each chain. In dynamic chain
system experiments, three nodes are responsible for the computation of partition 1, two for
the computation of partition 2, and one for the computation of partition 3 of the model, as
shown in Figure 4b. The two distributed training methods were performed 1000 iterations
each, the distributed training system performed parameter aggregation every 100 iterations
and updated the model parameters in each node using the aggregated parameters. Here one
iteration referred to the completion of one mini-batch’s forward and backward propagation.

As shown in Tables 5 and 6, the average runtime of executing one iteration in the
baseline is 3572 s, while the average time in dynamic chain system is 2750 s.

Table 5. Distributed training baseline.

Average Running Time of
One Iteration (ms)

Partition 1 Partition 2 Partition 3

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

Baseline 3572

Average runtime of each node in one iteration (ms)
1035 1039 1145 1139 921 923

Running iterations
500 500 500 500 500 500

Table 6. Improved dynamic chain system.

Average Running Time of
One Iteration (ms)

Partition 1 Partition 2 Partition 3

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

Dynamic 2750

Average runtime of each node in one iteration (ms)
1036 1038 1037 1140 1142 922

Running iterations
329 331 340 406 594 1000

The baseline used 6 nodes to complete 1000 iterations of training in 3572 s, and the
2 chains had each been running for 500 iterations. In comparison, the dynamic chain system
used the same nodes to complete 1000 iterations of training in 2750 s. With the scheduling
of the communication module, the system can be viewed as containing 3 chains; the nodes
responsible for the first and second partitions end up with different running iterations, and

Remote Sens. 2022, 14, 2956 22 of 26

node 6 completes 1000 iterations. Dynamic chain system improved training efficiency by
23.01% over the baseline without compromising training accuracy.

The experimental platform is shown in Figure 15. Our distributed system consists of
six nodes, thus allowing flexible distributed training. More chains can be constituted when
the calculation demand is low, and more nodes can be invoked to join the training when
the calculation demand is high. The proposed Lite-SRL with ResNet-18 as backbone can
be completed using 3 TX2 nodes, the baseline and dynamic chain are shown in Figure 15a.
When more complex networks need to be trained, it can be achieved by invoking more
nodes to join the training, which manifests the advantage of distributed multi-nodes. To
this end, we conducted additional experiments. We use the Lite-SRL algorithm, replacing
more complex backbone structure as detailed in the following.

Remote Sens. 2022, 14, x FOR PEER REVIEW 24 of 28

responsible for the first and second partitions end up with different running iterations,
and node 6 completes 1000 iterations. Dynamic chain system improved training efficiency
by 23.01% over the baseline without compromising training accuracy.

The experimental platform is shown in Figure 15. Our distributed system consists of
six nodes, thus allowing flexible distributed training. More chains can be constituted
when the calculation demand is low, and more nodes can be invoked to join the training
when the calculation demand is high. The proposed Lite-SRL with ResNet-18 as backbone
can be completed using 3 TX2 nodes, the baseline and dynamic chain are shown in Figure
15a. When more complex networks need to be trained, it can be achieved by invoking
more nodes to join the training, which manifests the advantage of distributed multi-nodes.
To this end, we conducted additional experiments. We use the Lite-SRL algorithm,
replacing more complex backbone structure as detailed in the following.

Figure 15. The left side is the illustration of baseline and the right side is the illustration of dynamic
chain system. (a) Lite-SRL with ResNet-18 as encoder; three nodes are required to complete the
training of a mini-batch, baseline uses six nodes to form two chains, and dynamic can form three
chains. (b) Lite-SRL with ResNet-34 as encoder; four nodes are required to complete the training of
a mini-batch. Baseline forms one chain with two nodes idle, while the dynamic chain system can
schedule all nodes for training. (c) Lite-SRL with ResNet-50 as encoder, five nodes are required to
complete the training of a mini-batch. Baseline forms one chain with 1 node idle, while the dynamic
chain system can schedule all nodes for training.

The time consumption of DHP under different training computations is shown in
Table 7. The dynamic link system can avoid node idleness and, thus, improve the
efficiency of training. Furthermore, through this experiment, we demonstrate the
potential of our distributed training system, which can be applied to a wider range of
neural network training tasks.

Table 7. Distributed Training Time Consumption, corresponding to the illustration in Figure 15.

Method
Memory

Consumption
(MB)

Distributed Training Time Consumption Accuray 2 (%)

Baseline (ms) Dynamic (ms) Improvement Baseline Dynamic

ResNet18 + Lite-SRL 7599.7 3572 2750 23.0% 91.31 91.27
ResNet34 + Lite-SRL 10,185.9 4895 3984 18.6% 91.75 91.78
ResNet50 1 + Lite-SRL 13,039.3 6473 5962 6.9% 92.11 92.09

1 For ResNet50 the training batch size is 32, the rest of training settings remain unchanged. 2 To
compare the accuracy, we use the NWPU-45 dataset and the accuracy test method is the same as the
freeze experiment above.

Figure 15. The left side is the illustration of baseline and the right side is the illustration of dynamic
chain system. (a) Lite-SRL with ResNet-18 as encoder; three nodes are required to complete the
training of a mini-batch, baseline uses six nodes to form two chains, and dynamic can form three
chains. (b) Lite-SRL with ResNet-34 as encoder; four nodes are required to complete the training of
a mini-batch. Baseline forms one chain with two nodes idle, while the dynamic chain system can
schedule all nodes for training. (c) Lite-SRL with ResNet-50 as encoder, five nodes are required to
complete the training of a mini-batch. Baseline forms one chain with 1 node idle, while the dynamic
chain system can schedule all nodes for training.

The time consumption of DHP under different training computations is shown in
Table 7. The dynamic link system can avoid node idleness and, thus, improve the efficiency
of training. Furthermore, through this experiment, we demonstrate the potential of our
distributed training system, which can be applied to a wider range of neural network
training tasks.

Table 7. Distributed Training Time Consumption, corresponding to the illustration in Figure 15.

Method
Memory

Consumption
(MB)

Distributed Training Time Consumption Accuray 2 (%)

Baseline (ms) Dynamic (ms) Improvement Baseline Dynamic

ResNet18 +
Lite-SRL 7599.7 3572 2750 23.0% 91.31 91.27

ResNet34 +
Lite-SRL 10,185.9 4895 3984 18.6% 91.75 91.78

ResNet50 1 +
Lite-SRL

13,039.3 6473 5962 6.9% 92.11 92.09

1 For ResNet50 the training batch size is 32, the rest of training settings remain unchanged. 2 To compare the
accuracy, we use the NWPU-45 dataset and the accuracy test method is the same as the freeze experiment above.

Remote Sens. 2022, 14, 2956 23 of 26

7. Conclusions

In this article, we propose a self-supervised algorithm Lite-SRL for the scene classi-
fication task. Our algorithm has clear advantages in terms of overall accuracy, number
of parameters, memory consumption, and training latency. We demonstrate that self-
supervised algorithms can effectively alleviate the shortage of remote sensing labeled
data. Taking the experimental results on NWPU-45 dataset as an example, with training
proportions of 10% and 20%, which require few labeled data to predict a large number
of test samples, we achieve 92.77% and 93.51% accuracy with a simple network structure
after self-supervised pre-training. Previous RSSC studies usually require more complex
structures and multiple tricks to achieve such classification accuracies. Meanwhile, our
algorithm has far better performance than other methods under 10% training proportion,
proving that Lite-SRL’s self-supervised training provides an effective feature extractor.

We exploit the advantage of self-supervised learning by training on satellites. The
integration of CWB and DHP enables training neural networks under limited on-board
resources. In addition, we add a communication scheduler module to the DHP framework
to improve the training speed on top of the baseline. On the experimental computing
platform, we successfully transplant Lite-SRL and verify the effectiveness of proposed
on-board distributed training modules.

We believe that on-board self-supervised distributed training can facilitate the develop-
ment of on-board data processing techniques. Not only for RSSC task, but also other tasks
in remote sensing such as remote sensing image segmentation [59], target detection [10],
etc., can utilize this working paradigm. Our proposed distributed training modules provide
strong adaptability, other types of deep learning algorithms can also be deployed in the
distributed training framework, making it possible to enhance the intelligence in remote
sensing applications.

The next step of our work will be as follows:

• We will design a dedicated lightweight feature extractor in the self-supervised struc-
ture to further reduce the memory computation;

• We will explore techniques such as gradient compression, network pruning, etc., to
further improve distributed training efficiency;

• We will explore hardware acceleration solutions for onboard distributed training;
• We expect to add more remote sensing observation missions to on-board distributed

self-supervised training applications.

Author Contributions: Conceptualization, X.X. and Y.L.; methodology, X.X. and C.L.; software, X.X.
and C.L.; investigation, X.X.; resources, X.X.; data curation, X.X. and C.L.; writing—original draft
preparation, X.X. and Y.L.; writing—review and editing, X.X. and Y.L.; visualization, X.X.; funding
acquisition, Y.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

As shown in Table A1, we list all the abbreviations and their corresponding full names
in this article.

Remote Sens. 2022, 14, 2956 24 of 26

Table A1. The abbreviations and corresponding full names, organized in alphabetical order.

Abbreviation Full Name

AID Aerial Image Dataset
BN Batch Normalization

BYOL Bootstrap Your Own Latent
CNN Convolution Neural Network
CWB Computation workload Balancing module

MG-CAP Multi-Granularity Canonical Appearance Pools
MLP Multi-Layer Perceptron

MoCo Momentum Contrast for Visual Representation
Learning

MTL Multitask Learning
NWPU-45 NWPU-Resisc45 Dataset

DHP Distributed Hybrid Parallelism Training
Framework

Lite-SRL Lightweight Self-supervised Representation
Learning algorithm

ReLU Rectified Linear Unit
RSIs Remote Sensing Images
RSSC Remote Sensing Scene Classification
SGD Stochastic Gradient Descent

SimCLR Simple Framework For Contrastive Learning
Simsiam Simple Siamese Representation Learning

SwAV Unsupervised Learning By Contrasting Cluster
Assignments

t-SNE T-Distributed Stochastic Neighbor Embedding

Remote Sens. 2022, 14, x FOR PEER REVIEW 26 of 28

CNN Convolution Neural Network
CWB Computation workload Balancing module

MG-CAP Multi-Granularity Canonical Appearance Pools
MLP Multi-Layer Perceptron

MoCo Momentum Contrast for Visual Representation Learning
MTL Multitask Learning

NWPU-45 NWPU-Resisc45 Dataset
DHP Distributed Hybrid Parallelism Training Framework

Lite-SRL Lightweight Self-supervised Representation Learning algorithm
ReLU Rectified Linear Unit
RSIs Remote Sensing Images
RSSC Remote Sensing Scene Classification
SGD Stochastic Gradient Descent

SimCLR Simple Framework For Contrastive Learning
Simsiam Simple Siamese Representation Learning

SwAV Unsupervised Learning By Contrasting Cluster Assignments
t-SNE T-Distributed Stochastic Neighbor Embedding

Figure A1. The total images number of RSSC datasets, i.e., OpenSARUrban [14], WHU-SAR6 [11],
NWPU-Resisc45 [3], AID [15] compared with natural image datasets, i.e., ImageNet.

References
1. Hu, F.; Xia, G.-S.; Hu, J.; Zhang, L. Transferring Deep Convolutional Neural Networks for the Scene Classification of High-

Resolution Remote Sensing Imagery. Remote Sens. 2015, 7, 14680–14707.
2. Ni, K.; Liu, P.; Wang, P. Compact Global-Local Convolutional Network with Multifeature Fusion and Learning for Scene

Classification in Synthetic Aperture Radar Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7284–7296.
3. Cheng, G.; Han, J.; Lu, X. Remote Sensing Image Scene Classification: Benchmark and State of the Art. Proc. IEEE 2017, 105,

1865–1883.
4. Xu, X.; Zhang, X.; Zhang, T. Multi-Scale SAR Ship Classification with Convolutional Neural Network. In Proceedings of the

IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Online Event, 11–16 July 2021; pp. 4284–4287.
5. Lu, X.; Sun, X.; Diao, W.; Feng, Y.; Wang, P.; Fu, K. LIL: Lightweight Incremental Learning Approach through Feature Transfer

for Remote Sensing Image Scene Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5611320.
https://doi.org/10.1109/TGRS.2021.3102629.

6. Zhang, T.; Zhang, X. Squeeze-And-Excitation Laplacian Pyramid Network with Dual-Polarization Feature Fusion for Ship
Classification in SAR Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4019905. https://doi.org/10.1109/LGRS.2021.3119875.

7. Gu, Y.; Wang, Y.; Li, Y. A Survey on Deep Learning-Driven Remote Sensing Image Scene Understanding: Scene Classification,
Scene Retrieval and Scene-Guided Object Detection. Appl. Sci. 2019, 9, 2110.

8. Zhang, T.; Zhang, X.; Ke, X.; Liu, C.; Xu, X. HOG-ShipCLSNet: A Novel Deep Learning Network with HOG Feature Fusion for
SAR Ship Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5210322. https://doi.org/10.1109/TGRS.2021.3082759.

9. Liao, N.; Datcu, M.; Zhang, Z.; Guo, W.; Zhao, J.; Yu, W. Analyzing the Separability of SAR Classification Dataset in Open Set
Conditions. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7895–7910.

10. Zhang, T.; Zhang, X.; Shi, J.; Wei, S. HyperLi-Net: A Hyper-Light Deep Learning Network for High-Accurate and High-Speed
Ship Detection from Synthetic Aperture Radar Imagery. ISPRS J. Photogramm. Remote Sens. 2020, 167, 123–153.

Figure A1. The total images number of RSSC datasets, i.e., OpenSARUrban [14], WHU-SAR6 [11],
NWPU-Resisc45 [3], AID [15] compared with natural image datasets, i.e., ImageNet.

References
1. Hu, F.; Xia, G.-S.; Hu, J.; Zhang, L. Transferring Deep Convolutional Neural Networks for the Scene Classification of High-

Resolution Remote Sensing Imagery. Remote Sens. 2015, 7, 14680–14707. [CrossRef]
2. Ni, K.; Liu, P.; Wang, P. Compact Global-Local Convolutional Network with Multifeature Fusion and Learning for Scene

Classification in Synthetic Aperture Radar Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7284–7296. [CrossRef]
3. Cheng, G.; Han, J.; Lu, X. Remote Sensing Image Scene Classification: Benchmark and State of the Art. Proc. IEEE 2017, 105,

1865–1883. [CrossRef]
4. Xu, X.; Zhang, X.; Zhang, T. Multi-Scale SAR Ship Classification with Convolutional Neural Network. In Proceedings of the IEEE

International Geoscience and Remote Sensing Symposium (IGARSS), Online Event, 11–16 July 2021; pp. 4284–4287.
5. Lu, X.; Sun, X.; Diao, W.; Feng, Y.; Wang, P.; Fu, K. LIL: Lightweight Incremental Learning Approach through Feature Transfer for

Remote Sensing Image Scene Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5611320. [CrossRef]
6. Zhang, T.; Zhang, X. Squeeze-And-Excitation Laplacian Pyramid Network with Dual-Polarization Feature Fusion for Ship

Classification in SAR Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4019905. [CrossRef]
7. Gu, Y.; Wang, Y.; Li, Y. A Survey on Deep Learning-Driven Remote Sensing Image Scene Understanding: Scene Classification,

Scene Retrieval and Scene-Guided Object Detection. Appl. Sci. 2019, 9, 2110. [CrossRef]

http://doi.org/10.3390/rs71114680
http://doi.org/10.1109/JSTARS.2021.3096941
http://doi.org/10.1109/JPROC.2017.2675998
http://doi.org/10.1109/TGRS.2021.3102629
http://doi.org/10.1109/LGRS.2021.3119875
http://doi.org/10.3390/app9102110

Remote Sens. 2022, 14, 2956 25 of 26

8. Zhang, T.; Zhang, X.; Ke, X.; Liu, C.; Xu, X. HOG-ShipCLSNet: A Novel Deep Learning Network with HOG Feature Fusion for
SAR Ship Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5210322. [CrossRef]

9. Liao, N.; Datcu, M.; Zhang, Z.; Guo, W.; Zhao, J.; Yu, W. Analyzing the Separability of SAR Classification Dataset in Open Set
Conditions. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7895–7910. [CrossRef]

10. Zhang, T.; Zhang, X.; Shi, J.; Wei, S. HyperLi-Net: A Hyper-Light Deep Learning Network for High-Accurate and High-Speed
Ship Detection from Synthetic Aperture Radar Imagery. ISPRS J. Photogramm. Remote Sens. 2020, 167, 123–153. [CrossRef]

11. Su, B.; Liu, J.; Su, X.; Luo, B.; Wang, Q. CFCANet: A Complete Frequency Channel Attention Network for SAR Image Scene
Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11750–11763. [CrossRef]

12. Zhang, T.; Zhang, X. A Polarization Fusion Network with Geometric Feature Embedding for SAR Ship Classification. Pattern
Recognit. 2022, 123, 108365. [CrossRef]

13. Dumitru, C.O.; Schwarz, G.; Datcu, M. SAR Image Land Cover Datasets for Classification Benchmarking of Temporal Changes.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1571–1592. [CrossRef]

14. Zhao, J.; Zhang, Z.; Yao, W.; Datcu, M.; Xiong, H.; Yu, W. OpenSARUrban: A Sentinel-1 SAR Image Dataset for Urban
Interpretation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 187–203. [CrossRef]

15. Xia, G.-S.; Hu, J.; Hu, F.; Shi, B.; Bai, X.; Zhong, Y.; Zhang, L.; Lu, X. AID: A Benchmark Data Set for Performance Evaluation of
Aerial Scene Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3965–3981. [CrossRef]

16. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, USA, 20–25 June 2009; pp. 248–255.

17. Zhang, T.; Zhang, X. A Full-Level Context Squeeze-And-Excitation ROI Extractor for SAR Ship Instance Segmentation. IEEE
Geosci. Remote Sens. Lett. 2022, 19, 4506705. [CrossRef]

18. Kolesnikov, A.; Zhai, X.; Beyer, L. Revisiting self-supervised visual representation learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 1920–1929.

19. Noroozi, M.; Favaro, P. Unsupervised learning of visual representations by solving jigsaw puzzles. In European Conference on
Computer Vision; Springer: Cham, Switzerland, 2016; pp. 69–84.

20. Stojnic, V.; Risojevic, V. Self-supervised learning of remote sensing scene representations using contrastive multiview coding. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 19–25 June
2021; pp. 1182–1191.

21. Zhang, T.; Zhang, X.; Shi, J.; Wei, S.; Wang, J.; Li, J.; Su, H.; Zhou, Y. Balance Scene Learning Mechanism for Offshore and Inshore
Ship Detection in SAR Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4004905. [CrossRef]

22. Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A simple framework for contrastive learning of visual representations. In
Proceedings of the International Conference on Machine Learning, Vienna, Austria, 12–18 July 2020; Volume 119, pp. 1597–1607.

23. Ayush, K.; Uzkent, B.; Meng, C.; Tanmay, K.; Burke, M.; Lobell, D.; Ermon, S. Geography-aware self-supervised learning. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021;
pp. 10181–10190.

24. Franklin, D. NVIDIA Developer Blog: NVIDIA Jetson TX2 Delivers Twice the Intelligence to the Edge. Available online:
https://devblogs.nvidia.com/jetson-tx2-delivers-twice-intelligence-edge/ (accessed on 13 April 2022).

25. Xu, X.; Zhang, X.; Zhang, T. Lite-YOLOv5: A Lightweight Deep Learning Detector for On-Board Ship Detection in Large-Scene
Sentinel-1 SAR Images. Remote Sens. 2022, 14, 1018. [CrossRef]

26. Aitech’s S-A1760 Venus™ Brings NVIDIA-Based AI Supercomputing to Next Generation Space Applications: Radiation-
CharActerized COTS System Qualified for Use in Small Sat Clusters and Short-Duration Spaceflights. Available online: https://
aitechsystems.com/aitechs-s-a1760-venus-brings-nvidia-based-ai-supercomputing-to-next-generation-space-applications/ (ac-
cessed on 13 April 2022).

27. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L. Pytorch: An
imperative style, high-performance deep learning library. Adv. Neural Inf. Processing Syst. 2019, 32, 8026–8037.

28. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M. Tensorflow: A
system for large-scale machine learning. In Proceedings of the 12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

29. Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe: Convolutional architecture
for fast feature embedding. In Proceedings of the 22nd ACM International Conference on Multimedia, Orlando, FL, USA, 3–7
November 2014; pp. 675–678.

30. Shazeer, N.; Cheng, Y.; Parmar, N.; Tran, D.; Vaswani, A.; Koanantakool, P.; Hawkins, P.; Lee, H.; Hong, M.; Young, C.; et al.
Mesh-tensorflow: Deep learning for supercomputers. arXiv 2018, arXiv:1811.02084.

31. Onoufriou, G.; Bickerton, R.; Pearson, S.; Leontidis, G. Nemesyst: A hybrid parallelism deep learning-based framework applied
for internet of things enabled food retailing refrigeration systems. Comput. Ind. 2019, 113, 103133. [CrossRef]

32. Grill, J.-B.; Strub, F.; Altché, F.; Tallec, C.; Richemond, P.H.; Buchatskaya, E.; Doersch, C.; Pires, B.A.; Guo, Z.D.; Azar, M.G.
Bootstrap your own latent: A new approach to self-supervised learning. arXiv 2020, arXiv:2006.07733.

33. Chen, X.; He, K. Exploring simple siamese representation learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 19–25 June 2021; pp. 15750–15758.

http://doi.org/10.1109/TGRS.2021.3082759
http://doi.org/10.1109/JSTARS.2021.3100342
http://doi.org/10.1016/j.isprsjprs.2020.05.016
http://doi.org/10.1109/JSTARS.2021.3125107
http://doi.org/10.1016/j.patcog.2021.108365
http://doi.org/10.1109/JSTARS.2018.2803260
http://doi.org/10.1109/JSTARS.2019.2954850
http://doi.org/10.1109/TGRS.2017.2685945
http://doi.org/10.1109/LGRS.2022.3166387
http://doi.org/10.1109/LGRS.2020.3033988
https://devblogs.nvidia.com/jetson-tx2-delivers-twice-intelligence-edge/
http://doi.org/10.3390/rs14041018
https://aitechsystems.com/aitechs-s-a1760-venus-brings-nvidia-based-ai-supercomputing-to-next-generation-space-applications/
https://aitechsystems.com/aitechs-s-a1760-venus-brings-nvidia-based-ai-supercomputing-to-next-generation-space-applications/
http://doi.org/10.1016/j.compind.2019.103133

Remote Sens. 2022, 14, 2956 26 of 26

34. Li, X.; Shi, D.; Diao, X.; Xu, H. SCL-MLNet: Boosting Few-Shot Remote Sensing Scene Classification via Self-Supervised
Contrastive Learning. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5801112. [CrossRef]

35. Li, Y.; Shao, Z.; Huang, X.; Cai, B.; Peng, S. Meta-FSEO: A Meta-Learning Fast Adaptation with Self-Supervised Embedding
Optimization for Few-Shot Remote Sensing Scene Classification. Remote Sens. 2021, 13, 2776. [CrossRef]

36. Tao, C.; Qi, J.; Lu, W.; Wang, H.; Li, H. Remote Sensing Image Scene Classification With Self-Supervised Paradigm Under Limited
Labeled Samples. IEEE Geosci. Remote Sens. Lett. 2022, 19, 8004005. [CrossRef]

37. Kang, J.; Fernandez-Beltran, R.; Duan, P.; Liu, S.; Plaza, A.J. Deep Unsupervised Embedding for Remotely Sensed Images Based
on Spatially Augmented Momentum Contrast. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2598–2610. [CrossRef]

38. Jung, H.; Oh, Y.; Jeong, S.; Lee, C.; Jeon, T. Contrastive Self-Supervised Learning with Smoothed Representation for Remote
Sensing. IEEE Geosci. Remote Sens. Lett. 2021, 19, 8010105. [CrossRef]

39. Zhao, L.; Luo, W.; Liao, Q.; Chen, S.; Wu, J. Hyperspectral Image Classification with Contrastive Self-Supervised Learning under
Limited Labeled Samples. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6008205. [CrossRef]

40. Doersch, C.; Gupta, A.; Efros, A.A. Unsupervised visual representation learning by context prediction. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1422–1430.

41. Pathak, D.; Krahenbuhl, P.; Donahue, J.; Darrell, T.; Efros, A.A. Context encoders: Feature learning by inpainting. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp.
2536–2544.

42. He, K.; Fan, H.; Wu, Y.; Xie, S.; Girshick, R. Momentum contrast for unsupervised visual representation learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp.
9729–9738.

43. Chen, X.; Fan, H.; Girshick, R.; He, K. Improved baselines with momentum contrastive learning. arXiv 2020, arXiv:2003.04297.
44. Caron, M.; Misra, I.; Mairal, J.; Goyal, P.; Bojanowski, P.; Joulin, A. Unsupervised learning of visual features by contrasting cluster

assignments. arXiv 2020, arXiv:2006.09882.
45. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.

Process. Syst. 2012, 25, 1097–1105. [CrossRef]
46. Kim, S.; Yu, G.-I.; Park, H.; Cho, S.; Jeong, E.; Ha, H.; Lee, S.; Jeong, J.S.; Chun, B.-G. Parallax: Sparsity-aware data parallel training

of deep neural networks. In Proceedings of the Fourteenth EuroSys Conference, Dresden, Germany, 25–28 March 2019; pp. 1–15.
47. Jia, Z.; Zaharia, M.; Aiken, A. Beyond data and model parallelism for deep neural networks. Proc. Mach. Learn. Syst. 2019, 1, 1–13.
48. Lee, S.; Kim, J.K.; Zheng, X.; Ho, Q.; Gibson, G.; Xing, P. On Model Parallelization and Scheduling Strategies for Distributed Machine

Learning; Carnegie Mellon University: Pittsburgh, PA, USA, 2014; pp. 2834–2842.
49. Akintoye, S.B.; Han, L.; Zhang, X.; Chen, H.; Zhang, D. A hybrid parallelization approach for distributed and scalable deep

learning. arXiv 2021, arXiv:2104.05035. [CrossRef]
50. Demirci, G.V.; Ferhatosmanoglu, H. Partitioning sparse deep neural networks for scalable training and inference. In Proceedings

of the ACM International Conference on Supercomputing, Virtual Event, 14–17 June 2021; pp. 254–265.
51. Moreno-Alvarez, S.; Haut, J.M.; Paoletti, M.E.; Rico-Gallego, J.A. Heterogeneous model parallelism for deep neural networks.

Neuro Comput. 2021, 441, 1–12. [CrossRef]
52. Das, D.; Avancha, S.; Mudigere, D.; Vaidynathan, K.; Sridharan, S.; Kalamkar, D.; Kaul, B.; Dubey, P. Distributed deep learning

using synchronous stochastic gradient descent. arXiv 2016, arXiv:1602.06709.
53. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
54. Van Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
55. Cheng, G.; Yang, C.; Yao, X.; Guo, L.; Han, J. When Deep Learning Meets Metric Learning: Remote Sensing Image Scene

Classification via Learning Discriminative CNNs. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2811–2821. [CrossRef]
56. Chen, Z.; Wang, S.; Hou, X.; Shao, L.; Dhabi, A. Recurrent transformer network for remote sensing scene categorisation. In

Proceedings of the 2018 British Machine Vision Conference, Newcastle, UK, 3–6 September 2018; Volume 266, p. 0987.
57. Wang, S.; Guan, Y.; Shao, L. Multi-Granularity Canonical Appearance Pooling for Remote Sensing Scene Classification. IEEE

Trans. Image Proces. 2020, 29, 5396–5407. [CrossRef]
58. Zhao, Z.; Luo, Z.; Li, J.; Chen, C.; Piao, Y. When Self-Supervised Learning Meets Scene Classification: Remote Sensing Scene

Classification Based on a Multitask Learning Framework. Remote Sens. 2020, 12, 3276. [CrossRef]
59. Zhang, T.; Zhang, X. HTC+ for SAR Ship Instance Segmentation. Remote Sens. 2022, 14, 2395. [CrossRef]

http://doi.org/10.1109/TGRS.2021.3109268
http://doi.org/10.3390/rs13142776
http://doi.org/10.1109/LGRS.2020.3038420
http://doi.org/10.1109/TGRS.2020.3007029
http://doi.org/10.1109/LGRS.2021.3069799
http://doi.org/10.1109/LGRS.2022.3159549
http://doi.org/10.1145/3065386
http://doi.org/10.2139/ssrn.4043672
http://doi.org/10.1016/j.neucom.2021.01.125
http://doi.org/10.1109/TGRS.2017.2783902
http://doi.org/10.1109/TIP.2020.2983560
http://doi.org/10.3390/rs12203276
http://doi.org/10.3390/rs14102395

	Introduction
	Related Works
	RSSC under Limited Annotated Samples
	Self-Supervised Contrastive Learning
	Distributed Training under Limited Resources

	Methods
	Overview of the Proposed Framework
	Lite-SRL Self-Supervised Representation Learning Network
	Network Structure
	Lite-SRL Network Partition

	Distributed Training Strategy
	Computation Workload Balancing Module
	Dynamic Chain System

	Experimental Setups
	Datasets Description
	Data Augmentation
	Implementation Details

	Experimental Results
	Guaranteed Accuracy with Less Computation
	Self-Supervised Representation Extractor
	Improving the Scene Classification Accuracy with Limited Annotated Data
	Confusion Matrix Analysis

	Deployment of Lite-SRL
	Computation Workload Balancing
	Distributed Training with Higher Efficiency

	Conclusions
	Appendix A
	References

